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We study the magnetic behavior of an itinerant, strongly interacting fermion system for varying

values of the coupling constant and for arbitrary dimensionalities 1 & d ~3. We show that, at

zero temperature, due to quantum effects, the critical exponents are the mean-field ones below

two dimensions as well as above. We then focus on the critical behavior of the two-dimensional

case, which, within some assumptions that are discussed, exhibits a ferromagnetic rather than anti-

ferromagnetic character. We also compute the effects of critical fluctuations on the low-

temperature properties of such systems.

I. INTRODUCTION

As is well known for three-dimensional systems, '

strong short-range repulsions between itinerant fer-
mions give rise to a magnetic instability when the
magnitude of the interaction reaches some critical
value at a given temperature. Close to the magnetic
transition, the system experiences critical spin fluctua-
tions (the so-called "paramagnons"). i The simplest
description using zero-range interaction and the
random-phase approximation (RPA) has proved, in

the past, to be quite useful and to give reasonable fits
to the experimental data for three-dimensional nearly
magnetic systems with magnetic instability, if any, oc-
curing at T, =O K. Ho~ever, for T, AO, the mean-
field result does not give correct answers and mode-
mode coupling effects' must be taken into account. It
has been established previously" that a direct analogy
exists between the system of itinerant interacting fer- '

mions at fixed temperature (T, =0 K), when the di-

mensionless interaction I increases and reaches the
critical value 1 and, on the other hand, the system of
localized spins on a lattice, with nearest-neighbor in-

teraction J fixed, when the temperature decreases so
that the dimensionless temperature r( —T/J), reaches
the value 1, as well. However, in the first case, the
continuum of frequencies co at 0 K, plays a crucial role
and brings in important differences as compared to
static critical phenomena ususally encountered in the
second case. In both cases, however, the study of the
Landau-Ginzburg-Wilson (LGW) equation describing
the system of interacting critical fluctuations, using
group-renormalization techniques, allows to compute
critical exponents. ' In that framework, it has been
shown that, for d =3, ' and also for 2 & d & 3, '
paramagnon theories with zero T, are "renormaliz-
able, " in the sense that the critical exponents are the
mean-field ones, and the renormalized value of the

coupling constant may then be computed in perturba-
tion. This was due to the quantum effects mentioned
above; the presence of co increases the "effective
dimensionality" (which notion was first introduced in
Ref. 5), below which mean field breaks down, (i.e.,
d, tr

= d +3, to be compared with 4). On the other
hand, itinerant ferromagnets with finite T, identify
with usual static critical phenomena problems, and the
corresponding critical exponents are thus different
from the mean-field ones: indeed, at finite tempera-
ture the Matsubara frequencies of the spin fluctua-
tions ~„=2mv T are discrete as compared to the fre-
quency continuum at zero temperature; the most im-
portant frequency for criticality is the first one, v =0;
therefore, everything goes as if the frequency is not
present. For very small, although finite T„however,
a crossover region shows up between mean-field ex-
ponents and non-mean-field ones.

At that stage, it appeared interesting to examine
what happens for itinerant systems below, and at, two
dimensions. Indeed, while the mean-field static sus-
ceptibility X(q, co=0) =Xo(q, 0)/[I —IX (q, 0)],
diverges for long wavelengths (q 0) above two di-

mensions, it diverges for all q between 0 and 2kF (kF
is the Fermi momentum) at d = 2, which thus appears
to be a pathological case; finally, X is meaningless at
d = I, since the free-fermion static susceptibility itself
Xo(q, 0) diverges at q =2kF.

The main questions we want to answer in the
present paper are the following: (a) Is Xo finite at 2kF
for I ( d ( 2, or does it diverge as for d =1? (b) If
X is finite for all momenta, what happens when the
interaction is turned on in a mean-field approxima-
tion? (c) Is the interacting-particle theory "renormal-
izable" (in the sense defined previously), as is the case
for d ) 2? (d) If so, could the results obtained for
1 & d & 2 combined with those for 2 & d & 3 shed
light on the pathological case d =2? (e) If not, what
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can one say about the case d =2? (f) Generally
speaking, for 1 & d «2, what is the role of the fre-
quency (at T =0 K), as compared to its introducing,
above two dimensions, an effective dimensionality
larger than the real one? (g) Finally, how do the criti-
cal fluctuations affect the low-temperature properties
of these itinerant systems for low dimensionalities~

In order to answer these questions, we first compute
Xo(q, o&) and X(q, co) =X (q, cu)/[I —Ix (q, co)] at zero
temperature as well as at finite temperature and for all
dimensionalities 1 «d «3; then we examine the vari-
ous questions raised above. Our main results are the
following: (i) The free-particle dynamic susceptibility
Xo(q, ro) r=o remains finite whatever is q, for all d
strictly larger than 1; besides, it is sharply peaked,
with infinite slopes, at q =2kF and co =0, for
1 & d & 2 while its maximum occurs at q =0 and
cu =0, with zero slope, for 2 & d ~ 3. (ii) the value
X (2k', 0)/X (0, 0) = (d —I) ', for all d, i.e.,
1 «d «3; this is an exact and remarkably simple
result. (iii) The expansion of X'(q, co) around q =2kF,
~ =0, for 1 & d & 2, corresponds to the behavior of a
system of particles submitted to long-range forces,
whereas the case d & 2 corresponds to short-range
forces. (iv) The maximum of Xo being finite for
1 & d & 2, one can compute X in perturbation theory
(RPA), for the interacting system; an'd for increasing
values of I = I/EF (EF is the characteristic energy of
the free particles), the system switches, for d & 2,
from a paramagnetic but nearly antiferromagnetic
behavior (cf. nearly ferromagnetic for d & 2), to a real
antiferromagnetic state exhibiting spin-density waves.
(v) The almost antiferromagnetic case for I & d &2 is
shown to be "renormalizable" as was the almost fer-
romagnetic one for 2 & d ~ 3.' ' (vi) There is, how-

ever, no "effective dimensionality" different from the
real one for d & 2: the continuum of frequencies co at
T =0 K is irrelevant and plays no role in contrast to
what happens for d & 2. (vii) The case d =2 appears
as a borderline. One studies that case separately. We
calculate in perturbation the self-energy correction to
the two-dimensional fluctuation propagator. If, for
simplicity, to render the calculation tractable, one as-
sumes that the vertices at the crossing of two interact-
ing fluctuations are constants or vary smoothly, then,
the perturbation series introduces a curvature in the
resulting R(q) (including the self-energy correction),
i.e., a q' term arises which was absent in the RPA ex-
pression of X(q). Thus, for d =2, R(q) would diverge
for q =0, ~ =0 (ferromagnetic behavior), analogously
to what happens above two dimensions. However, the
assumption made on the vertices between interacting
fluctuations is not obvious, as will be discussed in the
text. (viii) Finally, we give expressions for the
specific heat, including the effective-mass expression,
and the resistivity for such systems, for 1 & d «3.

Part of these results were reported in a brief com-
munication elsewhere'; the present paper is the

published version of the 3rd cycle thesis of one
of us. '

II. FREE-PARTICLE DYNAMIC SUSCEPTIBILITY
FOR 1 «d «3

&&G (e-„+-,e+cu) d k de, (I)

where e-„is the kinetic energy of the fermions,
e-„=k'/2 (in atomic units). G (e-„, e) is the free-
particle Green's function,

G (e-„, e) = [a —e-„+i rstgn(~ k~
—kF)] ' (2)

The space integral I d~k is given by the usual" brute
force successive integrations,

J
f r

d"k =
1

' ' ' Jt k" dk (sjng ) dtliJ

x (sin&2) d82 (3)

We find closed-form formulas for ReXO(q, cu) and
ImXO(q, cu) in terms of hypergeometric functions'~ as
given below; we will use

X'(0 0) =2' rr 'I '( 4/)2kF' (4)

which is the density of states at the Fermi level for
two spin directions. Dividing by the number of parti-
cles per unit volume,

nP = 2& ~k&4 i ~ ~&&F—
~(d/2)

one gets

x'(0, 0)/np ——d/2EF,

with EF = kF/2. In the above formulas, I denotes the
gamma function. ' Setting

g+ = q + 2o)/q

Q- = q 2~/q

we get

We calculate here the dynamic susceptibility Xo(q, cu)

for a parabolic band of free fermions, as follows:
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F(a, b, c,z) is the degenerate hypergeometric series. " It can be checked that Xa(q, cu), for fixed q, is inaximum for
~ =0. Since we will be interested in time-persistent Auctuations, we wi11 consider that case. Herice, we obtain

( '2'
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Figure 1 illustrates the variation of xo(q, 0) versus q for various values of d.

Then, expanding xo(q, ru) around its maximum cv 0 and the apppropriate value of q, one gets

for 2~d~3, x'(q, ~) =x'(0, 0), 1—
3 2kF

I'(d/2) co

for 1 &d~2,
r

x (q, cu) = '
1 —A-(2 —d) 1—0 xo(0, 0)

d —1 2kF

«1, «1, (11)
2kF

'
kFq

Jn I'(d/2) op (d —I )
d —1 kF (1 —(q/2kF) l

2

q
2kF ( / )'))
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FIG. 2, Phase diagram for the itinerant interacting fermion

system at T =0 K.
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In the RPA, the magnetic instability will occur when

FIG. 1. X (q, 0) normalized vs q for dift'erent values of d:

{a) d =3; (b) D =2.5; (c) d =2; (d) d =1.75; (e) d =1. 1 —IX',„=0, (14)

with

III. DYNAMIC SUSCEPTIBILITY OF THE
INTERACTING FERMIONS EVALUATED IN MEAN

FIELD FOR 1 & d ~ 3 AND T =0 K.

Since Xo(q, co) remains finite for all d, except d =1,
one is then allowed to formally write down the RPA
series in presence of the spin-spin interaction I

X(q, co) = X (q, co) /[1 —I X (q, cu) ] (13)

and since, as was noticed in Sec. II, max[XO(q, cu)] oc-
curs at q =2kF, co =0, for d & 2, compared to q =0,
co.=0, for d & 2, the system will undergo an antifer-
romagnetic instability in the former case, when I is
large enough, and a ferromagnetic one, in the latter

A+ (or A ) is a function of d corresponding to
q =2kF+ (or 2kF ). The main features arising from the
above formulas figure already in the introduction; let
us just add some precisions:

(a) for co =0, Xo,„occurs at q =0, for 3 ~ d & 2,
and at q = 2kF, for 2 ) d ~ 1, where it is finite except
at d exactly equal to 1. (b) Xo(q) increases (or de-
creases) monotonically for 2 & d & 1 (or 3 ~.d & 2),
when q increases from 0 to 2kF, Xo(q) decreases
monotonically towards 0 for all d, for q & 2kF. (c) the
slope of Xo(q) at q =0 is zero. (d) the slopes of
X (q =2kF), on both sides of 2kF, are infinite for all d,
except for d = 2 where it is zero for 2kF and infinite
for 2kF+. (e) for q 0, we recover, for I & d & 2 the
same expansion we had for d & 2. '

t

Xo,„= e(d —2) + e(2 —d)2' (15)

Therefore, the instability will take place when I
reaches the critical values

I, =2FF/d

for 2 & d ~ 3, ferromagnetic instability
(16)

I, =2(d —1)/d,

for 1 & d & 2, antiferromagnetic instability

Note that for d =1 there is an antiferromagnetic
divergence of X even for I =0. The instability near
one dimension occurs for very small values of I while
between two and three dimensions, it occurs only for
I/EF rather close to 1 (see Fig. 2).

Finally, for d =2, X (q, 0) is constant, equal to
Xo(0, 0) for all q such that 0 ~ q ~ 2kF (all the q
dependence is multiplied by a coefficient proportional
to d —2, which identically vanishes for d=2). Xo,„
occurs for all these q values; then the Stoner criterion
for apparition of magnetism (14) appears meaningless,
and the d =2 case looks pathological. Note that such
a flatness for Xo(q, 0) vs q would probably disappear in

presence of band structure eff'ects in metals; however,
the problem still remains for (normal) liquid 'He
films, for instance, for which case our model would
directly apply.

With the help of (10), we note that the expansion
of Xo{q, &o) around its maximum yields
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t

1 —l(Xmax)d)2 1 )1lq + ipl
q

d &2
1 —I XO(q, 4u) —'

t~
1 —1(X,„)d &2 1 —h2q

' +

ipse

q'
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where Xl 2,pl 2 are constants q' = ~2kr —q ~, and

=(d —1)/2, d (2

(17)

(18)

So, the power cr of q' for d ( 2, is smaller than 2.
Therefore, the cases d (2 would correspond to
"long-range forces", ' while those for d & 2 correspond
to "short-range forces" (-R l"+ i), since q appears to
the power 2. So here too, d =2 appears as a border-
line. All that is illustrated on Fig. 2. The line
between the ferromagnetic and the antiferromagnetic
parts of the diagram is most likely of first order, while
the lines separating the ordered phases from the
paramagnetic ones are of second order. The crossing
point of these three lines at d =2 could be thought of
as an infinite-order Lifshitz point' by analogy with
problems when q does not appear with a power less
than 4; here no power of q appears at all.

Another remark is that the long-range interactions
corresponding to (18) below two dimensions, when
d 1, tend to behave like the unscreened Coulomb
interection considered by Overhauser, ' so that the
spin-density waves (SDW) of our Fig. 2 are reason-
able to expect in this model.

In Sec. IV, we will study the validity of the above
mean-field results by constructing the LGW Lagrangi-
an of interacting fluctuations, with each inverse fluc-
tuation propagator given by (16) or (11) in mean
field.

IV. LGW LAGRANGIAN FOR THE SYSTEM OF
INTERACTING FLUCTUATIONS FOR 1 DIMENSION

1+ g 4(q 1 q4 ~ 4ul ~ ~ ~ & ru4)
4pN

~ 1[r(q, , i lul) ill(q4icu4),

(18)

P = T ' and the v s are the vertices interactions. We

Using standard techniques, the LGW Lagrangian
describing the system of interacting fluctuations reads

H(y) = —$ v ( 2i q)~cluing(q, ilu„)~'1

g, Cd

will consider the expression (18) only up to the quar-
tic term in the perturbation series expansion; this will

be justified, a posteriori, as it was in Refs. 4—6, since
we will show that the paramagnon theories are "renor-
malizable" for d & 2 and d & 2. v2, as usual, is pro-
portional to the inverse mean field fluctuation propa-
gator [Eq. (13)];as usual too, we will suppose that v4

varies only smoothly and is reasonably well accounted
for by a constant; this is not obvious for the two-
dirnensional case and we will come back to that point
later on.

In order to investigate the validity of mean field,
we will study the Ginsburg criterion developed in
Ref. 5, i.e., we study the coridition under which the
following expression converges:

(r11+q'+ 4u/q)'

—I (d —4)~2+3~2

())~dqdlu
(r11+q' +cu/(q')' )'

(19)

r 2(3—d)/(d —1)

dropping all constant coefficients q' and o- are given in

the previous section, and

ru= 1 —iXO,„. 0, as well as qlq', —,—, . (20)' q'q'

The first formula of (19) was already found and com-
mented in Refs. 5 and 7: V(r) converges for
2 ( d «3, mean field is valid in the sense that the
critical exponents will be the Gaussian ones. At this
stage, we wish to mention a comment by Nozieres"
who raised the question of whether, in the 4u/q term,
which, actually reads 4u/vrq, the bare fermion mass m

should appear or the effective mass m', containing the
first (or more?) paramagnon correction (for instance,
m' —lnro in three dimensionsi). The answer is not
obvious since in the Wilson theory, the first term in
the denominator of (19) should be the bare ru and not
an effective one already dressed by fluctuations; in any
case and supposing one should indeed, use m'instead
of m (m" is given in Appendix C, -ru14 "i'), one
would find that V(r) —ro, independently of d above
two dimensions, so that V(r) still converges for van-
ishing ro, but the notion of "effective dimensionality"
has disappeared.

As far as the second formula of (19) is concerned,
below two dimensions it obviously converges, even in

absence of ~. One thus expects classical behavior, for
this kind of "long-range forces" case; this result is rea-
sonable since we know from Ref. 14 that a classical
regime holds for 2o- —d (0, and that condition is
indeed satisfied with 4r given by (18). We have
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V d =2 CASK

Let us first note that, for d = 2, we have

v2=rp+QJ/krq, if q ~2kF

vg = rp+ (q' 4kr')' '+ p—i/kr'(q' —4k''-)' '

if q ~~ 2kp-

(21)

In the present section, we study in perturbation the

=2-Q
(a)

redrawn Sak's phase diagram in a (d, o.) plane, in our
Fig. 3, and we have indicated on the figure where our
paramagrion case below two dimensions falls for better
clarity. Therefore, the critical exponents will be the
classical one, q = 2 —o-, y = 1, v = a- '.

We point out here an amusing remark concerning
the case d 1: in the discrete Ising model of Mig-

dgl, " the inverse critical temperature T, ', together
with the critical exponent v, diverge like (d —1);we

can compare that with our X,„and our v diverging
like (d —1) ' too; however, the comparison stops
beyond that, since our critical exponents are of "classi-
cal" type as shown above, while Migdal's ones are not.

For d =2, we must remember that for co =0, all the
rnomenta dependence has a coefficient proportional to
(d —2) and thus identically vanishes when d =2. The
frequency and the momentum do not appear separate-
ly and no scaling as the ones used to get formulas
(19) are possible as noted previously. '7'9 We must
then study the d =2 case from another point of view.

FIG. 4. The first few diagrams in the self-energy correc-
tion to the one-paramagnon propagator.

self-energy corrections to the bare paramagnon propa-
gator [v2(q)] ', i.e., we calculate the first few di-

agrarns given on Fig. 4 where each wavy line is a bare
fluctuation propagator and each dot the bare vertex at
the crossing point between two fluctuations; that bare
vertex is just one close fermion loop and its value is
given by a sum over frequency and momentum of the
product of four fermion propagators as shown on Fig.
5 and is identified with v4.

Here comes a crucial hypothesis for the evaluation
of this self-energy: usually, for static critical
phenomena, in ferromagnetic type of systems,
v4(qi, q2, q3, q4) —v4(0, 0, 0, 0) —const. ; similarly, in

three-dimension paramagnon problems with ferromag-
netic tendancy one can show easily' that .

v4 (q i pi i, q q pi2, q 3pi3, q 4 pi4) —v4 (0, 0, 0, 0, 0, 0, 0, 0) = const.
But since we do not know whether, in the two-
dimensional case, it is the ferromagnetic or the anti-
ferromagnetic limit which is the correct one, we also
do not know whether we can approximate v4 by
v4(0, 0, 0, 0, 0, 0, 0, 0) which is equal to 0, for d = 2, or
its value, still at zero frequency but for momenta close
to 2kF, which may diverge. ' So we should, in princi-
ple, in order to evaluate the various diagrams of Fig.
4, keep the momenta and frequency dependence of
the v4's as it appears in the general expression (18).
But then, the calculation becomes extremely difficult;
it could be handled only if one could provide a
simplified model form for the momenta dependence
of v4 (see, for instance the form studied for another
problem in Ref. 22), but since we failed to compute
the general expression for v4, we have been unable to
approxirriate it, also. Therefore, we suppose that the
singularities of the v4's, when integrated over, will not
sensibly affect the result one would obtain if one sup-
poses they act as constants. But this has not been
proved and appears extremely difficult to clarify.

0
0 a

FIG. 3. Summary of the nature of the critical exponents

given by Sak (Ref. 14), (where our paramagnon results

below two dimensions were added) for short- and long-range

forces I/R +: {a) short-range forces, Gaussian exponents;
(b) short-range forces, Wilson-type exponents; (c) long-range

forces, Wilson-type exponents; (d) long-range forces, Gaus-

sian exponents, to which case belong the paramagnons below

two dimensions.

FIG. 5. Vertex between two interacting paramagnons; the

wiggly lines are paramagnons, the closed loop is formed by

four fermion lines.
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Within the above assumption, the second and third
terms of Fig. 4 will just multiply the bare Auctuation
by a constant; only the last term will matter since it is
the only one which may possibly bring in an extra
momentum and frequency dependence. For simplici-

ty, we study that diagram for zero frequency. The cal-
culations are given in Appendix E; we are thus able to
show that the corrected v2(q), taking into account the
four first self-energy corrections to v2(q), may be .

written

m' . C—1 = lim
m T~ T

I

m'
C — —1 T

m

TABLE I. Fermion effective-mass correction and the fol-

lowing term in the temperature expansion of the specific

heat for various dimensionalities. For d = 2, rp' is the value

of rp renormalized by the paramagnon self-energy correction

of Fig. 4.

v2(q) = rp'+ uq', for q ~ 2kF (22)
9 ro——ln
2 3

T ' T
ln

fp fp

where a is a positive constant. Under those .condi-
tions, the corresponding XP(q) will exhibit a max-
imum at q =0, i.e., a ferromagnetic type of behavior.
The Ginsburg criterion reads then as in the cases
d & 2, and thus the theory is renormalizable as well.
But we insist that we have used an approximation to
arrive at this result, approximation which remains to
be justified: indeed, if it would happen that the singu-
larities in the momenta dependence of v4 could render
the overall sums of the second term in (18) divergent,
it would then be forbidden to write down the series
(18) where all terms would then diverge and the en-
tire mystery would remain for the d = 2 problem.

V I. LO%-TEMPERATURE PROPERTIES OF
PARAMAGNON SYSTEMS FOR 1 ~ d (3

a. Critical properties. As we noted previously, at
finite temperature the paramagnon frequencies are
discrete, the most important one is the frequency
zero, and thus, we recover a static critical phenomena
type of problem, for 2 & d (3, for which mean field
does not give the correct critical exponents. However,
for 1 & d & 2, as we showed, the frequency does not
play any role, so the "classical" behavior holds at finite
temperature as it did at zero degree.

b. Specific heat. We generalize here, for arbitrary
dimensionalities a calculation which has been derived
long ago, at d = 3. The specific heat is given by

between
2 and 3

' (d-3)/2
9 fp

2, 3 fp

9 fp

2 3
T

rp

between
I and 2

—lnrp

2/(3-d)

fp

results of Table I. One must note that the critical
Ouctuations for d = 2 are stronger than for d A 2, so
that the crossover lines between a Gaussian type of
regime and a Wilson type (see, for instance, Ref. 6)
occur at much lower temperature in the former case.
As far as m ' is concerned between two and three di-

mensions, its limit when d 3 switches to lnrp as it
should; note that while m ' appears to be independent
of d below two dimensions, the following term in the
specific heat strongly depends on d.

c. Resistivity. We assume, for simplicity, that we
consider the scattering of conduction electrons by
paramagnons formed by the electrons of the same
band, and we evaluate the resulting expression for the
resistivity, at low temperature, T/rp ( 1. We calculate

p ~ JI'd~ Jtdx xd(1 x2) td-3&t2

AF
8 T2

(23) x n(co) [1 +—n (co)] Imx(x, cu), (26)
T

ItF ~ T X [ln(1 —Ix') + I x'] (24)

or
p I

I F ~ Jl dl ( T X [—x(q, ~) + x'(q, ~)]) (2S)

but the sums over, the momenta concern vectors k in
d dimensions. A low-temperature expansion,
T/rp ( 1 [with rp, given by (20), ~], yields the

where 6F is the excess free energy of the fermion gas,
due to paramagnons. Calculations are given in Ap-
pendix C. As usual, ' AF is given by

where n (u&) = (e"tr 1) ' and x—= q/2kF. Calculations
presented in Appendix D yield the results of Table II.

d. Discussion of the results. We would like to make
a few remarks on the results that we have obtained
below two dimensions in comparison to what is known
elsewhere, first for the d = 1 case and second for the
nearly antiferromagnetic three-dimensional case.

For d 1, we have verified that, at finite tempera-
ture, X —ln T, ' is well known. On the other hand,

oJp/ T
we have also verified that the resistivity p —e (cup

being a frequency cutolf), at low temperature and
switches to p —T/cup at higher temperature, in agree-
ment to what is known.
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TABLE II. Low-temperature contribution to the resistivi-

ty, for various dimensionalities; the enhancement of the T2

varies, depending whether one retains (column I), or not

(column II), the first momentum contribution in the expan-

sion of the real part of the susceptibility around its max-

imum.
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between
3 and 2

between
2 and 1

(T/rp)'

(T/rp) 2

(T/ro) ~

(T/r, )'

T2/» i/2

T2/r 4—d)/2

T2/rp

T2/r 2/(d —1)

APPENDIX A: EVALUATION OF ReX (q, co)

AND ImX (q, co) AT ZERO TEMPERATURE

~ d'k 1Rex'(q, ) =-J,(f-„-f-„,d
(2 )y k k+q ( )

where f-„is the Fermi distribution of occupied states,

f-„=0 if e-„) eF

f-„=1 if e-„( eF

For the 1 ( d ( 2, nearly antiferromagnetic cases,
we would like to compare our results with the known
results for the d =3, nearly antiferromagnetic case,
although it seems difficult to elaborate on the result of
the comparison. It has been shown that, in general, "
the linear T term in the specific heat of the three-
dimensional AF case is not enhanced, but for particu-
lar shapes of the Fermi surface, the coefficient of the
T term diverges like lnro (finite cylinder for the Fermi
surface) or like ro ' (infinite cylinder). On the other
hand, the resistivity" for nearly excitonic three-
dimensional systems was calculated to behave like T2,

but with a coefficient diverging like rp . Obviously,
the nearly AF character of these cases and ours allows
the comparison but the diAerence of dimensionality,
most likely, explains the dift'erent degrees of diver-
gences in the coefficients.

We also note' that when one crosses the antifer-
romagnetic line for 1 ( d & 2, in Fig. 2, the paramag-
non pseudomodes becomes antiferromagnetic mag-
nons.

Finally, if it can be proven in the future, that the
ferromagnetic character of the d = 2 case is confirmed,
independently of the assumption used in the present
paper, that would allow to render more quantitative
the explanation proposed elsewhere' for the meas-
ured ferromagnetic (Curie-Weiss) susceptibility of
liquid 'He near a surface (while bulk liquid 'He is
paramagnetic).

and

e-= —k
1

k 2

(a) ReXO(q, ~) can be written in the form

—Jt „Kq ~ J)(sin8)~ 2

1 1

kq cos8 ——q —co kq cos8+ —q —co
1 1

2 2

d8

(A3)

where Kq ~ is the area of the (d —1)-dimensional
sphere with Q+=2co/q +q and Q =2'/q —q. The
problem reduces to evaluating

(1/2q) [x'(Q, , 0) +x'(Q, 0) j (A4)

Now

te kF
x'(q, 0) =— „Jl k'-'I (k, q), (AS)

lmx'(q, ru) = vrJ,(f-„—f-„+&5(ru —(e-„+-—e-„))2' d

(A2)

t(k, q) = Jf (sine)'

r

2(kq) q4 1 —cos8 1 +cos8 2(kq)2 ——q4 kq costI ——q2 kq costI + —q2

(A6)
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Kith the help of

»8 r(—(d —I))1

dg
1 + cos8 r(—'d)

2

[r(x).is the Euler function],

r( —,')r( —,'(d+I)) '2k' '

d8= q
cos8+q/2k I.(' (d+2)) q 2k

(d —1)/2

F d+1 d d+2 2k
2 2 2

1f
2k

(A7)

' 2' (d —1)/2

=m 1— q d+1cot
2k 2

r

—2 18 d —1 d+1 F1 —d'1'3 —d 1 1+ q

2
'

2
' '

2 '2 2k

where F(a, b, c, ;z) is the hypergeometric series. "
1

I q/2 fa kF
Xo(q, o) =— 'I k" 'l(k, q ~2k) dk + ' k" 'l(k, q «2k) dk for q «2kp

(2vr)» ~'q/2

so that

if q ( I, (A8)
2k

(A9)

X'(q, 0) = X'(0, 0)F;1;—;
2

' '2' 2kF
le

22—d~ —d/2
x'(o, o) =

r(d/2)

Furthermore,
1

2 —d 3 1F , 1;—,1 = for q ~2kF,
2

' '2' d —1
1

for q «2kF (Alo)

(A11)

(A12)

pkF
X (q, 0) =—

J
k» 'I(k, q ~2k) dk

(2m)4 o

'2

o( 0) 1 p o(0 0)F 1,1
d + 2 F

d q 2 2 q

Finally, according to how Q+ and Q compare with 2kF, one gets the results given in the text, formulas (8).
(b) ImXo(q, o1) can be written in the form

(A13)

(A 14)

X (0 0) I(d/2) I k2 „' dr t 4 'dk„(1 — 2)" 3n( q — o+ )d . (A15)
2 I'((d —1)/2) t~

Recalling that

I ( )
(z/2)'

X g ( 1)p ~p (2p)! 1
I( 1)2p kez

r( 1

) (
1

) (p)1 (k)1 z2p-k+1 (A16)

with

~ =(v ——)(v —-) (v+ ——p)1 3 1

2 2 2

1

J v 'I„(zv) dv = —I„L(z)
z

(A17)

(A18)

&p x
p~ (p)! 2kp

one gets

1 2' p

2kF

'2 t —1/2

(A19)
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I x'(q )= '
x(O, O)

d —1 I ((d —1)/2) 2q

' 2' (»—1)/2

2kF
sgn +1 —sgn —1

2kF 2kF

2kF

'2' (d —])/2 (

Q+ Q+
sgn +1 —sgn —1

2kF 2kF
(A20)

APPENDIX B: TWO-DIMENSIONAL SUSCEPTIBILITY
AT FINITE TEMPERATURE Jt „ = ((2) (C5)

We wish to evaluate

X (q, o, T) = JI k dk

x t'"dP,
q' —4k' cos2$

(BI)

[$(x) is the Rieman function"],

= —(2k 1)
r + l(k/2 k)'

8 d —1 4-d (d 3)/2

2
'

2

for T/EF « I and q'/T « I,

p( 0 T) 1 22rkdk 1

27T2 p q (q2 4k2)1/2 (k2 k 2)/2r
e F +1

(B2)

rp=1 I
(

/2F =—3 V((2)(2kFI)» '8
2

'
2

(C6)

du [ (kF /—4)/2 r— q2
X'(q, O, T) =

~ 1 —e ' — u
82r "o

1 ~ 1

I o /'T, (C7)
(22r)"+' r((d —I)/2)

—kF/2T 1 q2 kF/2T
1

4m 12 T

(B3)

whence

m'/m —1 ~ r'(X fp

(b) Straightforward calculations yield

(C8)

APPENDIX C: CONTRIBUTION OF PARAMAGNONS
TO THE SPECIFIC HEAT

1. Effective-mass calculations

12 V 1
/), F =— », 2

v 7r ((2)

r(d/2) r((2- d)/2)
I'( —) r((1 —d)/2) I'((d —I)/2)

(a) 2 ~ d ~3. One has

lim (C / T) —m '/m —1
Tm

(Cl)

rp+ IAx, „ ln
(2kF)' " rp

where rp =1 —Ix (2kF, O),

(c9)

where

with

T9 AF
0T2

(C2)

whence

I (—', ) I ((1 —d)/2)

r((2 —d)/2)
(Clo)

and

6 V ~ I (d/2) f' «) d«)

(2rr) +' I ((d —I)/2) JP

[1 —h. + X(k/2kF)']

/ = I xp(0, 0) (C4)

m'/m —1 ~ —lnrp (C11)

(a) 2 ~ d ~ 3. We obtain it from

6 VKd I' dX d«)
(27r)»+) "p x(I —x) p e""—1

2. Following term of the expansion of AF in powers of T

when 1 —I ~; with the help of k2+ (().«)) 2
(c12)
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4~1 (d/2)
r((d —1)/2) 1 —X

After some manipulations

6Kd V I (d + 1)((d + 1)I'((d + 1)/2) I (d/2) I'( (3 —d)/2) I ((d —1)/2) Td+) I
(22r) d+' 21'((d +2)/2) (d —1) 4~1 (d/2)

(C13)

(C14)

whence

C —(T/r())d .

(b) 1&d&2.
6 Vkd (2k )d ' t' dA,

"" dru
Jl

dkp(ukk
'"+" '

(27r)d+1 J Q $(I g) J p ew/T I J err/rF k3 —d+ (p )2

where

(C15)

(C16)

whence

1=1 2k 0
1((d —1)/2) (2k )d ' 1 —X

6 Vkd 1 Jm I'(d/2)
(22r)" '

(2k )(d-)) /0 —d) r((d-I)/2)
1

I

' r r r r r r2/(3 d)

r. r r r7 —3d 1 5 —d , 5 —d 5 —d I
2(3 —d) 3 —d 2(3 —d) 3 —d 3 —d

T(5—d)/(3 —d)

(C17)

(C18)

( ) 2/(3 d)
T

C ——
fp

(C19) .

APPENDIX D: CONTRIBUTION OF PARAMAGNONS
TO THE RESISTIVITY

with

z = (rp+x')x/22rBT (D4)

The expression for the resistivity reads

Jt d Jl d '(I - ')('-"/' —"
2F., o o T

x n ((u) [I + n (p))] ImX(x, (u)

(D 1)

where X &1 is a constant and x = q/2kF.
(a) For 2~d~3,

ImX(x, (u) =B—,
2 2, for «11

x rp+x2 +824u2 x2' E/x

r(d/2)
I'((d —I)/2) (2k )'

Thus, for

—«1,T
ro

Bm
2 B 2 I ((2d —1)/2) I ((4 —d)/2)

48E I'((d —1)/2)

T
X

(4 d)/2
. (DS)

ro

N. B. If we had dropped the x' in (rp+x') in

ImX(x, ~) we would have obtained only (T/rp)'
(b) For1&d &2,

r

OJ

Imx(x, o)) = x(1 —x')" "'/' EF(1 —x) «1
0 otherwise

so that

=0 otherwise

p=pp T I dxx"+'(1 —x )
4FF

(D2)

so that

r(d/2)
I'((d —I)/2) (2kF)'

(D6)

(D7)

lnz ———(1((z)
8 1

aT 2z
(D3)

)

p= pp T 'l dxx +' lnz ———(I((z), (D8)
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x[F + (1 x2) (d —i)/2] (1 «2) (3—d)/21/2 gT

Thus, for T/rp ((1,

48EF 2(d —2)

f (2/(d —1))r(2(d —2)/(d —1)) T
) 4(d —3)/(d —1) ro2/(d —1)

(D10)

The same N. B. as before applies here.

We assume that the singularities of v4 are weak as
compared to those of v2

' so that we set uo = v4,

v2(q) =rp if q ~2kF

v2(q) = &p+ (q 4kF) ' if q ~ 2kF

I(k) = Jt d x e '"'"[v2 ' (x)]

v2
' (x) = Jl d'q v2

' (q)e"" "'

2 "2k
Jp(kx) k dk

0 0

(E2)

(E3)

(E4)

APPENDIX K: EVALUATION OF A SECOND-ORDER
GRAPH FOR d = 2 AT ZERO TEMPERATURE

We calculate here the fourth diagram of Fig. 4

I ( k ) = Jl Jl d'q, d'q, »-' ( q, )» ' (q,)

v2
' [k —(q) +q2)] v4

' (q, , q, , k), (El)

(ES)

22r
( )

J~(2kFx)
( )

cos2kFx

(E6)

Jp(kx) k dk
+2m J 2kF Fp + (q2 4kF2) 1/2

We get an upper limit for v2
' (x).when we set rp=0

in the second integral so that

4mkF 2
t' 'J& (2kFx) Jp(qx) dx t' J~ (2kFx) Jp(qx) cos2kFx dx

I q = up2

X
+3rp

p X

t'" J~(2kFx) Jp(qx) cos'(2kFx) dx, I
" cos'(2kFx) Jp(qx) dx

+ 3f'p +
0 X 0 X

0
0 0.5

FIG. 6. Result of the numerical calculation presented in Appendix E.

q/ zkF~
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l(q) = up'[(A) +(8) +(C) +(D)] . (E8)
ro

(A) has been evaluated numerically (see Fig. 6). An
expansion around its maximum for q =0 yields

with

v2'(q) =rp'+nq' for q (2kr,

t 3 247rkF J3 up

ro 2 2k

(E10)

(A) =0.2(2k )—
2 2kF

(8) has also been evaluated numerically and displays
a maximum for q =2kF but with a vanishing contribu-
tion when rp 0. (C) and (D) have a zero value.
Thus,

and ro' is equal to ro plus the constant values of the
second and third Hartree diagrams of Pig. 4.

The new self-consistent susceptibility has a max-
imum for q =0 and a mean-field theory built from it
will give a ferromagnetic instability.
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