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Wertheim et al. have carefully measured the Neel temperature of the mixed system of iron and zinc

fluorides. Over the concentration range 0.25 & x & 1, their results show an essentially linear decrease with

magnetic concentration of the form. TN(x)/T„(1) = mx + c, where parameters m and c are approximately
the following: m —1 and c —0. Such a result is in direct contrast with the earlier observations of Baker et
al. on mixed crystals of manganese and zinc fluorides, where the corresponding choice for the parameters m

and c would seem to be m —5/4 and c ——1/4. To explain these results we have carried out a coherent-

potential-approximation (CPA) analysis which takes into account the relevent exchange interactions

(including second-neighbor contributions) and the anisotropy. While for the Mn-Zn system the anisotropy is

quite small, for the Fe-Zn system, it is rather large. As such, to treat the latter system we have combined

the CPA with the Devlin type of RPA procedure. Our results are in excellent agreement with experiment.

Moreover, it appears that the observed differences in the behavior of the two mixed systems are due

primarily to differences in their anisotropies.

I. INTRODUCTION

Wertheim et al. ' reported a careful measurement
of the Neel temperature of the mixed system
Fe„Zn, „F, some eleven years ago, 'Their results,
measured over a range of concentrations, i.e. ,
1~x ~ 0.25 showed an essentially linear decrease
of the Neel temperature of the mixed system with
approximately a unit slope and no intercept, i.e. ,

I

[T„(x)/T„(1)l, ,-x . (1.1)

This result was somewhat surprising in view of
an earlier experiment' by Baker et al. on a related
mixed system Mn„Zn, „F„which showed a con-
siderably more rapid rate of decrease with dilu-
tion (by nonmagnetic zinc). An approximate rep-
resentation of the manganese-zinc results would
be of the form

lT~(x)/T~(1) lM. z.--'(» —1) .
The physical origin of, the differences in the ob-

served behavior of the two systems was not under-
stood at the time. This was particularly perplexing
since (a) the antiferromagnetic spin configurations
are identical and (b) the exchange interactions are
qualitatively similar in both the mixed systems.

Recently, we were able to develop a coherent-
potential approximation (CPA) for treating random
antiferromagnets with exchange interactions of
arbitrary range. ' When such a theory, coupled
with a random-phase approximation (RPA), was
applied~ to the mixed system Mn-Zn, its results
were found to be in reasonable agreement with the
experimental observations of Baker et al. ' Of
course, we realize that much cannot be made of
any quantitative agreement between such a theo-
retical treatment and the experiments of Baker

et al. ' because of the following reasons.
First, the CPA —RPA theory' itself is only a

crude approximation and any of its estimates for
T„(x) can only be of qualitative value because at
times they are in error by a few percent. The
situation can, however, be improved somewhat
by working with the ratio T„(x)/T„(1), which is
less susceptible to.errors associated with the use
of the RPA. For such a ratio, the major source
of uncertainty is contributed by the errors inherent
in our' CPA —which are small when 1 —x«1 but
increase to become of the order of a few percent
for x&0.5. Indeed, as x decreases further towards
the percolation concentration, these errors be-
come proportionately very large. Secondly, with
arbitrary dilution there is uncertainty associated
with assigning exchange interactions to a pair of
magnetic atoms. While it is possible to make
certain guesses as to how the exchange might vary
with the introduction of finite amount of dilution
by zinc atoms, in the absence of a reliable proce-
dure for doing this, these are likely to be only
rough guesses. ' Thirdly, it might even be argued
that the early experiments' of Baker et a/. were
in themselves not very accurate because of the
difficulty of determining T„(x) by the method used
by these workers (i.e. , by observing the disap-
pearance of the nuclear magnetic resonance lines
of the fluorine nuclei as the system temperature
is lowered towards T„).

These uncertainties notwithstanding, the agree-
ment between the CPA —RPA theory and the ex-
perimental results on Mn„Zn, „F, is, nonetheless,
significant. Therefore, it seems in order that
the rather different experimental results on

Fe,Zn, „F,be analyzed within a similar theoreti-
cal format to see whether the differences between
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these two systems can be understood. Moreover,
because the quality of the experimental results for
the Fe-Zn system is believed' to be a shade bet-
ter, it provides a somewhat more severe test of
whether oux' CPA —RPA framework is useful for
such an analysis.

To this end, in this paper we formulate the
CPA —RPA theory for the Fe-Zn system (Secs.
II and III) and compare its results with the experi-
mental results of Wertheim et al. '(Sec. IV). We
find that the theoretical estimates for the behavior
of the ratio T„(x)/T„(I) are very close to the cor-
responding experimental results over a wide range
of concentrations, even though the actual value of
the Neel temperature itself is predicted to within
about 6%%uo or so. In view of the earlier statements,
this agreement, without any adjustable parame-
ters, is about as good as can be expected and ac-
cordingly we are encouraged in our conjecture
thai the major physical reason for the observed
differences in the behavior of the Mn-Zn and the
Fe-Zn mixed systems is the difference in the na-
ture and the size of their respective anisotropies.
In this connection, it may be mentioned that while
the ma'gnetic anisotropy in the Mn„Zn, „F,system
is quite small and is caused predominantly by the
weak dipolar interactions (and as such it has, what
we shall for convenience call, a two-spin origin),
the corresponding anisotropy in the Fe„Zn, „F, is
relatively much larger and it has a different phys-
ical origin, i.e, it is a crystal-fieM effect. More-
over, because the crystal fieM is approximately
the same' ' for FeF, as it is for Fe" ions in ZnF»
the mixing does not materially change the crystal
field experienced by the Fe ions (as such, it is
convenient to call it a single spin effect). It is
essentially these features —as will become more
clear in the later sections —which combine to
cause the behavior of T„(x)/T~(1) to differ in the
Fe-Zn and the Mn-Zn systems, in the manner ob-
se rved expe rimentally. "

FIG. 1. Antiferromagnetic spin configuration of FeF&
and the various exchange couplings are shown.

xS] '3~ — x,.D S'. 2. (2.1)

Here x,-, x,- are the occupation operators for the
magnetic (Fe) ions, i.e. ,

(x.) =x. x.x.=xp.2
z (2.2a)

to 6.46'0 ~»' cm ' and 7.3+ 0.7 cm '), we therefore
work with a concentration independent single-ion
anisotropy. These two assumptions are clearly
approximate in nature and when, in the future, it
is necessary to examine any other such physical
property of the mixed system where these con-
siderations make a significant quantitative differ-
ence, it would certainly be necessary to refine
these assumptions. Nevertheless, for the pre-
sent purposes, this effort is not warranted, for
our CPA as well as the RPA are subject to a few
percent error —an error which we expect to be
similar to that introduced by these assumptions.

For the ground-state magnetic ordering of the
Fe-Zn system, shown in Fig. 1, for a given con-
figuration (x), which specifies the nature of the
mixing of the Fe and Zn ions, the system Hamil-
tonian is

x =x=—'''
i (2.2b)

II. COHERENT-POTENTIAL APPROXIMATION

FeF, and ZnF, are isostructural with a rutile-
tetragonal crystal structure shown in Fig. 1. The
lattice constants a, and co are also approximately
the same for the two systems, ' being respectively
equal to 4.6966 and 3.3091 for FeF„and 4.7034
and 3.1335, for ZnF, . For simplicity, and. con-
venience, we therefore assume that the mixing
occurs uniforxnly and that the exchange integrals
between magnetic ions remain unchanged on dilu-
tion. In a similar fashion, because the single-ion
crystal-field anisotropy D is also approximately the
same ZnF2 (as experienced by a Fe ' ion) in the FeF&
(Ref. 1) and (Ref. 9) systems (being respectively equal

sites are nth neighbors

0, otherwise.

(2.3)

[Note in the Hamiltonian (2.1) we have denoted the
couplings J, and J3 to Qe of intrasublattice vari-
ety —i.e. , they are ferromagneticlike terms—
whereas the coupling J, is represented as the in-
tersublattice, i.e. , the antiferromagnetic, ex-

where the dots denotes relative concentration of
Fe ions. (Here a bar at the top indicates a con-
figurational average. ) The exchange interactions
J,'.J' are such that

J„, if the i and j
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change. ]
The development of the appropriate CPA equa-

tions for the system described by the Hamiltonian
3C((x)) falls within the general formulation given by
us elsewhere. "' Here, it is important to remem-
ber that within such a CPA format, the behavior
of the transition temperature is determined en-
tirely by the zero-frequency component of the
Green's function, which in turn depends upon the
zero-frequency coherent exchange integrals
j~"'(E=0), n=1, 2, 3. In other words, the objective
of the CPA is to develop a set of self-consistent
equations whose solution gives values of j'"'(0),
which in turn are to be used in the approximate
CPA Hamiltonian, K" (0), i.e. ,

x S, 'S, Dg(S;-)'. (2.4)

The relevant Neel temperature would then be given
by an RPA solution of X" (0). [Note that while the
j'"'(0) are renormalized by the system random-
ness —i.e. , they depend on the magnetic concentra-
tion x—the single-ion anistropy D is independent
of x.]

We hasten to add that the actual execution of
such a program of calculation —namely, the de-
velopment of the coherent Hamiltonian in the form
(2.4) and the obtaining of an RPA solution of such
a CPA Hamiltonian a la Devlin'"" —is nontrivial.
Indeed, the procedure has to be embellished con-
siderably beyond what was required for carrying
out the corresponding CPA —RPA computations
in the Mn„Zn, „F, system' because unlike in Refs.
3, 4, and 10, for the system in hand j~"'(0) are
not invariant with system temperature. It will be
recalled that when the anisotropy is absent, ""or
when it is a two-spin property and canbe adequate-
ly decoupled within an RPA so that it renormalizes
at least linearly with the system magnetization
M, thefunctional dependence of j'"'(E) on E and the
system temperature enters only through the ratio
E/M. [Note that no pathology develops in these
cases even when T- T, .]

It turns out, however, that at any given temper-
ature T a self-consistent scheme for carrying out
the CPA and the RPA can be developed and the
corresponding CPA for the zero-frequency co-
herent exchanges can be written in a format simi-
lar to that used in Refs. 3, 4, and 10. We get

~[~„-j'"'(0)] (1-~)j'"'(0)
1 + [J„-j'"'(0}]I"(n) 1 -j'"'(0)I'(n) '

n=1, 2, 3, (2.5)

where

""}=N~ E- (2.6a)
k

A„-(2)= pD+ 8j~2'(0)(l —yf2 }
+ 4j"'(0)(1—v-„) + 2j"'(0)(1 —rg), (2.6b)

A;(p) = C(k) [1 —Q„-(p)], p = 1,3, (2.6c)

&g = [C(k}]'—[8j"'(o)y;]', (2.6d)

C(k) =Ay(2)+ 8j~"(0)y&, (2.6e)

v„-= P„-(3)=-,'(cos2k„+ cos2k, ),
y-„= cosk„cosh, cosk, ,

rg= gg(1) = cos2k, . (2.6f)

III. RANDOM- PHASE APPROXIMATION

For a given x, once p has been specified and a
solution for Eqs. (2.5)-(2.6f) has been found, the
appropriate j'"'(0), n= 1,2, 3, are substituted into
Eq. (2.4) and in this manner an effective (:PA
Hamiltonian is obtained. For such a Hamiltonian,

The parameter p in Eq. (2.6b) is clearly both tem-
perature and anisotropy dependent. For the sys-
tem with crystal-field single-ion anisotropy being
analyzed here, p is, however, equal to (2S —1)/
2S at low temperatures, i.e. , at T«T~. At the
transition temperature T~, within an Anderson-
Callen" or a Narath" type of decoupling, p is in-
dependent of D and is equal to & or 1, respective-
ly (for the S =2 system). Narath decoupling, how-
ever, gives too high a value for the T~ even for
moderately small anisotropies (as compared with
the more reliable RPA decoupling'"") and there-
fore for evaluating the CPA parameters it is not
an appropriate starting point. On the other hand,
the Anderson-Callen" decoupling does a much
better job of predicting the Tc (compare, for ex-
ample, Refs. 11 and 14). In any event, it turns
out that a computational scheme can be designed
which converges extremely rapidly to the result
that we expect would be obtained by a fully self-
consistent CPA —RPA procedure. Such a proce-
dure gives a value of the parameter p at T = T~
which is weakly dependent on D and which, accord-
ing to our estimates for the system in hand, has
a value slightly, i.e. , a few percent, below 0.5.
Any further details of this computational procedure
are best deferred until after the RPA has been
fully explained. In conclusion, therefore, we need
to note only the following: once a procedure for
specifying p has been adopted, the solution of the
CPA equations for arbitrary x is straightforward
even though it does require numerical computa-
tion.
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the appropriate RPA is the one proposed by Dev-
lin, "which, incidentally, is identical to a decoup-
ling procedure that one of us had arrived at' in-
dependently of, and prior to, Devlin's work. For
the S = 2 system under study, the RPA leads to a
set of equations which are very cumbersome for
the antiferromagnet. Therefore, it is convenient
to exploit a. simplification which occurs at the
transition temperature. It turns out that within
the RPA, "the numerical value of the antiferro-
magnetic Neel temperature T„ for (a two sublat-
tice antiferromagnet) is equal to that of the Curie
temperature Tc of a corresponding (single sublat-
tice) ferromagnet for which the effective Hamil-
tonian (2.4) is transcribed as follows:

3C (0) = —Q [j,'. ,'.'(0) +j,.",.'(0) +j,'."(0)]

xS,. S, Dg(S;.)'. (3.1)

[It will be noted that the ferromagneticlike cou-
plings —i.e. , terms involving jI&&&(0) and j&&&—are
the same in Eqs. (2.4) and (3.1), whereas the anti-
ferromagnetic coupling jI2&(0) originally between
spins belonging to opposite sublattices is now re-
placed by an equal but opposite coupling between
the same type of spins. ]

Now using the procedure published by Devlin, "'"
after some straightforward but tedious algebra
we finally get the following four coupled equations
for Tc(x) of the given effective Hamiltonian (3.1)
with S= 2:

4-& Z, =Q(1),

16.8+Z, —0.1Z, = Q(2),
—.'(42 -Z, ) = Q(3)+It(3),

8(306 —5Z, ) =Q(4)+R(4),

where

1 ~ P„(E,) —P„(E,)
2[(z,)' (z,)'] '

P„(E )=r N'"&(E )/E, n=-1, 2,
r„=coth[E, /2k T (x)],

N
&' &(E ) = (E )'DZ, + (Z, —10Z,)D',

N' '(E, ) = (E,)'Z~ —9Z, D',
N"&(E ) =(E )'[sr Z, +Zg 6Z,I.(0)]

+ r&. D'(Z, —10Z,) —'18D'

+ 2D'L(0) (10Z, —Z,) .

(3.2a)

(s.2b)

(3.2c)

(3.2d)

(3.3a)

(s.sb)

(3.3c)

(3.3e)

(s.sf)

N"&(E ) =(E )'[3Z, r&, +'10DZ, —18D —6Z,L(0)]
—9[Z,D'6 + D'Z, —2Z,L(0)D'], (3.3g)

U"'(E )=(E )'Z, +E (Z, -10Z,)D',

II&'&(E„)=(Z.)'Z, 9Z.Zg',
(3.3i)

(s.sj)

(o) & U"'(z ) \ mP[+ /~sT'c(~&])@

( k T (x) (exp[E„/k T (x)] —1}

(s.sk)

~„=f[8L(O) —2L(F')] (Z„)'+ 2O [L(K) —2I.(O)] D'

+ Dr. (Ic)[4Z,L(o) -Z, D]}
x(4(z„)'+ 2 [Z, I.(K) —10D]D} ',

r.g) = 2, &'&(o)(1-„-)+8ji'&(0)(1-&;)

+ 4j~s&(0)(1 —vx) .
We readily notice that Eqs. (3.2a)-(3.2d) are

invariant under the transformation E - -E „,
~ = 1,2. It is sufficient, therefore, to specify
(E„)', which has two solutions given by the quad-
ratic

(3.31)

(3.3m)

(E.)'+ (E.)'[Z.L(K) —»D] D

+ L(K)(Z~ —10ZJD + 9D~ = 0. (3.4)

The set of four equations, (3.2a)-(3.2d), deter-
mines the four unknowns, ksTc(x), Z„Z„and Z~,
in terms of the coherent exchange parameters
j~"&(0), » = 1, 2, 3 and the anistropy D. Because
the j&"&(0) are themselves implicit functions of the
magnetic concentration x—as specified by the CPA
equations —this procedure gives us the Curie temp-
erature Tc(x) of the equivalent ferromagnet. [Note
that the auxiliary parameters Z„Z„and Z~ are of
no physical consequence in the present context, in
spite of the fact that a self-consistent solution de-
termines them concurrently with Tc(x).]

Here, it is instructive first to look at the be-
havior of the transition temperature Tc as a func-
tion of the size of the anisotropy D. In order to
avoid confusion with concentration dependence,
we shall denote this dependence by T~(D}. Because
the effective anisotropy (within the present model)
does not change with randomness, while the effec-
tive exchange parameters do, it is helpful to ex-
amine how —when randomness is gradually in-
creasing and as a result the effective (coherent)
exchange coup). ings are decreasing in magnitude-
the transition temperature for the given system
would renormalize with the ratio of the sizes of
the anisotropy and the effective exchange couplings.

I~(p) =„—g [(E,)' —(E.)']-'

x([r,U&»(z, ) -r,U'»(E, )](~, —~,)
+ [(z,)' (E,)'] [v"'(z,) —v"'(E&)l},

p=-3, 4, (s.sh)
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FIG. 2. For the antiferromagnetic system shown in
Fig. 1, with J& = 43 =0 and J2 =J, the ratio of the HPA
estimates for the Noel temperatures with finite aniso-
tropy, T, ,D j and vanishing anisotropy T, (Oj is given
as a function of D/J.

Because we need only a qualitative answer to this
question, we assume only a single effective ex-
change parameter g [here we put, for simplicity,
g~ = g, = 0; j&'& (0) =J]. The results for the S = 2

system for the ratio To(D)/To(0"fare Plotted as a
function of D/g in Fig. 2. We note that when D/g
is of the order of 2 say, this ratio i.s only about
1.25, whereas when D/J' becomes of the order of
3.5- 20, this ratio increases to about 2. %hat this
means is that for finite D when J renormalizes
down due to dilution, the actual transition- temp-
erature does not go down linearly with J' (which it
would have in the absence of anisotropy). This
effect would cause different rates of renormal-
izations for the transition temperatures of the
Fe-Zn and the Mn-Zn systems. There is also,
of course, another physical effect which impinges
on the final result. This relates to how rapidly
J itself renormalizes in the presence of anisotropy.
It turns out that within our CPA, for any given
choice of p the magnitude of the slope dg/dx de-
creases when D/J is increased. Here it should be
mentioned that, as for the limit jg- 0, when D- ~
the renormalization of the transition temperature
again becomes proportional to J and therefore only
the latter, of the two effects is then present. For
the intermediate D/g limits, however, both these
processes of T~ renormalization contribute and it
is therefore necessary to carry out the two sets of
numerical computations defined by the CPA Eqs.
(2.5) and the RPA relations (3.2a)-(3.2d).

IV. SELF-CONSISTENT COHERENT-POTENTIAL

APPROXIMATiON-RANDOM-PHASE APPROXIMATION

As mentioned in Sec. II, in systems with crystal-
field single-ion anisotropy, - the confluence of the
CPA and the HPA theories is not as simple to
achieve as it is in systems where either the aniso-
tropy is absent or where the anisotropy renormal-
izes simply with the magnetization M, at least as

fast as the first power of M. Moreover, it was
implied in Sec. II that an appropriate procedure
involved the introduction of a renormalization
parameter p in the anisotropy terms in the Green's
function equations of motion. Here we shall dis-
cuss this procedure quantitatively and thereby
give a prescription for specifying the renormal-
ization parameter p.

Let us assume that in the equation of motion, of
say S'„ the anisotropy dependent term, arising
from the relevant commutator, i.e.,

[s;. ,x" (0)] -D(2s;-1)s;,
may be decoupled as follows:

s z —1)s+- p2 M s+

where

M ={s;).

(4.1)

(4.2)

(4.3)

Clearly, at T = 0 this is feasible for then we have
(exactly for the ferromagnet and reasonably ac-
curately for the antiferromagnet)

p(T) = (2 S —1)/2 S, T = 0 . (4 4)

Such a possibility was also explored in Lines'4
work several years ago and although his own ver-
sion of the decoupling turned out to be more com-
plicated, he noted that the Anderson-Callen de-
coupling" fitted into this scheme with

iim p(T) 1=((S;)'-S(S+1)&/2S',
D~O

which at T-7~ becomes

p(T) = (2S-1)/3S.

(4.5a)
I

(4.5b)

Moreover, the result for the transition tempera-
ture that Lines'~ obtained by using his own de-
coupling was only a few percent lower (for mod-
erate D) than that he computed from the decoupling
given in Eg. (4.5b).

Now, the most satisfactory decoupling for treat-
ing the crystal-field anisotropy problem is neither.
the Lines decoupling nor the decoupling given in
Eq. (4.5a). Rather, it is the RPA decoupling first
published by Devlin. ~~ ~' Unfortunately, however,
the Devlin type of RPA is not convenient for using
with the CPA —as indeed is also the case with the
Lines version of the decoupling.

Therefore, we attempt an alternative approach.
We first compute the TofD)/To JOj using the proper,
Devlin RPA (see Fig. 2). Then, for any given D,
we invert the problem and compute the appropriate
p(To) which would give this same answer. All this,
of course, we do only for the nonrandom case.
But what we find is encouraging for such a phen-
omenological p(To) turns out to be mostly within
about 10% of the Anderson-Callen estimate (4.5b)
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0.0086

0.035

0.026

0.017

0.25 0.0087

2.62

1.834

1.104

0.473

2.62

1.8 16

1.066

0.431

—0.139

—0.105

—0.070

-0.036

-0.139

—0.105

—0.070

-0.036

9.6 1

9.6 1

9.61

9.6 1

9.61

9.6 1

9.61

9.6 1

for moderately large D/J.
Next, we turn our attention to the really central

question here: namely, how rapidly do the CPA
parameters, ) &"& (0), vary with changes in p(Tc)
For answering this question we have carried out
the computation of the CPA Eqs. (2.5)-(2.6f) using
first the zero temperature expression for p(T),
(4.4), which gives for S= 2, p(0) = —,', and next the
Anderson-Callen expression which gives p(Tc) = —,'.
These results indicate that even though p is
changed by as much as 50%, the resultant changes
in the CPA parameters are miniscule. (For
brevity we append in Table I only a fraction of
these results that we have looked at, i.e., for the
typical case A as defined in Table II.) Therefore,
quite clearly, because the value of p(Tc) which is
correctly self-consistent with the proper RPA
result" "for the Tc will be within about 15% or
so of the Anderson-Callen result for p(T~), i.e.,

TABLE I. The coherent exchange integrals j~" (0)
are listed for two different choices of the decoupling
parameter p and four different magnetic concentrations
x. Note these parameters correspond only to the case
A which is explained in Table IIand, moreover, that
they are given in degrees Kelvin.

j "(0) i'~ (0)

p = —,', we can expect only very small eventual
changes in j ("& (0) from the results obtained by
using the value —,

' for p(T~). Indeed, we can rea-
sonably expect that for x- 0.50 the final results
for T~ will be within about 1%-3% of those ob-
tained by using p = —,'. [For x)0.25, the fully self-
consistent results can be expected to be those
given in Table III, with an error uncertainty which
is about one-third of the difference between the
corresponding results in Tables III and 1V.]

V, RESULTS

Hutchings et al. v have given several sets of re-
sults for the magnetic parameters, i.e., the ex-
change integrals and the anisotropy, of the FeF,
system. Differences between the different sets
arise because of the procedures used for analyzing
the neutron-scattering results (from which the
spin-wave dispersion is computed). For details
of their analyses we refer the reader to their
work. ' Here it suffices to record only the five
sets of parameters that they have given. In this
regard, we keep their notation and call these sets:
A, ~(i), II(ii), B(iii) and C, respectively. The
relevant parameters are tabulated in Table II.

Our results for the ratio Tc(x)/Tc(1), which use
the various exchange parameters given in Table II
and employ the extremely crude decoupling para-
meter p(T~)- p(T = 0) =-'„are displayed in Fig. 3
as a function of the concentration x of the Fe ions.
In Table II, for convenience, we have also given

TABLE III. Using the Anderson-Callen type of decoup-
ling parameter for the initial CPA computations, i.e. ,
p =-,', the ratio of the critical temperatures, & (x')/&z (1)
given by the use of Devlin (Refs. 11 and 12) type of
RPA, is listed as a function of the magnetic concentra-
tion. Results are listed for the cases A, B (i), B (ii), B
(iii), and C, which are identified in Table II.

X B (ii) B (iii)

Case

A
B(i) '

B (ii)
B (iii)
C

9.61
9.94
9.44
9.79
9.98

0.035
0.053

—0.009
0
0

2.62
2.57
2.68
2.60
2.52

—0.139
—0.114
—0.150

0
0

83.3
83.0
84.3
84.9
83.3

I

TABLE II. The exchange parameters for FeF2 deter-
mined by Hutchings et al . are tabulated in degrees
Kelvin. The casesA, B(i), etc. , are identified in Ref. 7.
The listed T~ (1)is the parameter free RPA (Refs. 11
and 12) computation for the Neel temperature using the
appropriate set of exchange parameters. The listed
value for D is that identified as D„,, in Eq. (5.1) in the
text.

1.00
0.95
0.90
0.85
0.80

.0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25

1.0000
0.9481
0.8963
0.8446
0.7930
0.7415
0.6 902
0.6391
0.5884
0.5379
0.4879
0.4384
0.3895
0.3412
0.2934
0.2462

1.0000
0.9486
0.8973
0.8460
0.7949
0.7439
0.6930
0.6424
0.5920
0.5419
0.4922
0.4429
0.3941
0.3458
0.2981
0.2506

1.0000
0.9477
0.8955
0.8434
0.7914
0.7396
0.6880
0.6366
0.5855
0.5347
0.4845
0.4348
0.3857
0.3374
0.2897
0.2427

1.0000
0.9487
0.8974
0.8463
0.7952
0.7442
0.6 934
0.6428
0.5924
0.5423
0.4926
0.4433
0.3945
0.3462
0.2984
0.2509

1.0000
0.9491
0.8982
0.8473
0.7966
0.7459
0.6 954
0.6451
0.5950
0.5452
0.4957
0.4466
0.3979
0.3497
0.3018
0.2542
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X B (i) B (ii) B (iii)

. 1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
Q 4Q

0.35
0.30
0.25

1.0000
0.9494
0.8988
0.8485
0.7982
0.7482
0.6985
0.6489
0.5997
0.5508
0 ..5023
0.4542
0.4065
0.3592
0.3122
0.2652

1.0000
0.9498
0.8998
0.8499
0,8001
0.7505
0.7011
0.6520
0.6031
0.5546
0.5063
0.4584
0.4108
0.3635
0.3163
0.26 90

1.0000
0.9490
0.8981
0.8473
0.7968
0.7464
0.6963
0.646 5
0.5970
0.5479
0.4992
0.4509
0.4031
0.3558
0,3088
0.2620

1.0000
0.9498
0.8998
0.8499
0.8001
0.7505
0.7011
0.6519
0.6030
0.5543
0.5060
0.4580
0.4104
0.3630
0.3159
0.2686

1.0000
0.9502
0.9005
0.8510
0.8015
0.7523
0.7032
0.6543
0.6056
0.5573
0.5092
0.46 13
0.4138
0.3664
0.3192
0.2718

TABLE IV. This Table is similar to Table III with
the only difference that here p-was chosen to have the
zero temperature value, i.e. , p = 3/4. We estimate that
the properly self-consistent results will be close to those
given in Table ID with an error the size of which will be
less than about 1/3 of the difference between the results
listed in Table IG and the corresponding results given
in Table IV.

crude decoupling p = —,
' (see Table IV). Therefore,

we are led to the conclusion that the CPA —RPA
procedure of the present paper yields results for
the ratio T~ (x)/Tc(1), which are seemingly "iden-
tical" to the experimental results of Wertheim
et al.

Another remark which should be made here is
that Hutchings et a/. ' have also estimated the
dipolar contribution @~0 to the anisotropy. Be-
cause this contribution is only about 10/~ of the
total anisotropy, and besides the procedure for
estimating it is not entirely rigorous, we have
absorbed it in the total value of D through the
relation

(28 —1)D„„„=(28 —1) D. . .+.P. (5.1)

If the separation between these two iypes of ani-
sotropies turns out to be really valid even at
T- g~, then our present procedure would at first
seem to be subject to another few percent error—
especially for larger concentrations. The apparent
reason for this would be the fact that g", should
scale down approximately linearly with x (because
it is a two-spin effect). However, in the final

l.o

the result for the transition temperature of the
undiluted FeF, system that our RPA procedure
yields for given set of parameters. In comparison
with the measured value' —which is 78.2 'K—the
BPA estimate for Tc(1) is generally seen to be
about 6%-S%%uo in error. This in itself is not such
a bad estimate. However, as mentioned in the
introduction, the error contributed by the RPA to
the ratio T (cx) /T~(1) can be expected to be some-
what more modest.

The results displayed in Fig. 3 are seen to be
very reasonable —being, for example, only a fern

percent higher than the experimental results for
x-0.5. These are, however, not yet the final
results. because they make use of a very crude
decoupling parameter.

Next, we refine these results by using the more
accurate decoupling parameter of the Anderson-
Callen type: namely, p(Tc) = —,'. On the scale used
in Fig. 3, these latter results would be indisting-
uishable from the experimental results. It is,
therefore, more useful to show them separately
in Table III. As explained, in the preceding sec-
tion, the properly self-consistent CPA —RPA
procedure would eventually yield results which
would be very slightly lower than these. For
x~0.25, we estimate that the difference between
the final results and those given in Table III would
be about one-third the difference between the pre-
sent results and those obtained by using the very

l
o~ 0.5—

ENT

I-x F

~ I a11 I

0.5
X

I.O.

FIG. 3. Hesults for the CPA-HPA estimates for the
Noel temperature of Fe„Zn& „F2, i.e., 1' (x), are for
a crude choice of the decoupling parameters, i.e. , p = 3/4
given as a function of the magnetic concentration x for
several different sets of exchange and anisotropy para-
meters for the FeF2 system. The legend shown in the
figure refers to the sets of exchange parameters for
FeF2 calledA, B(i), B(ii), B(iii), and C given by Hutch-
ings et al. (see Table II). Experimental results for the
Fe-Zn system are given as dark circles. For com-
parison, the corresponding experimental results (Hef. 1)
(dark rectangles) and theoretical estimates (Hef. 4)
(solid line) for the transition temperatures of the Mn-Zn
system, are also included.
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analysis we need not worry too much about this
matter for as noted in Sec. II the Fe~+ ions feel
about 10% larger anisotropy in Znr, than they do
in FeF,. Hence, as a first approximation, with
increasing zinc content the reduction in D due to
dipolar terms would almost exactly counterbalance
the effective increase brought about by the zinc
environment.

It should be stated that although such a detailed
look at the nature of the present approximations
and the use of a more complete self-consistency
procedure mould appear to move the computed
results almost into coinciderice with the experi-
mental ones, we should like to refrain from getting
too sanguine about it. The entire theoretical
framework utilized here is itself subject to sev-
eral percent uncertainty. Therefore, the present
comments should only be taken to indicate that the
simple self-consistency procedure used in this
paper appears not to be unwarranted —at least,
until more accurate experimental results become
available and, equally importantly, a better under-
standing of how the exchange parameters them-
selves depend on the mixing has been achieved.

We might add here that our theory could also be
extended to predict how the transverse suscepti-
bility of the given system would depend on the zinc
concentration and what its temperature dependence
would be. Such additional experimental data would
.provide a very severe test of our parameter-free
analysis. Indeed, it would even give us a feeling
for whether the assumed independence of the ex-
change parameters on zinc concentration is fully
justified or not. It is for this reason that we
should like to make a plea to the experimentalists
for: (a) more accurate T~(x) results, (b) results

for transverse susceptibility on the same samples
as a function of T/Tc(x), and finally (c) for neutron-
scattering data on such a mBced system.

VI. CONCLUSIONS

The analysis presented in this paper leads us to
two conclusions. First, we are able to shed light
on the question raised by the experiments of Wer-
theim et al. —this question is recorded in their
closing paragraph where they say: "The reason
for tl,e difference of the behavior of Fe„Zn, „F,
and Mn„Zn, „F,is not understood —"by conclud-
ing that it is the difference in the size and the
nature of the anisotropy in the Fe-Zn and the Mn-
Zn systems which is primarily responsible for the
differences in their observed behavior. Secondly,
we conclude that the simple CPA —BPA proce-
dure —introduced in Refs. 3 and 10 and used earlier
in Ref. 4—provides a convenient and useful tool
for analyzing experimental data on mixed systems.
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