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Metal-insulator transition in pure and Cr-doped V203
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On the basis of our theoretical examination of the insulating state of V203 reported in the preceding two
papers and the experimental results of NMR and susceptibility measurements of the metallic phase, we
conjecture the highly correlated electron-gas character in this latter phase of V203. We present arguments
for the first-order metal-insulator transition which we consider to be entropy driven passing from the
insulating state to a paramagnetic metallic one of nearly equal inner energy but considerably difFerent

entropy due to the breakdown of the magnetic and orbital long-range order present in the insulating phase.
We believe that the origin of the highly correlated electron gas in the paramagnetic metallic phase lies in the
stability of the electronic molecular state of the V pairs along the c axis which persist through the metallic
phase, a picture which estimates extremely well the observed entropy in this phase. The lattice distortion
observed in the insulating phase is believed to be purely magnetostrictive and of no direct importance to the
transition mechanism.

I. INTRODUCTION

In this, the third paper of a series, we shall
analyze and put together the results obtained in
the preceding two papers (I and II) on the insulat-
ing phase of V,O, with what we can derive about
the metallic phase on the basis of a phenomeno-
logical analysis, and thus hope to present a con-
clusive interpretation of the metal-insulator
transition in V,O, .

Since any discussion about this topic will in-
evitably involve the use of Mott's original argu-
ment, ' it is not out of place to restate it here in
order to emphasize the points which will be useful
in the following.

As is well known, Mott has put forward the
hypothesis that a crystalline array of hydrogen-
like atoms or, more generally, atoms with in-
complete shell, may not necessarily show metal. lie
conduction, by which is meant a conductivity which
does not vanish at absolute-zero temperature.
The hypothesis states, moreover, that as the
lattice parameter of the crystalline array is
decreased, there will be at T =0 a sharp transi-
tion from a nonmetal. lic state (which is not con-
ducting at absolute zero and in which there is a
finite activation energy for conduction) to a metal-
lic state with a finite or infinite conductivity at
T =0. The reason. resides in the long-range part
of the Coulomb force which prevents an excited
electron from being available for conduction due
to the formation of a bound state with the hole left
behind. It is only when there is a sufficient con-
centration of excited electrons per unit volume
(such that the screening length of the screened
Coulomb potential between particles and hol.es is
of the order of the Bohr radius of the lowest
bound state} that the mechanism hindering

conductivity breaks down and the excited electrons
ean become available for conduction.

In a subsequent paper, ' Mott added more detail. s
to his picture especially as concerns the charac-
terization of the nonconducting wave function in
the insulating ground state of an array of mono-
valent atoms. The Heitler-London type of non-
conductivity-wave functions of the previous papers
was explicitly constructed in the form of a Slater
determinant of N functions (1U is the number of
atoms} m„(r)g (&), where w„(r) are Wannier func-
tions, one for each site n, constructed out of all
the Bloch wave functions in the band and ll„(a)
are spin-wave functions having a definite phase
relation from site to site (for instance, antiferro-
magnetic, ferromagnetic, or describing some
other spin order in more general cases}. This
wave function being real, hence describea a non-
conducting state and clearly gives the lowest-
ground-state energy for large interatomic dis-
tances. Mott further argued that the existence
of metals leads one to bel. ieve that the Bloch-
Wilson (band) state gives the lower energy for
small interatomic distances. Moreover, he went
on to sketch the behavior of the ground-state (GS)
energy of a degenerate electron gas in the field
of an array of ions and the GS energy of an array
of overlapping hydrogenlike atoms with an anti-
ferromagnetic spin arrangement. Plotted as a
function of the lattice parameter b, this behavior
is summarized in curve (a) of Fig. 5 of Sec. III
where the portion ABC describes the metallic
state and the portion DE describes the nonmetallic
state. At T =0, only one of the two states is
possible (one minimum slightly lower than the
other), although for the case where the insulating
state is more stable, a transition to the metall. ic
state can be induced by application of an external

5001



5002 C. CASTELLANI, C. R. NATOLI, AND J. RANNINGER

pressure which shifts and inverts the position of
the two minima [curve (b)J. Notice that there
might be a region of volume between points P
and Q which is physically inaccessible.

Although not explicitly stated, it is clear from
the context that the ground-state energy one is
considering in this type of argument is the total
energy of the correLated electron gas interacting
with the ions of the lattice plus the interionic
repul. sion. As a consequence, because of the
interplay between the outer potentially conducting
electrons a,nd the ions of the lattice, a possible
distortion of the lattice (due to the different
interaction of local. ized versus conducting elec-
trons with the ions) is always to be expected when

considering the phenomenon of metal-insulator
transition in crystalline materials. This is
despite the fact that at first appearance Mott's
argument seems to suggest that the transition
might occur without a change in long-range order
in the lattice. Obviously the actual occurrence
and the nature of the distortion vary from case
to case, depending on the number of electrons in
the incomplete shell, the number of relevant
bands, their degeneracy and so on. It pertains
to a correct analysis of the actual situation,
case to case, to decide whether the observed
transition is primarily a Mott (localized to de-
localized) transition or whether it is primarily
associated with a contingent opening of a band

gap due to the change in periodicity. This is what
we shall try to do in the case of V,O3.

In this kind of investigation, it is important to
understand the correlation among el.ectrons in the
insulating phase. Mott's 196l paper' suggests a
possible realization of an insulating ground state
due to the interelectronic Coulomb repul. sion,
although that is not the only possible one (see the
discussion on Ti,O, ground state in Sec. V of
II). Further elaboration of this theoretical model,
through the work of Hubbard and many other in-
vestigations, has led to the description and def-
inition of an insulating state of the Mott-Hubbard-
Slater type, in which the electrons localize in the
way suggested by Mott due to the Hubbard short-
range repulsion U, the magnetic order being such
as to maximize the number of jumps from one
site to the other in order to minimize the kinetic
energy. A Slater's type of gap is henceforth ob-
tained which does moreover not necessarily dis-
appear at the Weel temperature T„, being due,
as it is, to intexelectronic short-range correla-
tions. The insulating phase of V,O, is a realiza-
tion of this type of ground state.

Now it is well known that in a pure Hubbard
model, where one neglects electron-phonon inter-
action, the transition from a Mott-Hubbard-

Slater insulating ground state to a conducting one
with decreasing lattice parameter (that is to say
with increasing hopping integrals in the model
Hamiltonian) is of second-order. This is not
surprising, one might argue, since the Hubbard
model completely neglects the long-range part of
Coulomb potential, which according to Mott's
argument would be solely responsible for the
sharpness of the transition. However, to our
knowledge, it is not known as yet whether a pure
Hubbard model with electron phonon interaction
included would not lead to a first-order phase
transition, even in absence of a Mott mechanism.
On the other hand, this is a question that cannot
be answered experimental. ly, but must be con-
sidered on a theoretical level, since in practice
the two types of interactions are always present
in the physical realization of the model. Hence,
when we speak of a sample undergoing a Mott
transition, we should do it with this proviso in
mind.

Finally, we want to emphasize, as explicitly
noted by Mott, "that the sharp transition de-
scribed above is only expected in an infinite
lattice. For a finite number of atoms, there will
be a gradual decrease in the weight of the ionized
states in the wave function as the interatomic
distance is increased or, in other words, a
gradual transition from the LCAO model to the
Heitler-London model. " This suggests that the
observation of a sharp transition of the Mott
type is more likely to be observed in those sys-
tems where the overal. l symmetry of the insulating
state:wave function is different from that of the
conducting state the conducting state having
simply the periodicity of the lattice. In such
cases, the symmetry change of the wave function
guarantees that the transition involves an infinite
(=10")number of atoms. However, there might
be special situations where a broad metal-to-
insulator transition occurs even though a Mott
mechanism is at.work. This happens where there
are no symmetry changes of the wave function
in the two phases, but only a gradual change of
its features at a local level. We contend that this
is what happens in Ti203.

In the following sections, we will discuss the
phenomenology of the metal-to insulator transi-
tion in Ti,O, and V,O, in the light of these
considerations.

II. METALLIC PHASE IN V203

As discussed at length in the preceding paper
(II),' an unrestricted Hartree-Fock (HF) calcula-
tion provides a reliabl. e description of interelec-
tronic correlations in the ordered phase of V,O, .
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However, its restricted version proves to be
completely insufficient to account for correlation
between electrons in the paramagnetic metallic
phase. Only for completeness, we listed the
PO-PS state in Tables II and IV of II' in order to
indicate the closeness of its energy to that of the
ordered state AO-RS. Actually, a correct de-
scription of the correlated metallic phase would
give a much lower value for the GS energy of the
paramagnetic metallic phase and much nearer to
the ordered state. Unfortunately, a reliable
technique for a satisfactory calculation of the
interelectronic correlation in a Hubbard model
with U = W is not avai. lable at present and the
problem must await further theoretical investiga-
tion. However, a phenomenological study of the
metallic phase of V,O, can provide us with those
physical quantities needed for a discussion on the
nature of the metal-insulator transition, as for
instance the ground-state energy, the total
entropy, and the electronic specific heat as a
function of temperature.

I et us first look at the metallic phase of V,O,
at atmospheric pressure and temperatures be-
tween 160 and 320'K, 'that is to say along the
dashed curve CD in Fig. 1, which represents the
well-known phase diagram' in the temperature-
pressure (P-T) plane for V,O, or, e(luivaiently,
in the temperature-composition plane when doping
V,O, with Cr or Ti. Along this path, the suscep-

tibility was measured' in the temperature range
160-320'K and interpreted on the basis of a
Curie-Weiss law plus a Van Vleck contribution

X(T) =$vv+X (T)

=0.4x 10 '+l.3/(T+600)
mol. eV,O,

(2.1)

with a cross-over region between the two regimes.
Only for Xvv= 0.21 x 10 ' emu/(mole V,O, ) was
a Curie-Weiss behavior obtained for X„(T) in the
high-temperature region. However, if there is
enough evidence that the high-temperature phase
(580'K & T &1000'K) of V,O, contains localized
moments, as discussed more at length below,
we feel that the magnetic susceptibility should
be described in terms of a narrow-band tempera-
ture-dependent Stoner-enhanced Pauli paramag-
netism, rather than a Curie-%'eiss local moment
approach in the lower-temperature region
(160 K&T&350'K). This point of view, suggested
in Ref. 6 was also conf irmed by the high-pressure
low-temperature (4.2'K) NMR results on V,O„'
which showed that there are no localized mag-
netic moments in the metall. ic phase of V,O, .

We want to show here that this interpretation
is consistent with what we know about V,O, in
this temperature region, namely electronic
specific heat, nuclear-spin relaxation rate and
Stoner enhancement fac'tor. For an nz-fold de-
generate band at the Fermi level (in our case
rn = 2, since the a,~ band has negligible contribu-
tion to the total density of states at the Fermi
energy eg, as seen from Fig. 6 in II) we can write
for the Stoner enhanced Pauli spin susceptibility

X (T) Ãpg~[Xa(T)/1 —o(T)] (emu/mole V,O,),
(2.3)

However, a more extensive set of measurements'
in the range 160-1000'K has led to a somewhat
lower value for the temperature-independent
Van Vleck term with a fitting

X(T) = 0.21 x 10 '+ 1.40/(T + 600),
160% & T& 350%,

(2 2)
X(T) = 0.21 x 10 '+ 1.78/(T+ 600),

580 'K& T& 1000'K,
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where

r'(r)=n, (~ )I (+ r'(k, r)'

FIG. 1. Phase diagram for V203 as function of tem-
perature, pressure, and doping (after Me%ban et al.
Bef. 4) (M-metallic, AI-antiferromagnetic insulator,
I paramagnetic insulator). (2.4)
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o, (e~) being the band density of states per eV and
per molecule of V,O, for both spin states and m
bands. pf, (e~) and p,"(e~) represent the first and
second derivative of the density of states p, (e) at
the Fermi level. Thus, u(T) is given by

n(T) = [U + (m —I)J'Jx '(T)/4m, (2.5)

since what appears in the Stoner enhancement
factor is the density of states at the Fermi level.
per spin, per site, and per band. With a calcu-
lated value of p,'(ez) = 20 states/(molecule-V, O,
eV') and p~ (e~) =0, we see that the temperature
correction at T = 150'K, just above the transi-
tion is negligible. Hence from a value of
1.8 && 10 ' emu/(mole V,O, ), we find

p„(ez) 57 4
states

1 —u
'

molecule V,O, eV' (2.6)

Since we have calculated in II' a value for p, (e~)
= 4 states/(molecule-V, O, eV), we find that a is
very near to 1 (the precise value is not meaning-
ful due to the uncertainty of the calculated p, (e~)
which in the permissible range of the hopping
integrals in the kinetic-energy part of the Hubbard
Hamiltonian varies between 4 and 5).

From

n- I =4 (U+2) = ~(U+ J), (2.7)

we find that U+ J= 2 eV which is what is barely
necessary in order to obtain a gap in the calcu-
lated density of states in the ordered phase.
Obviously, there might be a slight variation of
U and J in going from the ordered phase to the
metall. ic phase, but the consistency of the scheme
is very satisfactory.

Notice that with a variation of X'(T) as a function
of temperature of the type

(2.8)

was observed for 1/T, as a function of tempera-
ture (1/T, T = constant) which is characteristic for
metallic behavior. Actually, if correctly inter-
preted, the measured values for 1/T, T in the
above temperature range provide an independent
confirmation that n is very near to 1 and varies
approximately as e(T) = oo(1- PT') In.deed, for
a highly Stoner-enhanced electron gas, one can
write

SE e+r h; 1 —n'

orb (2.10)

where H"„'& is the hyperfine field due to the orbital
magnetic moment and H„';, is the hyperfine field
due to the spin polarization of inner-core elec-
trons by the magnetic moments of the outer d
electrons. From an analysis of the Knight shift
and susceptibility in metallic V,O„ these fields
were estimated by Jones' to be 395 kOe/p, s and
140 kOe/ps, respectively. (Actually, H,",b
=395 kOe/p, s was estimated' from the free-ion
value H".,', = 2P(r ') with (x ') = 3.2 au for a V" ion.
This led to a calculated Van Vleck susceptibility
X» = 0.4 emu/(mole V,O, ) which is twice what
has been derived' by fitting the high-temperature
susceptibil. ity measurements. If we trust this
last value, H"„b should be increased. (See dis-
cussion. ) Moreover, K„=(H"„b/2EP)~(T) is the
Knight shift due to the inner-core polarization
[notice the factor since we are using suscepti-
bility emu/(mole V,O, ) unites, whereas Jones in
Ref. 5 used susceptibility emu/mole V)]. The
quantities s, r, and t are the so-called core
polarization, orbital, and dipolar reduction
factors arising from the symmetry of the Fermi-
surface 3d electrons. ' For instance, we have

with pT' « 1 in the allowed range of temperatures,
we derive

where

(2.11)

X '(T) -[1—o'(0)+ pT'j/&p'X'(0) ~ (2 9)

that is to say, a quadratic variation of the inverse
susceptibility with temperature. We cannot
assess the validity of this conclusion since the
only fit made for 160'K&T &350'K for 1/X(T) is
in terms of a linear law aT + 6, and errors on
measurements are not reported in the literature.
It would probably be difficult to decide between
aT and aT'behavior since the temperature
interval of validity of (2.9) is very small. Another
confirmation of the correctness of our descrip-
tion of V,O, comes from the observation of the
spin-lattice relaxation rate in NMR measurements
for "V in V,O, between 160 and 800'K. ' In the
interval 160 'K & T & 3 50 K a Koringa-type behavior

f(r) = g g g Iv' , (k)l'„6[ „(k)- 1 p( ) ',

Q f (r) =f (a„)+f(e,)+f (Z, ) =1.
r

Reference 9 also gives expressions to calculate

(2.13)

(2.12)

the symbol i
v', (k)i r indicating the Fermi-level

fractional-admixture coefficients which have the
same value for all mbelonging to a given rep-
resentation r(m). The quantities v" „,(k) have
been defined in Eq. (3.37) of II' and m denotes the
symmetry character inside a given irreducible
representation. From (2.12), it is obvious that
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x and t. Finally, the quantity K(n) =(((I- o.)/
[1- txF(q)])') represents the average of the
quantity [(1-o.)/j1- oE(q) ~]' taken over the Fermi
surface, i.e., over the values of q satisfying
cb~o ——ez. ' The function E(q) is defined by

lim ll,'(q, ttt) =g,(q = 0, 0)E(q),
Cd~ 0

(2.14)

(2.15)

First of all, the quantity K(a) should not multiply
the orbital part of the relaxation rate, since this
latter is proportional. to the density-density cor-
relation function" which is not enhanced. Hence
only a factor (1 —n)b should appear in front of
the orbital relaxation part, since we have pulled
out E'„which is proportional to the square of the
static uniform susceptibility, hence enhanced by
the factor (1 —o.) '. Secondly, we have retained
the dipolar contribution to the relaxation rate
which was neglected in Ref. 8 and indeed can
usually be neglected. However, keeping in mind
that the dipolar contribution is proportional to a
spin-spin correlation function, in highly Stoner-
enhanced systems the susceptibility enhance-
ment factor can make up for this intrinsic small-
ness of the dipolar contribution. Finally the
reduction factors 8, r, and t are to be calculated
remembering that in the metallic phase of V,O,
the partial density of states of a~ character at the
Fermi level is negligible as one can see from
Fig. 6 of II. The same is true for the density of
E~ character. Hence from (2.13) and (2.11) we
derive q = &,. this is to be compared with the
value q = —,

' calculated in Ref. 8 by assuming an
equal presence of fractional admixture coefficients
for all the symmetry types belonging to the T~
representation. In such a case f(a„)= —,', f (e ) = —', ,
and tf =f'(atr)+,'-f'(e, ) = —', as derived in Ref. 8.
Under the same assumption, we calculate' using
the e, subspace r =-', which happens to coincide
with the value used in Ref. 8. Moreover, we
estimate' t =5 9 By inserting the appropriate
numerical values in Eq. (2.10) we obtain

where yo(q, &v) is the noninteracting q and u&-de-

pendent susceptibility and X,'(cj, &u) is its real part.
There are a number of ways in which our for-

mula (2.10) for the relaxation-rate data differs
from the one given in Ref. 8, namely

1 4'~ y„~ Ho b

K(o.) has been calculated by Narath' for a spher-
ical Fermi surface and is shown in Fig. 2 [curve
indicated by K'(tx) J. However, the d band of e,
character which we are concerned with in the
case of metallic V,O, is a very narrow band
(=0.5 eV) so that we expect in such a case a func-
tion Z (o.) of the form also shown in Fig. 2, since
E(q ) in (2.14) is very near to 1. [In any case K(o.)
should go to zero at n =1 since the integral
J'd'tf5(eb „-—eb )~I —nE(q)~ ' is convergent for
et= 1] (see Narath in Ref. 9). Table I shows the
measured values' of the quantity I/TT, in the
temperature range 160'K&T &320 K together with
the values of K„=~ ~ taken from Ref. 5 (o~
=-25[emu/(mole VO, ,)J

' and ~(T) =0.657/
(T +600) emu/(mole VO, ,)) and the ratio
1/TT;K„(2.62 x 10'). lt appears that ct is of the
order of 0.8 and decreasing approximately as
(1 —PTb). The actual value found for n should
not be taken too seriously since it depends crit-
ically on the assumed value for H,",'b'; however,
it constitutes sufficient indication and extra
evidence that the electron gas in the metallic
phase of V,O, is strongly Stoner enhanced, con-
sistent with what we assumed at the beginning.
To assess the kind of criticality present in the
derivation of n, notice that the frequency shift
&t /v =Kt« is given by

Ktot Koo+fforb (ffobib/+h B)Xd( T)+ (fforbl+l B)XVV t

(2.17)

where a~ =H„t,/EyB is estimated' to be -25[emu/
(mole VO, ,)J,

' from the slope of the plot Kt„vs
)l, (T)and &„'b/NpB =2/ftt(r '} has been calculated
assuming (x ') =3.2 au for the V" ion. Combined
with the measurements of the total susceptibility,

O. S

0.6

0.$

0.2

= (2.62 x 10')K2,[0.85K(a) + 1.77(1 —c.)'],1

1
0.2 0.4 0.6

I

0. 8 5 0
(2.16)

having used jfI,",'b/Hobto ~
=395/140. ' The function

FIG. 2. Plot of the function K(n) of Eq. (2.10) for s
and gf electrons (after Narath, Ref. 9).
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TABLE I. NMR relaxation time T&, susceptibility pz and the Knight shift in the temperature
regime 160-320 K.

T( K) 160 200 240 280 320

1/T&T sec ~ K ~ '
104'& emu/mole V

EQp

(y /y ) (4x&g/@)&cp

[TiT(y„/y~) (4wks/s)Imp J i

113.2

8.65

0.0216

122.23

0.93

102.8

8.21

0.0205

110.10

0.93

92.6

7.82

0.0195

99.62

0.93

86.4

7.46

0.0186

90.64

0.95

82.9

7.14

0.0178

83.0

1.00

From Ref. 8.
From Ref. 5 gz =0.657/(7+600) [emu/{mole V)].
From Ref. 5K'= @&X& with eg=-25[emu/(xnole V)).
(y„/y~)24vrk~/8=10~&&2. 62 sec K ~

this value has provided' the estimation Xv& =2.1
x 10 4 emu/(mole VO, ,), a value twice that
found for Xvv in the temperature region' 580'K
& T &1000 K. We do not know the solution to this
problem since one would be inclined to assume
that yves is constant in the region 160'K&T
&1000'K. If we bel.ieve the value found in Ref. 6,
g»=0.1X10 ' emu/(mole VO, ,), we should
double the value for H"„'„ to be consistent with
(2.17). Going back to (2.10), this would lead to a
value of +=1. However, twice the value for
H"„'b = 2p, s(x ') would imply for (x ') in V,O,
~ice the value for V" free ion, an increase
hardly justifiable.

Summarizing, we believe that the magnetic
properties of metallic V,O, in. the temperature
range 160'K& T &350'K are satisfactorily de-
scribed by a 3d (asymmetry) band model with
highly Stoner-enhanced susceptibility. This is
also true for the electronic properties of the
system, as for instance the electronic specific
heat, optical and soft-x-rays absorption spectra,
resistivity, and Hall coefficient. We will not go
into details but merely touch upon these points.

Concerning the electronic specific heat just
above the transition, we calculate, using p, (e~)
= 4-5 states/(eV molecule-V, O, ), a value of
yT, = —,'n Nk2sp, (e~) T, = 0.4 cal/(mole-V, O, 'K)
for T =T& =150'K. This is in keeping with what
one can infer from total specific-heat measure-
ments in V,O, which shows practically no varia-
tion [0+ 0.5 cal/(mole-V, O, 'K)J" of the observed
total specific heat as measured just below and
above the transition temperature T&. If one
assumes that the lattice specific heat does not
vary at the transition, any discontinuity in the
extrapolated specific-heat curve from below T&
would be a measure of the electronic contribution
to it, in the metallic phase. We shall actually see

that one also expects a slight increase in lattice
specific heat by increasing temperature since the
metallic phase is "softer" than the insulating
phase. Hence any observed jump in the total
specific heat presents an upper limit to the amount
of electronic specific heat.

Regarding the other points (as for instance opti-
cal and soft-x-rays absorption spectra) there is
reasonable agreements between calculated band
structure and experimental results. ". Also a
P-type Hall coefficient is reasonably expected on
the basis of the electron and hole Fermi surfaces in
a two-band model, "whereas the resistivity be-
haves as that of a normal metal. " However, an
interesting feature emerges from resistivity
measurements at low temperatures (&T,) and high
pressure. " The data clearly show a very large
T' term at low temperatures in the resistivity
that saturates at around 100'K, where a normal
metallic behavior takes over. This fact points
to a low characteristic-correlation energy of the
electron system on the order of 0.01 eV. Con-
sequently, one also expects some kind of. elec-
tronic specific-beat enhancement at low tempera-
tures and high pressures. Indeed measurements
under these conditions'4 yield an effective density
of state at the Fermi level on the order of =26
states/(eV molecule-V, O, ) if one uses the rela-
tion y,b„=sm'esp«(ez). Th—is is one order of
magnitude more than what is usually encountered
in transition metals and indicates a strong mass
enhancement of the electrons at the Fermi level.
Moreover, it is natural to expect a decrease of
the y,b, value of the specific heat with tempera-
ture, with a marked drop around T = 100'K cor-
responding to the turnover in the resistivity be-
havior. Putting together all these pieces of infor-
mation, one expects that along the path ABC of
Fig. 1, the behavior of y,b, (T) looks as sketched
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g Tt =2,6 col/moll-v~ c3 'K

50 100 150 T(sK)

FIG. 3. Temperature dependence of the y value for
the specific heat.

in Fig. 3. Since the integral

dT = &obs T dT
ABC T ABC

(2.18)

represents the entropy of the electron system, the
area underneath the y(T) curve in Fig. 3 provides
an estimation of the electronic entropy content of
the metallic phase at T = T, and atmospheric pres-
sure. One finds that it roughly represents half
the total entropy change observed at the antifer-
romagnetic insulator-metal transition at T = T,
which is the area under the horizontal straight
line at y, defined in such a way that yT& =M = 2.6
cal/(mole-V20, 'K). The rest of the entropy must
then be provided by the lattice, as will be dis-
cussed later on. That the electron system in
the metallic phase at atmospheric pressure is
one of high-entropy content, is a speculation
that has already been put forward by some au-
thors" from entropy considerations related to
the phase diagram shown in Fig. 1. The same
authors also have suggested that the anomalous
behavior of the metallic phase of V,O, at low
temperatures under pressures can be at l.east

. qualitatively understood by using the concept of
spin fluctuations. According to their argument,
starting from the band picture of the metal as
the metal-insulator transition is approached there
are strong spin fluctuations (or paramagnons) as
electrons become more and more localized. The
theory of paramagnons" predicts an enhanced
specific heat at low temperature and a large T'
term in the resistivity. Both of these phenomena
occur below a characteristic temperature, re-
ferred to as T,f, the spin-fluctuation temperature
which is the Fermi temperature divided by the
enhancement factor. This behavior occurs near
a ferromagnetic instability, although similar

results are expected in antiferromagnetic sys-
tems. Although apparentl. y in qualitative agree-
ment with experimental observations (quantita-
tively, the calculated T,t turns out to be =500'K
for instance), the spin-fluctuation approach is
unlikely to represent the true state of affairs in

V203. The reason is that spin correlations in
this latter are typically short-ranged, confined
mainly to within vertical Pairs although inter-
action and correlation with neighboring pairs is
not negligible. We shall try to sketch our point
of view, although in a qualitative way, since
calculation are difficult to carry out in the regime
U = W and have not yet been attempted.

Based on the experience gained in II, this new

way of looking at V,O, starts from the observation
that the hopping integrals for e, electrons are
slightly stronger (by a factor approximately 1.5)
for hopping inside the vertical pairs the.n for
hopping to neighboring pairs (the a~ electrons can
be neglected in this argument since they already
form covalent bonding pairs along the vertical
direction and lie below the molecular l.evel. of the
e, electrons, so that they practically have no
influence in determining the energetics of the
system). Probably even the energy U to be paid
to put the two electrons of the vertical pairs on
the same site is slightly lower than the energy
to put one of them on a site of the neighboring
pairs, although this difference has been neglected
in the model Hamiltonian of I" and II.

All these facts lead us to consider to a very
first approximation V,O, as an assembly of di-
atomic molecules "weakly" interacting, with the
Proviso that at the end of the argument this inter-
molecular interaction should be substantially in-
creased. The molecular-wave functions, together
with the corresponding energies and degeneration
are given in Table II where the labeling of the
states has been made following the conventions
used in Sec. III of I, and we remember that
e(x) = ~[x —(x'+18p.')' 'J, p, being the transfer
integral t» =t» along the vertical direction. As
one can see, there are three states which have
energies c„&2, and ~, very near the ground-
state energy e&, the difference being on the order
8/U whereas all other states have energies dif-
ferent from e~ on the order of U. For 1V such
weakly interacting molecules one would expect
an energy spectrum of the type

Eg -—Nag, Eex =1Veg + e; —eg, (2.19)

that is to say, with a finite gap between the ground
state and the low-lying excited states, such that
(E„-Eo)/Ee ~ (e; —e o)/N. It is assumed that this
excitation-spectrum structure will hold with in-
creasing strength of intermolecular interaction,
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TABLE II. Molecular wave functions together with their corresponding degeneracies and
energies.

State Degeneracy Energy State Degeneracy Energy

e(U'+ J)

3

I IA, )IA.) 1

Ix )I4.) 1 e(U- J)

3 Ix')ly. ) 1 e(U+ J)

&(x) =
2 Ix (x + 16p ) ](p/~)-+0 4p /x

l&e) 14's)

Ix )ly, )

Ix') Ie,)

provided it remains below a certain critical
value, above which a Fermi-like type of excita-
tion spectrum is obtained. As is well known in
this latter case

Eo =Ne~, E,„=Nap + (I/N)ep, ,

so that

(E.*-Ea)/E. ~ ez/N'.

(2.20)

It is realized that the difference between the two
excitation spectra is much like the one between
an antiferromagnetic system and a Kondo system.
A crossover between the two regimes can be ob-
tained either by varying the intermolecular inter-
action strength or by increasing temperature
such that

kT, = e; —eo = O(J/U) = 0.1 eV = 10' 'K .
However, one expects that the intermolecular
interaction, although below its critical strength,
can widen e; —c~ into a band while ahvays retain-
ing a finite gap. In such a case T, would be con-
siderably lower.

It is to be noticed however, that this picture is
complicated by the fact that the ground state
eo in Eq. (2.19) is 3N-times spin degenerated.
We think that a nondegenerate ground state is
restored by formation of clusters of molecules
with total spin equal to zero (in average, these
clusters might be constituted by a molecule with
six first neighbors). The intermolecular correla-
tion might be such as to make the intramolecular
excitations (from state 0 to state 1, 2, and 3 in
Table II) lower in energy than those leading to the
breaking of clusters. This is in keeping with the
fact already noticed in Sec. IV of II that the
PO-RS state is always much closer to the ground
state AO-RS than all the others, including those
having a different spin order, the excitation
AO-RS - PO-RS indicating an intramolecular
orbital excitation. In such a case, the molecular
states we started from should be considered as
resonance states, which however are sufficiently

well defined to give a substantial entropy contribu-
tion for T&T,.

Under this assumption for the excitation spec-
trum, it is natural to expect an enhancement of
the low-temperature specific heat and a T' term
in the resistivity due to the intramolecular ex-
citations described above (they take the form of
an electron-hole resonance scattering when
itinerancy is included). They both are expected
to fade out at T&T,. Moreover at T&T„ it is
expected that the states of the fully interacting
system arising from the molecular states labeled
1, 2, and 3 in Table II, being fully excited, con-
tribute to the entropy of the system a quantity of
the order of Nks ln3 =2.2 cal/(mole-V20, 'K) per-
haps substantially reduced due to itinerancy and
partially effective Pauli principle (remember
that we considered the 3N-fold spin degeneracy
of the ground state to remain frozen above T,).
In any case, the entropy content of the metallic
phase of V,O, at T & T,. should be substantially
higher than for a noncorrelated Fermi gas at the
same temperature typically of the order of
10 ' cal/(mole-V, O, 'K). At still higher tempera-
tures, one expects that the clusters will break
and the intramolecular correlation substantially
reduced. The system will then be describable as
Stoner-enhanced Fermi liquid, corresponding to
V203 under norma 1 pr es sure in the temper atu re
range 150 K&T &300'K. If the above picture is
correct, one would expect a maximum of the
susceptibility along the A&CD curve in Fig. 1 for
T, = 100'K& T &150'K, rather than a nearly con-
stant value slowly decreasing with temperature.

III. THERMODYNAMIC AND MICROSCOPIC

CONSIDERATIONS OF THE ANTIFERROMAGNETIC-
INSULATOR-METAL TRANSITIONS

From a thermodynamic point of view, it is
easily understandable that there are crystalline
materials that undergo a phase transition either
at relatively low temperatures (500'K or less) or
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at pressures easily attainable under laboratory
conditions. The reason is that more or less by
chance there happens to be two electronic states
of the system with markedly different conduction
properties which are very close in total internal
ground-state energies (on the order of some
hundreds of an eV). This is the case, for instance,
for V,O„VO„and NiS. Transition-metal
compounds are the best candidates for this to
happen, since the interaction with the ligand
raises the s band in such a way that its screening
effects on the interaction among the d electrons
are removed. Hence a greater variety of possible
ground states becomes available to the system,
the d electrons constituting highly correlated
electron gas. By increasing their hopping pos-
sibilities as one varies the type of metal cation
or ligand, one can shift from an insulating situa-
tion to a conducting one in a fairly smooth way.
That the total internal. energies of the antiferro-
magnetic-insulator state and the metallic state
in V,O, are very close to each other can be in-
ferred from an analysis of the phase diagram in
Fig. 1. For the first-order phase transition in
pure V,O, at T ='T& =150'K and atmospheric
pressure, we obtain, by equalizing the Gibbs
potential. in the two phases

4Q =0=4U —T&S+P&V, (3.1)

where &U=U, —U~, 2 indicates the metallic phase,
1 the antiferromagnetic-insulator phase. From
the measured values at the transition, 4S =2.6
cal/(mole-V203 'K) and AV =-0.41 cms/
(mole V,O, ),' we derive

U, —U, =1.5 x10 ' eV/(molecule-V, O, ), (3.2)

a very small value. The difference in Table V
of II between the PO-PS state and the
AO-RS(e~)PS(a, ~) state, relative to U = 1.6 eV,
U'=1.44 eV, and J=0.18 eV is five times larger,
showing our inabil. ity to properly handle the
correlation in the metallic state. For the (very
likely) first-order phases transition under the
pressure of 26 kbar and T =0, we obtain, by
using the same argument,

U, —U, =-Pb, V =1.0 x 10 ' eV/(molecule-V, O,),
(3.3)

Ji F= 0-TS

I

50 100 150
I

200

FIG. 4. Free energy as a function of temperature for
the antiferromagnetic insulating (AI) and metallic para-
magnetic Pf) phase.

In such a case, the difference in (3.4) might re-
flect the difference in electronic correlation
energies between the two metall. ic states of
V,O„ if the variation of the electron-lattice energy
between them is negl. ected. Obviously, all this
is highly speculative and much more refined cal-
culations, including electron-phonon interaction
would be needed before definitively accepting
these conclusions.

In the light of the considerations in Sec. II, it
is not surprising that the transition at T =T& is
a first-order transition. Indeed, the entropy
content of the metall. ic state is very high, even at
moderately low temperatures (Fig. 3) and in-
creases with temperatures much more rapidly
than for the antiferromagnetic-insulator state.
Hence the free-energy curves of the two states
as a function of temperature are expected to
cross with different slopes, as sketched in Fig. 4
[At atmospheric pressure the difference P(V~ —V,)
is negligible compared with the entropy term at
all temperatures of interest, so that the term PV
is constant in the two phases and can be dropped
from the Gibbs potential. ] Referring to Fig. 1,
it is noticed that increasing pressure decreases
the transition temperature which appears to re-
main first order as far as T =0." Using the
Clapeyron equation

where we have assumed for &V the value observed
at T =T, =150'K. This implies that

dP, as
dTt +V (3.5)

U, (P = 1 bar, T = 150 'K) —U, (P = 26 kbar, T = 0)

=5 x 10 ' eV/(molecule-V, O, ), (3.4)

assuming that

U, (P =1 bar, T =150'K) —U, (P =26 kbar, T =0).

we can relate the derivation of the critical pres-
sure P& with respect to the transition temperature
T, and the ratio of the change of entropy at the
transition over the change of volume. By assuming
&V constant along the line separating the two
phases and neglecting the entropy of the AI phase,
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FIG. 5. Schematic drawing of the ground-state en-
ergies of an array of overlapping hydrogenlike atoms
along with antiferromagnetic spin arrangement as a
function of the lattice parameter.

the variation of P, (T,) as a function of T, should
give an idea of the entropy of the metallic phase
of V,O, . Again, there is qualitative agreement
with the area under the curve in Fig. 3, although
the lack of numerical data for P,(T,) did not
allow a quantitative exploitation of Eq. (3.5).

Concerning in particular the transition under
pressure at T =0, one might speculate about an
internal total energy curve as a function of volume
of the form shown in Fig. 5, with two minima
corresponding to the two equilibrium positions of
the lattice, respectively, in the antiferromag-
netic-insulator phase and the metallic phase.
At atmospheric pressure, the minimum corre-
sponding to the insulating phase is lower than
that corresponding to the metallic phase, whereas
the contrary is true just above the critical pres-
sure. However, the reason why the transition is
first order should be sought at a microscopic
level.

Indeed we feel that the metal insulator transi-
tions along the curve P, (T, ) in Fig. I are driven
by one and the same microscopic mechanism;
only the way to excite the system varies, notably
the thermal bath at a given temperature, pres-
sure, or both together.

Let us start from tl e transition at T =0 under
pressure. We think that the discussion on the
insulating antiferromagnetic state in II'supports
the conjecture that we are confronted in this case
with an example of Mott transition (to be taken
anyway with the proviso stated in the introduction).
In fact the antiferromagnetic-insulator phase is
an example of a Mott-Hubbard-Slater type of
insulator, since the gap opens mainly because of
a reduction of symmetry in the ground-state wave
function brought about by interelectronic corre-

lations. In passing from the metallic state to the
antiferromagnetic-insulator state the trigonal
symmetry is lost because correlation between
electrons in a doubly degenerate band energetically
favors the kind of magnetic order discussed at
length in I and II. In this type of ordering, one
pair of V atoms in the basal plane wants to order
ferromagnetically in contrast with the other two
pairs for which an antiferromagnetic coupling is
preferred [Fig. 5(a) of I]. Also the resulting
distortion has been shown [Sec. Vl of II] to be
magnetostrictive in origin and, in any case, does
not double the trigonal unit cell in the sense that
the crystal's primitive cell has the same volume
in the trigonal. metallic phase as in the monoclinic
phase. ~ As a consequence, the Adler-Brooks
mechanism" for opening a gap is ruled out. It
is however possible that the distortion cooperates
with the interelectronic correlation mechanism
to increase the width of the gap that would anyway
have occurred, even in its absence. This is
born out by a calculation in which we have reduced
the hopping integrals along the directions where
the distortion occurs (remember that there is an
increase in distance along the vertical pair and
one of the basal plane pairs in yassing from the
trigonal to the monoclinic phase).

It is tempting to consider the overall distortion
as a result of a cooperative Jahn-Teller distortion
taking place in molecular-clusters like the one
shown in Fig. 5(a) of I. This cluster is sufficient
to reproduce the whole structure. It is evident
that with one electron in a twofold degenerate
level per site, one can have a molecular ground
state which is orbitally degenerate, this degen-
eracy being lifted by the distortion of the cluster
according to the instability already discussed.
As a consequence, one expects the system to be
sensitive to axial pressure in the basal plane
and much less to axial pressure along the c axis.
This is because in the basal plane the ferromag-
netic coupling, to which the distortion is con-
nected, is weaker [excitation energy of the order
of (t'/U)(J/U) J than for 'the other two antiferro-
magnetic couplings (excitation energy of the order
of t'/U) and applying pressure is equivalent to
increasing the transfer integral and consequently
the itinerancy of the electrons in such a way as to
destroy the ferromagnetic spin polarization re-
sponsible for the distortion. Consequently, the
trigonal symmetry is restored at a molecular
level. , favoring a local metallic state which serves
as a nucleation center for other neighboring
molecular clusters, until all the electronic solid
"melts. " The picture for the transition is similar
at atmospheric pressure and T =T& =150 K.
There are bvo states of the system, the metallic
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state and the antiferromagnetic-insulator state
which have nearly equal internal energies, the
metallic state having a big entropy content, the
ordered antiferromagnetic insulator state having
a low one. The metallic state is spin and orbit
correlated at least at short range and this corre-
lation becomes stronger as one approaches the
AI phase from above (T&T,). The transfer
integrals are big enough not to support a long-
range-ordered state. At T =T&, some clusters
begin to be magnetically polarized and distorted
since locally the system gains energy by localiz-
ing the electrons and taking advantage of intra-
site exchange energy. The arbitrary choice of a
distortion axis of a molecule influences the next
one in a sort of a cooperative Jahn-Teller effect,
all three possible distortion axes being possible
(the crystal is in fact twinned in the antiferro-
magnetic insulator state). On the other hand,
increasing temperature in the AI phase creates
spin deviations which at T =T, are sufficient
enough to perturb some distorted molecules (the
distortion being a consequence of the spin order-
ing!) which serve as nucleation centers for the
electronic solid to "melt. "

In both cases, whether the transition is brought
about by increasing temperature or by pressure,
the mechanism that seems to drive the transition
is the disruption of the magnetic order which in
turn restores the trigonal symmetry which favors
the metal. lic state. The excitation of spin waves is
a means to achieve a change of the relative weight
of the polar states versus the nonpolar states,
since, for instance, having an electron with the
wrong sign on a site manifests the jumping pos-
sibilities of the neighboring electrons on that
site. Accordingly the transition can be driven
by one or by other means, provided they both
lead to the ultimately essential feature, that is
to say the modification of the relative weight of
the polar versus the nonpolar states.

The precedent description of the low-tempera-
ture transition in V,O, also points to a substan-
tial contribution of the lattice degrees of freedom
to the entropy of the metallic phase. Apart from
the general consideration that the lattice in the
metallic phase is softer than in the AI phase and
therefore there are more phonons excited, the
cooperative Jahn-Teller mechanism specifies
the source of the lattice entropy. Indeed in the
antiferromagnetic insulator phase the lattice is
"ordered" since it has chosen in a cooperative
way the distortion axis of the various molecular
clusters. In the metallic phase however, the
temperature is high enough to make the distortion
axis uncorrelated with each other and even within
the same probability so that the trigonal symmetry

is restored. It is the excitation" of these degrees
of freedom of the system that contribute to the
extra lattice entropy at the transition.

Finally, we want to point out that in our inter-
pretation of the low-temperature transition in

V,O„ the variation in the relative population of
the a~ band in the two phases plays little role,
contrary to what has been suggested by some
authors. " Actually in both phases the a~ elec-
trons are engaged in a sort of covalent bond
spread into a band; only a small number of states
around the Fermi level is localized and promoted
to the e, band by the intra-atomic exchange mech-
anism in the AI phase as discussed in II and is
affected by the transition to the metallic phase,
more as a consequence of it rather than as a
cause to it. The fact that the a~ electrons are
nearly all engaged in a diamagnetic bonding band
throughout the V,O, phase diagram in Fig. 1
should be kept in mind when calculating the spin
entropy for the insulating phase. There is only
one magnetic electron per site so that one ex-
pects a spin-disorder entropy in the insulating
phase of the order ke ln(2S+ I)'" where N is the
number of molecules of V,O, and S = &. This
gives S =2.8 cal/(mole-V, O, 'K) the value observed
at the antiferromagnetic insulator-paramagnetic
insulator transition for the Cr-doped samples.

IV. Cr-DOPED SAMPLES ANB THE SECOND TRANSITION

IN PURE V203

The phenomenology of the Cr-doped V,O,
sampl. es can be read in the phase diagram of
Fig. 1 and is thoroughly dealt with in the series
of papers by McWhat et al. quoted in Ref. 1 of I.
For our purpose, it suffices to recall. that the
metallic phase of V,O, is completely suppressed
by alloying with 2%%d or more of Cr so that along the
path EE in Fig. 1 one passes from an antiferromag-
netic insulator (AI) monoclinic phase to an in-
sulating paramagnetic (I) trigonal phase. The
interesting finding' was that along the path ED at
constant temperature of =300'K by applying a
pressure of =10 kbars, there is a reduction in
resistivity of two orders of magnitude leading
from a semiconducting to a metallic type of be-
havior. In passing from the I to the metallic M
phase a strong reduction in volume j&V =-0.39
cm'/(mole-V, O, )J takes place comparable to the
one observed in the AI-&transition in pure V,O„
but unlikely to the latter case, there is no change
in symmetry at the transition. This was the
feature which led the authors in Ref. 4 to conclude
that they were confronted with a realization of a
Mott transition. However if one takes a closer
look at the system (V, „Cr„),O„one realizes that
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FIG. 6. The relative crystal-field-split energy levels
of V and Cr for (V& „Cr„)203.

the mechanism of the transition is not the one
traditionally described by Mott, ' although ulti-
mately it is of course connected with a delocal. -
ization of the potentially conducting 3d electrons.
In this respect, the transition in pure V,O, at
T =0 pressure is much nearer to the original
Mott description.

The mechanism of localization for the two 3d
antibonding electrons in pure V,O, when a1.loying
with Cr,O, is easily understood by looking at
Fig. 6. Each Cr atom carries three 3d electrons
occupying the t~ subband coupled to spin —,

'
according to intraatomic Hund's rule. To put
another electron on a site occupied by a Cr atom
would require in a weak-field scheme the occu-
pancy of one of the upper E~ levels, with the same
polarization as the other electrons. Taking into
account the fact that the reference 3d level is
lower for Cr atoms than for V atoms and that
there is intra-atomic exchange energy gain if
another electron with the right spin polarization
occupies one of the E~ levels, the process might
easily cost some fractions of an eV. In this way,
it is as if each Cr-occupied site (Cr substitution-
ally replaces V atoms in the corundum lattice)
has to be counted as a site onto which the V-3d
electrons cannot jump, due to the presence of an
effective repulsive-potential barrier. Hence,
increasing the Cr percentage effectively means
increase of the nonpolar state weight versus the
polar states, leading to a final situation of non-
conductivity. In other words, we are confronted
with a type of percolation problem and in this
respect it is interesting that the same suppression
of the metallic phase occurs by alloying with

Al, O,. Similarly in this latter case, one can
argue that the next available state on an Al-
occupied site is a 3s antibonding state, since the
three electrons outside the Ne closed shel1. in
the configuration 3s 3P' in Al atoms have gone to

fill the ligand-field bonding states. However,
since the 3s states are quite spread out, they mix
quite strongly with the 2p oxygen states, so that
the bonding-antibonding gap is quite large. Con-
sequently, the same situation as for the Cr-doped
samples is met.

Concerning the interpretation of the mechanism
driving the transition, we are not aware as yet
of a theoretical treatment of the model we have
been descr ibing including electron-phonon inter-
action. So it is difficult to disentangle the role of
randomness in br inging about the electron 1oca1iza-
tion from other specific factors causing localiza-
tion. Nor is it possible to assess the order of
the transition with and without a Mott mechanism
at work. As in the case of the zero-temperature
transition under pressure for pure V,O„ it might
as well be that a Hubbard model with electron-
phonon interaction and a percentage of random
sites occupied by Cr atoms having atomic levels
as shown in Fig. 6 might lead to a first-order
transition under pressure assuming that the main
effect of pressure is to bring down the E, levels
at Cr-occupied sites besides increasing the
intrasite hopping integrals.

In both cases, it would be very useful to assess
the role of the phonon entropy in driving the
M-I or M-AI transitions. Neutron measurements
of the phonon spectrum below and above the tran-
sition would be very valuable in this respect.

Finally, we want to comment briefly on the
nature of the second transition in pure V,O, at
atmospheric pressure around T = 500'K. The
transition manifests itself in an anomalous in-
crease in the susceptibility spread in a tempera-
ture range of 200'K (400'K & T &600'K) with a
connected increase in resistivity. The kind of
microscopic state that the system assumes in
this temperature region has already been de-
scribed at the end of Sec. II. What remains to
be illustrated is the reason why the transition is
so broad. We feel that this reason resides in the
fact that the wave function of the system is
modified only at a local level, more explicitly at
a molecular level. The situation should be simi-
similar to what happens in Ti,O, where at the
transition (as broad as the second one in V,O, )
it is mainly the intramolecular correlations of
the vertical pairs that are modified. The only
difference in the two cases is the direction of
change; in Ti,O, the change is towards a weaken-
ing of the Hubbard U due to increasing screening
with the result of increasing the strength of the
polar states (more bandlike) whereas the con-
trary is true for V,O, .
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