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Insulating phase of V203. An attempt at a realistic calculation
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The problem of the highly correlated electron gas V,O, consisting of a filled a, and a quarterly full e
band is treated on the basis of a Hartree-Fock calculation with spin and orbit unrestriction. The values of
the effective hopping integrals which include covalency effects (due to the overlap of the 2p orbitals of the

oxygens with the 3d wave functions of the vanadium atoms) are assessed on the bases of available band-

structure calculations and experimental results measuring covalency contributions. For reasonable values of
the Hubbard parameters U „=2eV, U „=1.6 eV, and J „=0.2 eV [the interatomic Coulomb repulsion of
electrons on the same orbit (m, nt) on different orbits (rn, n) and the exchange integral J „]it is found that

the observed spin structure of V203 together with an antiferromagnetic orbital order gives the lowest Hartree-

Fock ground-state energy amongst a large class of solutions which we considered and shows a gap in the
density of states of the order of 0.2-0.3 eV. Since this gap appears already in the trigonal phase, we feel

confident that the monoclinic distortion in, the low-temperature phase is of magnetostrictive origin and not a
primary cause of the metal-insulator transition. The peculiar value of 1.2p,~ per V atom as observed by
neutron scattering is interpreted as a strongly covalency-enhanced moment on the V atom. The atomic limit

value of 1p.& due to one magnetic eg electron per V atom is reduced to 0.75p,~ in an itinerant picture. The
covalency mechanism providing the extra 0.4p,~ is known as back-bonding effect and leads at the same time

to a negative spin density on the oxygen ions which are therefore no longer diamagnetic. Negative "0NMR
shift in the insulating antiferromagnetic phase should be able to verify this conjecture.

I. INTRODUCTION

The understanding of the two transitions ob-
served in V,O, around 150and 500 'K requires as a
first step a proper description of the interelectronic
correlations both in the insulating phase at low
temperature and in the metallic phase between
150 and 300'K. Indeed, this has been the aim of
the preceding paper' (hereafter referred to as I)
where we have studied the atomic limit of the
model Hamiltonian appropriate to V,O, with the
intuitive conviction that the correlations found
there would persist in the physical region W/U- I
at least at the short-range level within the metal-
lic phase, and as long-range order in the insul-
ating phase. The need to corroborate this con-
viction has motivated the work reported in this,
the second paper of a series, where we attempt
a "realistic" calculation of the metallic and in-
sulating phase. We think, in fact, that a good
agreement between theoretical calculations and
experimental evidence in this last phase is es-
sential for the understanding of electron correla-
tions in V,O,. The word "real.istic" is used to
indicate two levels of approximation to the phys-
ical reality. On one hand it means that we intro-
duce into the problem the complex band structure
of the magnetic 3d electrons in the t~ subband
and take into proper account the role of the
"diamagnetic" ligands; on the other hand it
indicates that the kind of mathematical approxima-

R, =1-D.,S,(p;, Xt") +A.s, (1.2)

where S,(ass, x,') is the overlap integral of w type
between the two functions QP and )(,'. , and &, is
the antibonding covalency mixture parameter
obtainable from NMR measurements at the ligand
sites.

Actually a more correct form of Wannier func-
tion relative to a site i, is one which is normal. -
ized to the ones centered at the neighboring sites
and is given by

B)t(x) =gt(x) —g P Stiff(x)

tion used to solve the problem (namely the un-
restricted Hartree-Pock approximation) is one
which approximates the exact solution in a satis-
factory way. The first goal is achieved by adopt-
ing the point of view indicated by Anderson' in
discussing superexchange. It consists in describ-
ing the 3d antibonding electrons of the cations as
being in Wannier states of the form

g, (x) = (I/iV'„') [y",(x) —~, l(', (x)],
where QP(x) is the Sd normalized wave function
of t~ character for the electrons at the site i, and
l(t'(x) is the corresponding (same symmetry) nor-
malized wave function of the cluster of six oxygen
atoms surrounding the cation site (their explicit
expression will be given in Sec. II).

The constant N, is the proper normalization
factor given by
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to first order in the overlap integral S;;=()t); l)t)&).

Using these Wannier type of functions one finds,
as will be shown in Sec. II, that the effective
transfer integral between two 3d electrons sitting
at sitesi and j is

(s);(x)l&.l~;(x)) = [~'(E —E „)(x Ix;)

+(e.'.(x) IH. I eg(x))]iV, ',
(1.4)

where &E = E,„—E~ is the average energy dif-
ference between the energy of the 3d antibonding
electrons and that of the 2P, electrons in the
cluster. The quantity (g;l)t, ) is a numerical co-
efficient easily calculated from the knowledge of
the cluster wave functions centered at neighboring
cation sites i and j.

Expression (1.4) allows a reasonable estimation
of the effective transfer integrals since ~, is known
from NMR measurements at ligand sites. The
energy difference &E= E,~ —E» is obtainable
from optical or photoemission spectra.

The quantity (y,"IH, IQ&') can be calculated with
a fair degree of accuracy. In the case of the
metallic phase of V,O„~', turns out to be 0.3 with
509o aecuraey' and &E=4-5 eV as obtained from
photoemission and soft-x-ray absorption and
emission spectra, ' (Q'; IH, I Q,") having been cal-
culated by Ashkenazi and Chuehem. ' Thus a
sound basis is provided for a "realistic" descrip-
tion of the 3d-t~ subband.

Concerning the second point, that is to say a
satisfactory approximation to the exact solution
of the model Hamiltonian (2.3) in I, we divide
ab initio the whole lattice into two or more sub-
lattices and use a first-order Green's-functions
decoupling scheme which allows for different
occupation numbers for various sublattice spin
and orbital occupancies according to the instabil-
ities suggested by the atomic limit calcul. ation.
Then a self-consistent solution is sought and the
ground-state energies of the various sublattices,
spin and orbital configurations, are compared.
This is clearly equivalent to an investigation in
an unrestricted Hartree-Fock approximation of
the instability of the high-symmetry phase (the
metallic state) against a breakdown of its sym-
metry. The advantages and disadvantages of the
unrestricted Hartree-Fock approximation have
been discussed quite at length in the literature
(see Weger, ' and Ashkenazi and Weger, ' and
references therein). We would just like to point
out two aspects of this approximate method of
calcul. ation which are relevant for our considera-
tions: First of all, the accuracy of this procedure
was tested for the exact result of Lieb and Wu'
for the one-dimensional nondegenerate case by

H =t, P (n„+n„)+t g (c, tc„+c ~~c„)

U~+ —
Z (n„n, ,+nb,n, ,), (1.5)

where a and 6 indicate the two sites of the mole-
cule." (As a byproduct, this discussion will
provide us with more insight into the interelec-
tronie correlation of a pair in V,O, ). The exact
ground-state wave function 4 and the correspond-
ing energy Ez are easily found to be

I ~ t ~ g U —(U +16t)
( 1 yi al nl)I0)+

x (c,&c, &
+ cc&cc&))0)),

Eo —2to+ ~[U —(U'+ 16t')' ],

(1.6)

where N is a suitable normalization factor.
A straightforward Green's-function calculation

on the lines al.ready indicated, allowing for
(n„) —(n„) = (n, ) WO, leads to the following re-
sults: The one-particle energies are given by

= ~[Us (U (n, )3+4t ) ]+to (1.6)

and the quantities (n, ) are obtained from the self-
eonsistent equations

Langer et al,.' These authors "were pleased to
find satisfactory agreement at all values of the
rafio U/W, becoming almost exact agreement in
the weak coupling limit (U/W& —', )." In more
quantitative terms, the discrepancy was found to
be of the order of 100/0 in the worst case (U/W-1).
From our part we might further comment that
the one-dimensional model is the worst ease with
which to compare the HF procedure due to the
limited number of nearest neighbors of each site
z (=2 in this model). In fact, we expect the cor-
rections to the HF ground-state energy to go
like I/z. In three dimensions with an increased
number of neighbors, the approximation is ex-
pected to be better. In particul. ar in the case of
V,O3, the correlations between vertical pairs will
be treated to a satisfactory degree of accuracy
since there are twelve neighboring pairs to a
given one which interact with about the same
strength. However the correlations inside the
pairs, where the transfer integrals of the electrons
from one site to the other one are substantially
bigger than those between pairs, are expected
to be treated to the same degree of approximation
as for the unidimensional case.

The second aspect we wanted to emphasize can
be best illustrated in the case of a diatomic
molecule with one electron per site in a nonde-
generate Wannier (atomic) state described by a
Hubbard Hamiltonian of the type
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leading to the following equation for (n, ):

(1.9}

(1.10) g, =eos8sin8(c)ic, &+c,~c,i&~0&

+(sin 8c,~cb~+cos 8 c&~c,~)~0& &

(n.-) =-(U/~ .)(n .),
where we have defined b.,=(U2(n, &'+4t')~2. Ex-
amination of (1.11) shows the following: (a) The
"molecular-orbital" solution (MO) (n, ) =0 is
always possible. (b) If 2~t/U( =2x&1 and U&0
a spin-density-wave solution (SDW) becomes
possible with

(n,) = —,'{1—2c[1—(2x)']~')

(c) CDW state:

g, = (eos'8 c,~c,~ + sin'8c~~c~~) [0&

+ sin8cos8(c, ~c~~+cb~c, ~)(0&

or

g, = (sin'8 cJ~c~~ +eos'8 c~~~c~~~) [0&

+ sin 8eos 8(c,~c~~+ c~~c,&) )0&

=sin'85, ~~+cos'85, .~»

(n~,&
= ~{1+2o[1 —(2x) J'~'}

= cos'8 5, ,~, +sin'85,

(1.12)

(1.13)

and justifies the denomination given to states. It
is to be rioticed that the same solution for the
wave functions and the ground-state energies
could have been obtained from a variational start-
ing from a "generalized" (that is te say unre-
stricted) trial HF state of the form

(@& = (eos 8, c,i+ e "~ sin 8, c~~)
where sin 28=2x and o=+~. (e) If 2x&1 and U&0
a charge-density-wave solution (CDW) becomes
possible with

x (cos 8, c,~+ e'"2 sine, c~~) (0&

(n„)= ~{1-[1-(2x)']"}= sin'8,

(n„) = &{1+[1-(2x)']~'}=cos'8.
(1.14)

(1.15)

and minimizing the total energy (Q(FI~Q) with re-
spect to the parameters 6„8„g„X,„subject to
the restrictions

The ground-state energy of the molecule in this
approximation is easily calculated to be

Z, =U- —.'(~.+~ .) ——.'U(1+n-. n. )+2t, .

Hence for the three cases (a), (b), and (e) above,
we get

d = —,'U —2(t(+2t„
E',"= 2(t2/U(+2'-„

Z,"=-((U[+2(t'/U[}+2t„
(1.1V)

+ = (c,i + c,~)(c,&
+ c~t)IO&;

(b) SDW state:

0'g = eos 8sin 8(chic~) + cg)cg) ) (0)

+eos28ct~c~t& +sin'8c~~c~~)]0&

having used Eq. (1.11).
Inspection of E& for the three cases shows that

the MO solution [ease (a)] is stable for (U/t & 2;
the SDW solution [ease (b)] is stable for U/ t( &2;
and the CDW solution is stable for U/(t( &-2. The
corresponding ground-state wave functions are
easily obtained from the expression of the occupa-
tion numbers. The results are (a) MO state:

—~v& 8; & qs, 0&()&v (i =1,2). (1.19)

Obviously the two methods give the same results
since it can be shown that they are completely
equivalent.

The conclusions to be drawn from the previous
considerations are several. First of all, we see
from Eqs. (1.1V} and (1.V) that the worst approxi-
mation occurs for ~U/[t~ 1 as was expected.
Secondly, even in the region ~U/[t~ &1, the dis-
crepancy between the approximate and the exact
ground-state energies is quite appreciable even
for ~U/t~ -10 (100/0) so that the approximation is
not so good in the case of a diatomic molecule
which too was to be expected. Perhaps the more
disturbing feature of the HF solution is that for
the region x~) U/t j & 1, the best approximation to
the exact ground-state energy corresponds to a
state having an order parameter (n, ) =(n„) —(n„)
different from zero (for example, the staggered
magnetization in the SDW state) which does not
correspond to the physical reality. In the exact
solution indeed the ground state is diamagnetic.

This simple example can serve as a guide to
judge an HF solution. In general, if the physical
state shows some order parameter (like an anti-
ferromagnetic insulating state or an itinerant
antiferromagnetie metallic state) the HF solu-
tion provides a rather satisfactory approximation
to the ground-state energy and a reliable descrip-
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tion of the interelectronic correlations. Unfor-
tunately this description is not so good, for ex-
ample, in a paramagnetic correlated metal where
fluctuations of the physical quantities around their
average values are so big that the definition of
a steady, average mean field acting on a particle
due to the action of the other ones becomes ques-
tionable. In such a case, the introduction of a
fictitious mean fieM can help describing the cor-
relation between electrons and, moreover, it
might constitute the best way to approximate the
unknown ground-state energy.

All this applies to the various phases of V,O, .
However, even if we can hope to give a reasonable
"realistic" calculation only in the low-temperature
antiferromagnetic-insulating (AI) phase, none-
theless we shall obtain a great deal of information
about the actual correlations between electrons in
the metallic phase from a correct interpretation
of the AI phase. Consequently, we sha11 be in a
position to speculate about the actual. interelec-
tronic correlation in the metallic phase and the
actual driving force of the first transition at
150'K. Also an interpretation of the second tran-
sition at 500'K will be attempted which shall be
based on our knowledge of the system around the
first transition.

II. CHOICE OF THE WANNIER FUNCTIONS

1——&(Zz + Xs —Zz —X8),

&(Z2 +$5 Z~ $8) q

w 1
Xx'y~. X(71++2 ~3 +4) 1

(2.1)

As already stated in the introduction, a major
component of any real. istic approach to V,O3 must
be the correct. choice of the Wannier functions.
In this section, their explicit expression is de-
rived for the case of the corundum structure,
which will allow us to estimate the effective trans-
fer integrals in Eg. (1.4).

Referring to Fig. 1(a), it is a standard result of
group theory that the metal-3d and ligand-2P
orbitals in an octahedral complex transforming
according to the t~ representation of the OI,

group are given by

FIG. 1. (a) Octahedral coordination for a central metal
ion with primed reference; (b) Same octahedral complex
from the trigonal axis chosen as g axis in the unprimed
reference frame.

where in standard notation d„... indicates the
normalized 3d orbital of x'z' symmetry and z,'
the normalized 2P,. orbital centered at ligand
site 1.

Because of the trigonal distortion of the octa-
hedral environment of a cation site in the corundum
structure, the appropriate wave functions in the
lower D,„symmetry are

(1/W2) (d„.„-d, ...), (1/&2)(x.', —x; ")
8g

R~/3 Id g' ' 2(d ' y' +dy .)], &2/3[x.' . —k(x.', + x,' ")1 ~

a~((l/v3)(d„, . +d„... +d„...), (1/R3)(x„'.„.+x„'...+x,'...),
(2.2)

where it is indicated that the functions of the first
two rows transform according to the bidimensional
representation e~ whil. e those of the third row
transform according to the unidimensional rep-
resentation a~.

%e shal. l find it useful for later purposes to
take the threefold axis as the axis of quantization
and pass from the primed reference frame of
Fig. 1(a) to the unprimed reference frame of
Fig. 1(b). The transformation relations are as
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foll.ows:

x = (1/P2 )(x' —z'),

x' = (1/R }x- (1/&6)y+ (1/PS )z,

y =-(1/P6)(x' —2y'+z'),

y' =(2/&)y+(1/&)z,

(2.3)

z = (1/v$)(x'+y'+z'),
z'=-(1/A)x- (1/ve)y+(1/va )z.

Hence, for the three wave function (1.1) trans-
forming as the e~ and a~ representation we have

td=&„, d;d.„+—td..—t 't —t(y, -y, -y, +y, )+ —(d, -z, -z, +z, )zdt(z, -z,)
1 1 ~„2 1
g

)J2 +dy2- 2 —~dy ~ ~(xx-xs xs+xe) ~(yt. -y2+y4 ye)

1 1 1
+ +(z, —z2+z, —z4)+ +(y, —y4) —@(x2-x4)

1 1 2
$/2 d 2 — —( xt +X2+x4 x())+ ~(y) -y2+y4 y4) + /(zt -z2+z z )

(2.4)

2 2—~ (y2 —y4) + ~ (z2 - z4)

where fi, is given by Eq. (1.2). The quantity
S,(Q'', g') appearing in this last equation is easily
seen from (2.1) to be given by

S,(y", X') =2(3d, l2p,), (2.5)

where, for instance, (3d, ~2P,) =(d... Q,;). We
now notice that in the corundum structure, the
octahedral environment of aO the cation sites in
a basal plane are equivalent (they are obtained
from one another either by translation, or if the
two cations are in the same unit cell by application
of the inversion operator I, which does not change
the wave functions). However, those of the next
two adjacent planes are obtained by application

of C„and subsequent translation if necessary.
Under C~ according to the definition given in
Sec. IV. of I, we have, for example,

C~R~ =R4,

2(Plt P2t P2t P4t P5t P6) (Pst P2t P4t P2t Pft Pv) t (2'6)

C, (x, y, z) =(-x, y, -z),
where we have indicated the coordinates of the
oxygen sites by p~ and followed the numbering of
cation and a.nion ssites as given in Fig. 1 of I.

Hence if we take the wave functions in (2.4) to
be relative to the cation site 8„ those relative
to the site 84 will be

(d-, d,„-dzd„)- .
" —(y, -y -y, +y )-—(z, -z -z, +z )zdt(z -z ) Ig

1 %,„1 2
"4

2 dyt2. „2+ ~dt)d —~ —~ (x~ —x~ —x4+x(t) —~ (y~ —y7+y4 —y(t)

1 1 1
(z, -z, +z, -z,)+ =(y, -ys}+—(x, -x,) (2.7)

3 1 4, 1 1 2
yg, =~i~ d"- ~1'2 ~2(x. -x.-xi+x7)+ &(y. -y2+yi-y. )+ @(-z.+z.-zi+z. )

Y «V

2 2—~(y2- y2) - ~(z2-z. )

C2$ =-gtt4,

C2r/if' =((yg4 (i =2, 3),

(2.8)

where we have changed the sign of gm, since we
want to preserve the transformation properties
of the Vfannier functions given in I, in which case

and ptf (i = 1, 2, 3) transform under C2 in the same
4

way as PN, .
Using this method, it is then easy to find the

wave functions relative to aB the other sites that
are relevant for our calculations. For example
the wave function centered at site 2 can be found

by apzphcation of the inversion operator I such
that



4972 C. CASTKLLANI, C. R. NATOLI, AND J. RANNINGKR 18

IK, =R,
(Plt P3t P3t P4t P5t P6) (P6t P2I t P3 t P4 t P5 t Pl) t

I(x, y, z) = (-x, -y, -z), (2.9)

always with reference to Fig. 1 in I.
Similarly the wave function relative to the site

5 is obtained by application of C such that

CH, =R5,

~(Plt P3t P3t P4t P5t P6) ( Pl t P3 t P3 t P4' t P6t P6 ) t

c(x, y, z) =(x, -y, z), (2.10)

where again one has to change the sign of off, to
preserve transformation properties similar to
those in (2.8).

Moreover the wave functions centered at sites
5 and 4 are simply obtained by translation from
those relative to site 5 and 4. Finally the wave
functions for the sites in the same basal planes

t

of a given one but situated on adjacent vertical
plaries are easily obtained by the C, symmetry.
From the knowledge of the wave functions of the
type (1.1) for one site and its immediate nearest
neighbors (such that the relative surrounding
octahedron shares at least one oxygen with the
central one) it is now possible to construct the
Wannier functions (1.3) relative to a given site i
We only notice that the overlap integral Sq& is
given by

sag™= (4P Ay" )-2x.(ft" xy" )+x6(x t xy™~)t

(2.11)

where, for example by P (m=1, 2, 3), we indicate
one of the three functions of symmetry e~, or
a~ of 3d character in (2.4).

The effective transfer integral (1.4) is now

easily calculated, since we have

(30 (s)IH. (lv &I)& =g',"-—QSl"i%i(H I gg
— QSyl 4l &

nl n l

=—&y", (H, (y,"&--gs;,,'&P, IH, (A'&--Qs,","(tP", IH Ig )
n'P n&

=-&A"IH.(4'& - ls""(e;"IH.IV~V&
—l s "'&0™IH. IO"'&

to first order in S,"z", having used the fact that (pl IH6( pl"
& =(gl(H6(pl'&5„„. , independent of m. Hence

insertion of (2.11) gives

& ."(')IH.I (')& -=„—4&a,'(H. (e,"& —».[&~"(H.I x,"'& -s,(e , x,
"

)&V (H. (V"&]

(2.12)

-x,'(PPIH. IIP&&xl"lx7' &+&',&xp(H. (x,"'&)

= ~ (&0 "IH.II"'& -2x.&x"Ix"
&

&& [&0"IH.(x"& -s.(0" x")&0"IH. I 4h] —xl&x"I x~"'&

& [(0 IH. I
0'"& - &x"IH.(x"&]I, (2.13)

where we have used the property that

&x IH. (x,"'& =&x IH. (x"&&xP(x,"'&

(44"IH6(x7 & =&Pl IHo(xl &(xl lx7 &

s.(4l", xg )=s.(@l" xP)&xllxy" &

(2.14)

(4 (H.(x;&-s.(4 x')8 IH.IP&
&e IH. (y;& —&x;ilH. (x;&

(2.15)

provided overlap between oxygens is neglected.
This property follows from the fact that for the
2p, oxygen orbitals relative to those sites which are
in common to the two octahedra centered a,t i and

j, the set of function X;, of symmetry t,„,t~, t~, t,„
is complete and the fact that, for example,
(Qt. IH6(X,

" )=0 unless the sy. mmetry type of the
two functions is the same.

If we now, in Etl. (2.13), remember the result
of ligand field theory, "that

and put the denominator in this last expression
equal to E,~- E» =&E, the energy difference be-
tween the 3d antibonding states and the 2PP~
bonding states, we end up with the formula (1.4).
Notice that in this derivation we have neglect
the first term in (2.11) which is usually much
smal. ler than the other ones.

It can be shown" that this derivation of the
effective transfer integral is exact up to second
order in X, (remember that already SP&" is second
order in X,) and is actually the result of second-
order perturbation theory when one tries to elim-
inate from the problem the ligands and uses an
effective Hamiltonian for the Sd antibonding bond.
Before going on to calculate the effective transfer
integrals of a site to its immediate neighbors we
want just notice that from the way we have con-
structed them, our Wannier functions transform
as the set xy, xz, yz, so that the property (2.9)
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C

of I follows.
Figure 9 in I represents a characteristic cluster

of V atoms with corundum structure showirig the
site 1 connected with all its neighbors whose
oxygen cluster shares at least one oxygen with

the central ones around 1. The relative transfer
integrals are given in Table I. These latter are
all obtained in terms of twelve quantities which,
according to Eq. (1.4) have the following expres-

sionn:

I

u = (1/x, )[3}'.«+(off, IIf.lka, )], ~=-(1/&.—.,~'«,
-~=(1/~, ) [-4:«+&~5,le.les,&], v =(1/~,).~;~E,
0 = (1/&.)[-~'&E+(yk, l&.lyk, &], 5 = (1/&, )(5/24 v3 )}I.', &E,

p=(1/x, )[--,'~;~E+(44 Iff, ly„'-g], e =-(1/W, )-,', }:~E,
c'=(1/A, )[-,A,,&E+(Qg, IH OIQ it)], &=(1/N, )(1/12v6)A. ', 4E,
-T=(1/&.)[-(1/6&)~'&E+(Ak, lffollk, &] ~ (u = —(1/&„)(7/26&2)~'&E

(2.16)

Here the numerical coefficients are the quantities
(y,".

I}i&" ) which can be easily calculated on the
basis of the ligand wave functions in (2.4), (2.7),
or those derived therefrom. For the second set
of (2.16) we have neglected the direct transfer

integral between 3d wave functions since the
relative sites are at a distance of about 4 A in
the corundum structure. For the first set we
easily calculate, using the notations and Table I
of the paper by Slater and Koster, "

TABLE I. Transfer integrals t~~.{m, m' =1,2, 3) along direction 6 and between orbitals m and m' where (m, m' =1,2)
indicates the two %annier states of e~ symmetry and {m,m' =3) of g«symmetry,

Transfer
integral

Direction 63g

t22

t33

t12

t3&

t32

0, 0

-~4~+~gp

-4O-'+4 p

+4~3(e+ P)

2

+4@ 3 (n+ p)

X(y +2p

X~+Xp

-4 ~~(&+p)

-+W37

ZT
2

—+4W3( G.'+ P)

j 72

XV+X~

+V++ ll4 4

+4~3(-v+ x)+5

—
2 ~3' —

2 A,

-~2~+~2' 3X

&4~3(-v+ Yr)-6

~3M + A.

—&cu —~/A.

'fv +f 7I'

&v+&z
4 4

—
4 ~3 (-v+ z )+6

—
2 (d —

2 +3k,

—&4~3(-v+ vr)-(5

-~~3~+&A,

GO +' /3A.

Transfer
integral

Direction

t22

4 v+444

~v+~z
4 v+ "444

4 V+444

$V + 444'

4 v +'444'

ti2

t23

t3i

t32

&4~3(-v+ m }-5
—&2Q(u +&2A,

—~2cu+~2Q3X

-&&~Q(-V+ Z)+5

QW3(- v+ w}-5

—
2 ~30) +2 A.

—+24) —+2+3',

+4~3( V,+ Z) + 6

&~3co —~2A,

—+cu++&3A,

-&4~3(-v+ 71) +6

j-&3'-&A,

—+(d ++A,

—+4~3(-v+ m)-6

-~2~3cu+~2Z

-~2(o+ &~3X

&~3(-v+ m}+5

-~cu+~v 3X

+4~3( V+ 71)

~2~3()+~2'

2 Q3 ~
2 ~3k.
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(Pa~' [H, ~)a~ ) = —',(dd6)„--', (dd))'), 4=-0.16 eV,
x(2)

&y&, ~H. lys, ) = 3(d«) .+-'(dd&) ~
=0 14 eV

(Aa, iH. I 4s,) =k(d«)»+ s(ddt)»+

+-, (dd6)» = -0.15 eV,

()I)s ~HO[Pa ) =(ddc), ~=-0.66 eV,

g&a ~Ho~&@,) = —,
' (dda')„+ —,'(dd6)» —-0.14 eV,

(pg ~Ho~gg, ) = —,
'

v2 (ddo')»- —,R2 (dd6)» =-0.14 eV.

(2.17)

III. UNRESTRICTED HARTREE-POCK CALCULATION

The orientative values in (2.17) are estimated
on the, basis of Table II of Ref. 5 where the same
Slater-Koster notation is used and the sites
labeled R„R4,R„R, are called c„bo,do, uo, re-
spectively. Notice that the distance (R, —R, ( is
different from ~R„—R, ~

so that for example we
have to distinguish between (ddt)„and (ddt)».

All the other transfer integrals centered at any
other cation site in the unit cell are obtained from
those of Table I by application of the symmetry
operations I, C„or' C, as exemplified in Sec. IV
of -I.

Before leaving this section we want to point out
the importance of covalency effects as it emerges
from (2.16), (2.17). With values for )).', ranging
from 0.25 to 0.40 and for &E between 4 and 5 eV
we see that interference effects between direct
3d-3d transfer integral, and covalency contribu-
tion are crucial in determining the effective
hopping rate of the electrons from site to site.
The interplay between the effective possibility
of maximum lowering of the kinetic energy for
the electrons and the minimum paying of repul-
sive energy when they happen to be on the same
site determine the electronic structure and the
distances between the anions and the cations
among themselves and between anions and cations.
Also notice that covalency alone can be a big
non-negligible source of hopping between sites so
that it is essential to take it into account for a
correct treatment of the problem.

We shall return later to these points when
discussion the correlations between electrons
in the corundum structure for the series Ti,O„
V,O„and Cr,O, .

tion for V,O, . Our aim will be the calcul. ation of
the ground-state energy in order to assess the
goodness of the type of correlations introduced
in the trial wave function which in the language of
the Green's-function technique are all contained
in the set of the self-consistent occupation num-
bers (n;, ) relative to the r sites n in the unit
cell, the symmetry type index m(=1, 2, 3), and
the spin o.

It is then natural to start with a general expres-
sion of the average of the operator H —pÃ in a
grand canonical ensemble in terms of correlation
functions, "namely,

9 . 0
&H- pN) = —g d'x) i ——i, +H, (x')+ H, (x)

-4p, (P, x', i')g, (x, f))i;;„
(3.1)

where H, (x) = (-h /2m)V;+ V(x) is the one-body
part of the total Hamiltonian, and then to special-
ize to our case in order to fix the notations and
have expressions ready for direct calculations.
Eq. (3.1) is easily obtained by eliminating the
two-particle correlation functions coming from
the interaction part of the Hamiltonian through
the equation of motion of the field operator itself.

I et us expand the field operator

g, (x, i) = g w; (x)c, „,(t) (3.2)

(c,.(f')c,(t)) = —e '"i' ")g,', t()d), a=ia~g,
m QO

C C

(3.3)

in the usual notations and the quantities

in terms of operators which annihilate electrons
in real Wannier states w," (x) relative to the lattice
site R;+x (R; denoting the primitive unit cell
and x„ the position of the site within this cel.l and
to the mth type of symmetry (or mth atomic level).
Introducing the Fourier transform of the averages

As already anticipated in the introduction, we
shall make use of the Green's-function technique
to perform an unrestricted Hartree-Fock calcula-

T;, = w;(x)H, (x)w. (x)d'x, a =i aim,

the expression (3.1) becomes

(3.4)

)H gii) = —Q Q Q Q f [2(e —2g)ii, ,„—p.. .+2T, „„)G'(ia (r, i'u' v; vm), , m
j (g t'lX' fit~ 0

(3.5)

where we have put for brevity G,', t, (&u) —=G'(a, a'; v). Fourier transforming in space (N, being the total num-b Cg
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ber of unit cells and k varying in the first Brillouin zone)

+~K (R~+xo)
Ct ame ~~ ~ e emmet

C

so that

(3.6)

G ((i nmoi 'n'm'o', &t)) = p G'(nmo, n''m'o'; k; (d)e'"'"t
C g

we obtain

(H- pJ}[& = —Q Q Q —[((u-2p)5, „, .~+T .",(k)]G'(nmo, n'm'o; k; (o), (3.7)

where we have introduced the quantity

(3.8)

which is independent of i because of the translational invariance. It is useful to write Eq. (3.7) in matrix
notation upon introduction of the matrices

I=(5a e, a'me ) )

T(k) =(T .," (k)5„.),
G((k; &t)) = (G'(nmo, n'm'o'; k; (t)))

so that

(3.9)

= —Q T| f —[(w-2y)l+T(k)Jf(~)t(k;~},
l7

(3.10)

with f(e) = [expP ((tr —g)+ I], A(k; ~) being the matrix of the spectral functions of the Zubarev Green
functions

((Ct amei Cpa ~ e » ~

The symbol Tr indicates that the trace of the matrix product on the right should be taken.
Until now Eq. (3.10) is generally valid. We turn next to the approximate evaluation of the above Green's

function. We start from the Hamiltonian (2..3) of I which we repeat here for convenience.

m~ .f 1~H = g tetr Cgmecti~e + ~ g [(1 5m~5eee)Um~ Btme St~ i5eeei(1 5m~)Jm~ S)}meSt~e
j+' mndfy mm' i'

—(1 —5mm')(1 —5ees )Jmatctmectme'ctm'e ctm e

+(1-5„~)(1-5,,)J„„c,~„c,' ..c,„.], (3.11)

U= U'+ 2J, (3.13)

Notice that the generalized Hubbard Hamiltonian,
beside neglecting the long-range part of the

where j stands for ia defined above and the sum
over m, and nz' goes over the three Wannier
states per site defined in Sec. II. We remind
ourselves of the following definitions:

U m =U5„~+U'(l-5„„.), J' ~ =J'(I 5 ~)

(3.12)

and

+(([ct e) e];c't ~e &&, (3.14)

Coulomb interaction, neglects also exchange terms
between neighbor sites. These favor ferromag-
netic coupling between electrons and might to
some extent compete with kinetic exchange mech-
anism, although we believe Anderson's' argu-
ment that interference effects tend to depress
their value. For this reason we neglected them
here.

The equation of motion for ((c~„,; ct.~,.&& is

&o((ct c't' '» =([c .ct, '}'
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that is to say

(d«Cjmnr' Cj'rrjn')) = 5rmtr jrm'sr + P jl" (( jn(r 2 »+ g (1 5mn5ss) nrrr((Cjm(r jns 2 ))
ln ns

—g (1-5„„}(1-5„)J„„((cjCJ„,cj„,, »- g (1-5„„)j„„«cJ„,pgj„„»
ns

+ g (1 —5„„}(1-5„}j„„((c~„,c~„,cj
ns

(3.15)

where we have omitted for brevity the second
operator in the Green's functions.

The unrestricted Hartree-Fock approximation
demands that we decouple the higher-order
Green's functions in (3.15}by taking into consider-
ation all the possible nonzero averages of the
form (cj,cj„,). We suppose that all the spins
are aligned along the quantization axis so that

V= (V„„,»),

where

(3.21)

To find the self-consistent equations for the
occupation numbers (n,&, the unitary matrix V

of the eigenvectors of the matrix C is first
found. So,

(CjmsCjns) (Cjmscjns) 5ns ~

For example,

((Cjm s 8jns2 &) -(Cjtm (2 Cjns) ((Cjns2 ))

and

ama, yns~yns, g = g ~any, g q

j'ns '

(3.22)

+(nj„,&«cj .;». (3.16}

~«~» (kmn 2'

)t)) m.,~ )&
= 5m)) 5m' 5„.

Performing all the possible decouplings in (3.15)
and Fourier transforming according to (3.6)
(resetting j =i, a} we finally obtain

(3.23)

V'CV =n,

where

(3.24)

V~~, ~V .,..=6~,. i.e. V'V =I.~

~ ~ ~

(We have assumed that in case of degeneracy a
suitable orthonormal basis in the subspace of the
degenerate eigenvalue has been chosen. ) Hence,

T "„k +A fl = (&2)» 5»»r ) 2 (3.25}
ng

x«c» „„,; c» Nwo'» (3.17)
so that by multiplication of (3.20) by V~ from the
left and by V from the right, we derive

where we have defined the interaction matrix

A."",= 5.„f[U(n.. .&+ Ur Q (1-5„„,}(n.„r,&
n's

((uI —A}G' = I,
where

(3.26)

—J'Q (1 —5„g)(n „,)]5
n

—[(U'- j)(C(2 nCnnn)

—J'((c „,c „,)+(C,C „,&}]j.

(3.18)

The solution for C' is easily obtained as

so that

(3.28)

(3.29)
Notice that we have dropped the index i in the
averages like (n;,&

since by translation invari-
ance these latter do not depend on i (remember
that i denotes the unit cell). Defining the matrices

G(k; (2)}= (((Cn i Ck Be'or»} 2

(3.19)
C(k~(n )) = [T "„(k)+A""„]5..—. ,

where we have indicated that the matrix C depends
on the set (n,&(a =yns}, we can rewrite (3.17) as

Hence

ji(k; &u} =i LG (k; (d+ i&}—G(k; (d —ie}]

=. 2kp V ...(k)V„„,, (k)2(tk —kk. (k))),

(3.30}

(&oI —C)G = I . (3.20) so that for the self-consistent equations we have
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(ca(m()cN„,) =—Q Q Vmm, ,g(k)Vm„, ,)((k)
C

x(exp[P[(0~(k) —p, ])+1) ';

n(: ——~ (cm)))()co(ms)

Q Q (exp[P[(d„(k) - g J) + 1) ', (3.32)

where n, is the total number of el.ectrons per
unit cell, having used E(L. (3.23).

In simpLe cases, where the V „,„,(k) can be
obtained analytically, relation (3.31) is easily
recognized to be the usual self-consistent equa-
tion. For example, in the case of bvo sites a
and p per unit cell and one atomic state (m =1)
(with only nearest-neighbor transfer integrals
different from zero), E(L. (3.31) reads, at T =0,

1 ~ (n, ).

)( ~((rr )*rp'y')'")'
1 ~ (n, )

(3.33)

(3.31)

and the chemical potential p, is determined from
the condition that

(3.34)

which is seen to be the self-consistent equation in
Ref. S for T =0. In the more general case, Eq.
(3.31) is already suitable for computer calcula-
tions. A suitable set of input occupations numbers
as suggested by our preceding atomic calculations
is used to construct the C matrix in (3.19). Next,
an orthonormal set of eigenvectors is found at
each one of a suitabl. e number of k points in the
irreducible part of the Brillouin zone (BZ) (250
is usually found to be sufficient) and the sum
(3.31) is performed together with the sum (3.32)
which determines the Fermi level. Hence a new
set of occupation numbers is obtained which is
used as a new input set to repeat the procedure.
It can be shown that this procedure converges to
a self-consistent set of solutions. In general,
as suggested by the atomic calculation, there is
a great variety of such self-consistent solutions.
To discriminate among them it is necessary to
calculate the corresponding ground-state energy
in order to assess the most stable configuration.

From E(L. (3.10) we get, with A = (A""„5...),
(ll —tris) = -'p Tr f —[(tr —2g)t+r()r)[f(tr)r)(k; w)

w OO

where d(d
[((o-2L(,)I+T(k}

m 4Q

+ A]f((d)A. (k; (())

and

.~ 6o',~r.- r
&NP &

Subtracting, we get

(3.35)Q Tr f (rf(tr)r((k; tr)—
eN

Using the unitary matrix V to evaluate the first
trace and remembering (3.31), we obtain

—(K- plV) = —g g [&u), (k) - ([(,)J(exp[p[&o„(k)-L(J]+1) '
1V~

--g (n.„.)[U(n. .)+U' g (1-o„„)(n.„..) Zg (1-5„„)(n.„.)J
O NtQ n&' n

+ —g p (1-5„„)(c~„,c „,)[(U- J')(ct„,c „,) -Z((ct„,c „g+(ct„,c „,))J
any mn

(3.36)

for the total energy per unit cell. Ne recognize
in this equation the usual expression for the
ground-state energy in the Hartree-Fock approx-
imation.

In practice, since the matrix C in (3.19) is
diagonal in the spin indices, the diagonalization
(3.22) is done for each spin state so that &u~ can
be indexed as (()~., (where if A. ranges from 1 to n,
A,

' ranges from 1 to ~n). This has the advantage
that in the antiferromagnetic spin structures one

saves computation time since ~q., is independent
of o'. In such a case, the set for down-spin occu-
pation numbers can be obtained from that of up-
spin by a suitable symmetry operation inside the
unit cell. Finally we want to comment on the con-
nection of the usual variational Hartree-Fock
procedure and the Green's-functions approach for
the correlation problem. That the two methods
are equivalent is seen, as follows. If we take the
trial. wave functions
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x p v „.,(k)c„-, .,))0),
em

(3.37)

&O' I c„,c,a. Ik'& = ~,

(0 I cg acyl all ) =g' I cg,,a cJ2a lk ) = r,
(3.41)

implies that

and

(c)k) a ca)qa& = (ca)ga capa&

(ct„,c „,) =0 if m Wn.

(3.3S)

The role of the off-diagonal (m 4n) averages,
when they are different from zero, is best under-
stood if we realize that in such a case it is al-
ways possible to introduce new basis Wannier
states d ~,=Q„a „ct„,for which (d't „,d „,) =0
if m 4n. So they serve actually to change the
quantization basis. Hence, if we have reasons
to suspect that the self-consistent solution has
sizable off-diagonal averages [as for example
all the solutions in I with 6& = —,w (—,)i)] we speed up
the convergence procedure if we start right away
from the correct averages. For instance, if we
are l.ooking for self-consistent solutions corre-
sponding to the RO(2)-RS (real orbital order-real
spin structure) atomic limit solution, where the
orbitals

(I/R2)[n)& (x) + w& (x)] =(I/&2)(cJ„+cJ„)IO&=I+&

(3.40)

are occupied, we should start from input averages
of the kind

calculate the average (/IHIP'), and then minimize
with respect to the V,(k), we find that they must
be eigenvectors of the matrix C in (3.19) and sat-
isfy the relation (3.31) for P- ~(T =0). [This last
condition follows immediately by direct evaluation
of &glcamacaaalk&using the Fourier transforms
(3.6).J Hence, specifying a self-consistent set of
occupation numbers is equivalent to a minimiza-
tion procedure. The advantage of the Green's-
function approach is as emphasized before, that
we can take advantage of the atomic limit calcula-
tion to find the most stable ground-state configura-
tion. In general, if the self-consistent ground
state has some symmetry left, there are rela-
tions among the averages (c~ ac~„,&. Suppose for
example that lg) is invariant under C„so that
C, lg) = I|))). In such a case, remembering the
transformation properties of the Wannier states,
the relation

(tlc.",c.,lt&=&ylC. 'c.'..C,C c.„.C, Iq& ( .3S)

&0 lc&',.c&..lt &=--',

according to whether the occupied orbital at site
j is f' or g . Similarly, if we are looking for
complex solutions, to estimate for instance the
orbital contribution to the magnetic moment, we
must use the appropriate off-diagonal average.

IV. RESULTS OF THE HF CALCULATIONS

IN THE INSULATING PHASE FOR
ONE ELECTRON IN A DOUBLY DEGENERATE BAND

Before presenting the results of the HF calcula-
tions with all the three states included (ea and a~),
we think it useful for illustrative purposes to
discuss the case of one electron in a doubly degen-
erate e~ band in the corundum structure. In this
way we can make a comparison between the HF
results and the atomic limit calculations, get an
understanding of the state of affairs in this simpler
case which will serve us as a guideline for the
more complete calculations, and finally assess
the validity of the Chao-Gutzwiller" approach for
the description of electron correlations in a
doubly degenerate band.

Let us consider the Hamiltonian (3.11) for the
case of two Wannier states of e~ symmetry, and
take as orientative values p, =0.46, @=0.29,
P=0.0, and v=n=5=0. 0 e'V. Again one can show
that U = U'+ 2J and we take U = 1.5, U' = 1.3, and
J=0.1 eV. From now on the tM antibonding atomic
level in (3.11), that is to say the terms t PP, will
be set equal to zero.

A completely restricted HF calculation (that is
to say all the occupation numbers (n, ) = a and
the off-diagonal averages equal to zero) leads to
a density-of-state curve of the kind shown in
Fig. 2. The zero of the scale of the energy has
been determined so that Q~)-, co„(k) =0 according
to the convention of Ref. 15. In our notation it
corresponds to 2.9 eV. Notice that the calculation
reduces to 'a bare band-structure calculation,
since the interaction matrix is, in such a case,
proportional to the unit matrix, the proportion-
ality constant being —,(U+ 2U' - J') = 1 eV. This
solution is always a self-consistent solution in
the sense that we obtain already at the first
iteration the calculated output (n „,) = —,'.

We can see that due to the degeneracy of the
e~ orbitals in the trigonal symmetry, the Fermi
level falls in a region of high density of states
[p(e~) = 1.5 states/eV spin V-atom)]. Hence from
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states
heeY Y-atom spinp(B}i Gutzwiller. " C„C„C,are equivalent to our

quantities U, U', U'- J, and

Ep =2
lE I &a+

I QF
I i I i I I II I i I i I i I i i I i I s I & I i I i I ~ I I I, eY

—0.8 -0,6 -OA -0.2 0 0.2 G4 0.6 Q8
2.S 3.0 3.5

FIG. 2. Density of states for corundum structure
with one electron per site in a doubly degenerate e~
band, without electron correlation.

the point of view of the Bloch-Wilson theory the
system should be metallic. However a gap is
found if one looks for the symmetry breaking
solutions suggested by the atomic limit calcula-
tion in I. As an example, the density of states of
the antiferromagnetic orbit-real spin structure
AO(1)-RS state is depicted in Fig. 3. This is
interesting in two respects: It shows, firstly,
the possibility of opening a correlation gap of
the Mott-Hubbard type in the e~ band and, second-
ly, that this occurs far away from the critical.
values of the ratios -C, /e~, -C,/Z~, -C, /Z~, for.
which a transition from a metallic to an insulating
state should occur according to ideas of Chao-

The conditions for criticality in this case of one
electron in a doubly degenerate band are dis-
cussed in some detail in Appendix A, following
Ref. 15 and imposing the constraint C, -3C, +2C,
=U- U'+2J =0 appropriate for our case. Given
our values for U=1.5, U'=1.3,J =0.1, -e~
=0.65(eV) as calculated from Fig. 3 and the crit-
ical ratios as derived from Fig. 11 of Appendix A,
(minimum critical ratio C;/-e~ = 6), we see that
we are far away from criticality condition of Chao
and Gutzwiller. As a consequence the application
of the Gutzwil. ler theory by Brinkman and Rice"
to the description of the correlated metallic state
of V,O, at low temperature under pressure be-
comes questionable. Indeed, in this theory, the
mass enhancement factor is given by

m*/m = [1—(C, /6m~)3] ', (4.1)

taking that i for which one is nearest to criticality.
However this expression when evaluated for the
above set of values (actually in the metallic
phase U should be somewhat less than 1.5 eV, the
gap disappearing at 1.3 eV) gives a mass enhance-
ment utterly insufficient to account for the ob-
served ratio m*/m = p,«(ez)/p, (ez) = 4. p, ff (ez) we
have estimated from the measured y value at low
temperature and high pressure" using the formula
y = 3n' N&&p.ff(&~) and p, (e~) =1.5 states/(eV

states
Ft(E) eV Votorn spin

2--

FIG. 3. Density of states
for corundum structure
with one electron per site
in a doubly degenerate e~
band for the AO-RS con-
figuration.

0 I" '' ''I
2.0

I I I I I I i I i I s I s I I I I I

& 2.S 3.0
E, j

4.03.S
I I t I i I I f g I I I s I t I i I I I



4980 C. CASTELLANI, C. R. NATOLI, AND J. RANNINGER

spin V-atom) is the bare density of the states as
derived from Fig. 2. This latter value is close to
the more realistic one of 1.0 = 1.25 obtained from
the complete calculation including the a~ which
we shall discuss below; see also Ref. 5.

There is another interesting aspect relating the
HF symmetry-breaking solutions and the corre-
sporiding ones found in the atomic limit calcula-
tions. Their ground-state energies E~ agree
within 10%%uo, provided U/W) 0.8, where W is the
bare bandwidth. So even near the Hubbard"
condition for a metal insulator transition for a
spherical Fermi surface (U/W = 0.8, but actually
this number should not be much model dependent,
since we get a gap for about this value) we can
fairly well estimate Ez from an unrestricted HF
calculation by looking at the corresponding atomic
limit calculation. This makes us confident in the
validity of the procedure which we have followed,
that is to say to describe the electron correlations
starting from second-order perturbation theory
even though this latter does not seem a priori
applicable.

As a representative example we give in Table II
the numerical values of go for the AO(1)-RS config-
uration and the AO(1)-FS configuration obtained with
the two methods.

The expression for E& in the atomic limit have
been derived from Table V of I neglecting terms
of the order (J'/U)'. In this way the broad fea-
tures of the phase diagram in Fig. 7 of I turn out
to be confirmed for the case of the HF calculations
with two degenerate bands. The variation of E&
for various states of interest for later discussion
and of &e~ the gap between the occupied and un-
occupied states as a function of the Hubbard
parameters U, U', J and the hopping integrals
n, I8, and p are illustrated in Table III
where all the numbers are in eV, E& being ex-
pressed in eV/(molecule V,O, ).

The labeling of the states is the same as that
introduced in Table V of I except for the states
PO-RS, PO-FS, and PO-PS which have no equiv-
alent in the atomic limit. Indeed, PO indicates
orbital paramagnetism, that is to say no phase
correlations between orbital occupation of adjacent
sites. Hence, for example, PO-RS represents a

state with a real-spin correlation such that on
each site (n „)=(n „).Similarly PO-PS indicates
the completely uncorrelated state for which
(n ~) = —,'. Its density of states at the Fermi level
is p(ez) = 1.5 states/(eV spin V-atom) for the first
set of n, P, p values as found above and p(e~) = 1.25
states/(eV spin V-atom) for the second set of
values. Also there is not much variation of p(ez)
around = 1 state/(eV spin V-atom) as a function
of the parameters in Table IIIfor the states AO(1)-FS
and PO-FS when &&~ =0. In such a case the vari-
ation of p(e&) is discontinuous in the sense that
one has either &e~ e 0 or a high value for p(e~).

On the contrary, for the states PO-RS and
AO(1)-RS p(c~) increases from zero continuosuly
through the critical value U' for which &E~ be-
comes zero when U is varied for a fixed set of
o., P, p, and fixed ratio J/U'. This is a feature
common to all the states having a spin structure
which breaks the trigonal symmetry of the crystal.
The reason is that the degeneracy at the 1 points
of the two e~ bands arising from the e~ atomic
states is lifted, since in a spin symmetry breaking
structure RS the motion of the electron along the
antiferromagnetic chains along the y axis (Fig. 3
of I) is different from that in the planes perpen-
dicular to it, where all the spins are coupled
ferromagnetically. Hence, it turns out to be
possible to open a gap in the one-electron density
of states of the Hubbard-Slater type for a certain
ratio of U/W (usually of the order of 0.8) which
disappears altogether with the disappearance of
the spin ordering. One might think that the same
would happen for a state like RO(1)-PS, that is to
say a state without spin ordering but nonetheless
breaking the trigonal symmetry, through the RO(1)
orbital ordering. However, for 0.1& J/U'& 0.2
and 0.8& U/W& 1.0, we were not able to find such
a self-consistent solution. Starting from a con-
figuration such as RO(1)-PS through an appropriate
set of occupation numbers, the HF self-consistent
solution always converged to the uncorrelated
spin and orbit paramagnetic state PO-PS.

For the set of parameters given in Table III, we
are well inside the stability region of the AO(1)-RS
configuration in the phase diagram of Fig. 7 of I.
Accordingly we find that the AO(1)-RS states have

TABLE II. Comparison of the ground-state energies for the AO(1)-RS and AO-FS state obtained
by an Hartree-Fock and an atomic limit calculation.

Configuration EG (HF calculation) E~ (atomic-limit calculation)

AO(1)-RS -0.538 eV/molecule V~03 —, (3& +2@ )+2 &
J 0.550 eV

U' —J molecule V203

AO(1)-FS -0.482 eV/'molecule V203 (, o. +2@ ) =-0.510
1 ~ 2 2 eV

UI-4 molecule V203
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the lowest energy and are far below all the other
spin configurations in the phase diagrams [of
the order of 0.05 Ev/(molecule V,OS)]. It is
worth noticing however that the states PO-RS are
always much closer to the ground state than all
the others. This feature is independent of the actual
values for n, P, p, , U, O', J', provided one is inside
the stability region of the AO(1)-RS configuration.
We shall return to this point in paper III,"(here-
after, III).

Concerning the properties of the ground-state
AO(1)-RS, itis interesting to look at the kind of HF
self-consistent set of occupation numbers we
obtain. This set is given in Table IV and corre-
sponds to the set of parameters in the second
column of Table III [see Fig. 8(a) of I for the
corresponding atomic limit occupancy]. Here
the index a numbers the V atoms in the unit cell
according to Fig. 3 of I. The occupation numbers
for the siteg a =3, 4, 5, 7 can be easily obtained
by continuing throughout the lattice the AO(1)-RS
configuration. The convergence was achieved
up to the fifth decima. l in all the calculations of
Table III. The interesting feature to be noticed is
that although we started from an input configura-
tion of one electron per site in self-consistency,
we found

g(n, „,) =1.008, P(n, ) =0.992.
ma

Indicating by &c the deviation from 1, the average
number of electrons per site in our problem, so
that a positive (negative) value of 4c indicates
excess (defect) of charge relative to 1, we can
easily draw Fig. 4 based on Table IV where a
plus sign indicates an excess and a minus sign a
defect of charge. Considering &c as an order
parameter, we see that the orde'r is completely
antiferromagnetic in the sense that an excess of
charge on a site is accompanied by a defect on
the four immediate neighbors. In other words,
an AO(1)-RS self-consistent solution exists with a
charge density wave of the kind shown in Fig. 4.
[This feature is common to all the self-consistent

TABLE IV. Self-consistently determined HF occupa-
tion numbers for the e~ electrons on the sites 1, 2, 6,
and 8 in the rhombohedral unit cell.

I@ I@
OO OO0

(n i))
i&~2))
(n i))
(n~2~)

0.745
0.183
0.020
0.060

0.221
0.721
0.016
0.034

0.020
0.060
0.745
0.183

0.016
.0.034
0.021
0.721
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between e~ electrons is antiferromagnetic. In
such a case, in fact, there is only a slowing down
of the flipping rate of the two-spin configurations
constituting the. spin singlet of the a~ molecular
function without any dramatic change in the inter-
nuclear distance. A very sketchy model for the
above state of affairs is the following: Suppose we
are considering the vertical pair in the metallic
state with two electrons per site. Then the total
ground-state energy eleetronie binding plus inter-
nuclear repulsion plus lattice energy can be
written as

FIG. 4. Distribution of the excess (+) and defect
(—) charge 6c throughout the corundum lattice for an
AO-RS self-consistent solution. Regarding Ac as an
order parameter, the order is completely antiferromag-
netic.

HF solutions corresponding to the solutions is the
argument 1 of Table V of I. It is absentin the solu-
tions with argument 2 and those with orbital paramag-
netism, e.g., PO-RS and PO-FS.] Hence, one
expects a distortion of the lattice tending to
shorten the distance of the vertical pairs, con-
trary to what is experimentally observed (Ref. 5

of I). However, there is another source of
distortion in the lattice which must be taken into
account if one wants to explain the experimental
findings (Ref. 5 of I). This second distortion
mechanism is magnetostrictive in origin and
takes place merely due to the existence of a mag-
netic structure lacking the trigonal symmetry of
the lattice. For this effect, the presence of the
a,~ electrons is essential as will be shown in a
moment. Briefly, what happens is that through
intra-atomic exchange the e~ electrons polarize
in part the a~ electrons. For the pairs ferro-
magnetically coupled, this means that a triplet
component is introduced in the molecular-orbital
wave function for the a~ electrons leading to a
loss in bonding energy more than compensated for
by the gain in intra-atomic exchange energy due
to the resulting partial. localizations of the a~
electrons. (Remember to this purpose that the a~
Nannier states are not degenerate so that the
ground-state molecular wave function is a spin
singlet; hence lowering of the kinetic energy can
take place only in this spin configuration. In a
triplet, spin configuration electrons cannot jump
from one site to the other of the molecule due to
the Pauli principle). As a reaction to the weaken-
ing of the electronic bond the atoms constituting
the pair increase their distance as much as the
oxygen cage around them allows. Nothing of the
sort happens for the pairs where the coupling

4t, + [U —(U'+16p')~']+ g ot,'[C, —(C', +16p') ']

e+Z, ff —o.s—, (4.2)

to being the atomic level .
Here we have indicated by p the hopping integral

of the a~ electron, by p. the one of the e~ electrons
and neglected the interaction between them. The
energy for the e~ molecular state has been taken
to be a mixture of the low-lying configurations
given in Sec. III of I; accordingly the C&'s rep-
resent the quantities U'- J, U'+ J, U+ Jwith the
condition that Qn& ——1. Notice that in an isolated
molecule, there would be no mixture of such
states. However, as a result of the interactions
with the medium, one expects a certain amount

I
Qf mixing since some quantum numbers are not
conserved anymore. The third term in Eq. (4.2)
is the internuclear repulsion of the two nuclei of
the molecule with an effective unscreened charge
Z ff at a distance Am along the vertical axis (by
symmetry the distortion is along the z axis).
Finally we have schematized the effect of the
lattice by a Madelung potential -o.„e'/8„. This
is a very crude approximation, although the exact
form of this interaction is not relevant to the kind
of argument we have in mind.

By assuming an exponential dependence of the
hopping integrals on the internuclear distance so
that p=p, e ' ~ and p. = p, ,e ' ~, the equilibrium
position of the nuclei in the metallic phase is
determined by the equation

8ap' ~. , 8a p.'
(U '+ 16p')~' ~ ~ (C'+ 16p,')"

(4.3)

In the antiferromagnetic phase the e~ electrons
become polarized so that a~ = 0 except for that j for
which C& =U'- J. Allowing for a partial exchange
polarization of the aM electrons, we may write
the ground-state energy for this case as
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e +(1 —b') [U —(U'+16p')]~2+b'2Z

—,'I,U' -J - [(U' -&}'+16p.'J)"+ (Z'„, — „)(2/Z) .
(4.4) 2.8"

The new equilibrium position A, is now determined
by the equation

Sap' Sa p,
2

(U2+ I6p2)1/2 [(Uf g)2+16~2]1/2

—(Z,ff - n~)(e'/R, ') = 0. (4.5)

If we now evaluate the left-hand side of this equa-
tion at 8 =8, we see that it is negative if we
realistically assume J/U=0. 1, b'=0.2, and
p'z 2p, ' [see Eqs. (2.16) and (2.1'I) for this last
inequality J. Hence 8,&R as observed experi-
mentally (Ref. 5, I}. The same argument holds
true for the pair of V atoms ferromagnetically
coupled in the basal plane. The resulting distor-
tion can be viewed as a rotation of the pairs in
the a„-c„plane (Fig. 3, I), that is to say the
plane determined by the ferromagnetic bonds.
Obviously there is a threefold degeneracy in the
choice of the direction of the ferromagnetic bond
in the basal plane, accounting for the twinning of
the crystal after the distortion (Ref. 5, I).

In our opinion, the above polarization and con-
sequent localization of the a~ states is the primary
and most effective source of distortion of the
lattice at the metal-antiferromagnetic insulator
phase transition. Once this distortion is set up,
the charge-density distribution depicted in Fig. 4,
if it represents a real physical effect at all, tends
to stabilize the increase in the internuclear
distance for the pair in the basal plane (direction
R, -R, in Fig. 3 of I) and to hinder the similar
distortion for the vertical pair. This is in keeping
with the experimental finding showing an increase
of =1.5%%uo for the vertical pair compared with the
=3.5/o increase for the pair in the basal plane
(Ref. 5, I). However, the different behavior of
the two pairs might also be explained by observing
that the polarization of the a~ el.ectrons in the
vertical pair is much more difficult than in the
pair in the basal plane since Lp[» (o(, c being the
hopping integrals for a~ electrons in the basal
plane [see Eqs. (2.16) and (2.1 I}].

The above considerations also allow a straight-
forward interpretation of the variation of the c/a
ratio in transition metal oxides of corundum
structure as illustrated in Fig. 5. The key idea
is that a bond between V atoms along the vertical
pairs is not only a bond between these two partic-
ul.ar atoms but it actually involves the two oxygen
octahedra which surround them sharing a face.
This is because the effective transfer integral
between magnetic electrons contains a contribu-

2.7"

Ti V Cr Ga

FIG. 5. c/a ratio of various transition-metal oxides.

Cion from the ligands [Eq. (2.16)J. Hence a
strong bond between electrons in the vertical
pairs also entails a strong bond of three successive
layers of oxygen atoms, so that the oxygen cage
shrinks in the c direction and expands in the di-
rection orthogonal to it (a axis). As a conse-
quence, the c/a ratio becomes smaller. If the
vertical bond is loose, the c/a ratio will have to
increase. This expl. ains why its value is maximum
in V,O, among transition-metal compounds of
corundum structure 2o

Notice that a breaking of the trigonal crystal
symmetry (that is to say a distortion in the basal
plane) is not at all necessary to obtain a gap in
the one-electron density of the states. Indeed the
crystal symmetry of the Hamiltonian we started
from, Eq. (3.11), is that of the trigonal phase of
V,O, . This trigonal symmetry is broken and
reduced to monoclinic by the spin ordering which
allows a gap to be opened in the density of states
and at the same time induces a lattice distortion
through the mechanism illustrated above.

Another point deserving discussion is the one
concerning the magnetic moment. From Table IV
one derives for the number of Bohr magnetons per
site the following values:

The fact that a slightly different number of Bohr
magnetons per site is found for adjacent pairs
ferromagnetically coupled is a consequence of the
existence of the charge-density wave. Neglecting
this difference, one would be led to say that on
the average around 0.87-Bohr magnetons per site

g (-1)'(n,„,) =0.848, g (-1)'(n,„,) =0.892,
ma (4.6)

g (-1)'(n,„,) = -0.848, P (-1)'(ns„,) = -0.892 .
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are present.
However, we must keep in mind that n, rep-

resents an occupation number for electrons in a
wave function of the type shown in Eq. (1.1) since
we have adopted a molecular-orbital picture to
eliminate the effect of the oxygens on the magnetic
electrons. Hence the above number of Bohr mag-
netons is spread out over the whole cluster of
six oxygens surrounding each V atom. As a result
only the fraction 1-X', is left on this latter. " The
fraction X2 of magnetic moment on the oxygens is
not compensated for as in other antiferromagnetic
systems" where each oxygen atom is surrounded
by as many transition metal atoms of spin-up as
of spin-down. In the case of V,O, there are four
V atom neighbors to each oxygen atom, three of
them being spin-polarized opposite to the fourth.
This suggests that in the antiferromagnetic
insulating phase of V,O, the ligands are not di-
amagnetic each one carrying a fraction of mag-
netic moment given by -,'2~', = —,'~,. The factor —,

is due to the six neighboring oxygens which sur-
round a V site. Hence for half a formula unity
VO, , the magnetic moment is given by

(Iu) = [1 —X' + (1.5)—'X'„] (n) = (n)(l ——'A ), (4.7)

where (n) is the number of magnetons per site
as found from the HF self-consistent calculations.
As already shown (n) turns out to be of the order
of 0.85 = 0.90. In the framework of the approach
taken to describe the magnetic electrons in V,O„
it is the quantity in Eg. (4.7) that should be
compared with the experimental findings (Ref. 4,
I). Notice that in this last reference, the observed
moment per V atom [(1.2+ 0.1)p.s] is actually all
attributed to the transition-metal atom only. Ac-
cording to the above argument, the observed mag-
netic moment should be attributed to the two con-
stituents of the formula unit V,O, in the propor-
tion;&', /(1 —A. ',). By taking a reasonable value for
A.', (=O.S) as derived below, the calculated moment
per half formula unit ranges between 0.73 and
0.76 p.~ far away from the observed value.

This calculated moment per site for one electron
in a doubly degenerate band would seem to support
the, .view that two magnetic electrons are present
in V,O„each one contributing a reduced magnetic
moment of about (0.8-0.9) p,s because of itinerancy
and further reduced by the factor (1 —~ A.',) because
of covalency.

However, apart from the fact that in such a case
the magnetic moment would turn out to be far too
big (=1.4ps) compared to the experimental value
and putting aside the consideration of Sec. V
which would tend to still. raise its value, we think
that this is not the correct explanation in the
light of the following findings. Indeed, as dis-

cussed at length below, the inclusion of one a~
electron in our self-consistent unrestricted
Hartree-Fock calculation, results in the following
situation: For J/U' & 0.15 anAO(1)-RS structure for
the e, electrons and a diamagnetic a~ band is
found to be the most stable (lowest ground-state
energy) among a large number of possible self-
consistent structures which we, tried. A gap is
present and the amount of intra-atomic exchange
polarization of the a~ electrons caused by the
e~ electrons is of the order of 0.1 electrons per
site (this means that on the average 0.1 more
magnetic electrons are found in the e~ band in
presence of the a~ band than in its absence). This
is mainly due to the fact that the hopping integral
p for the a~ electrons along the vertical direction
is by far the biggest (in absolute value) among all
the others —a factor of 2 or more times the next
biggest hopping integral p, ; see expressions in
(2.16) and (2.17). This high value of p is brought
about by the fact that the lobes of the a~-3d func-
tions point toward the z axis and the fact that
there is a constructive interference between the
bare (Sd, Sd) hopping integral and the covalency
contribution to it. As a result, the most stable
energetic configuration for the a~ electrons is a
diamagnetic molecular-orbital level for the
vertical pair, enlarged to a band by interactions
between pairs. Only those a~ electrons within
roughly 2J of the Fermi level in the metallic
state are involved in the intra-atomic exchange
polarization since for them the kinetic energy
increases because of localization is more than
compensated for by the gain in intra-atomic ex-
change energy. Since their density of states at
the Fermi level is low (Fig. 7) a small fraction
of a~ electrons is involved in the process. More-
over, a gap in the a~ density of states is easily
opened following the opening of the gap in the e~
density of states due to the onset of the magnetic
order. However, the total magnetic moment per
site in this case (=1.0pa times 0.85 the covalency
reduction factor) is insufficient to explain the ex-
per imental finding.

8

L &pand
FIG. 6. Diagram showing schematically two possible

transfer processes A, B between the magnetic ion M
and the diamagnetic surroundings in the configuration-
interaction picture.



INSULATING PHASE OF V203. AN ATTEMPT AT A. . . 4985

(X =y+ &m, ~ l,)) (5.1)

for the schematic case illustrated in Fig. 6 jn
which there is only one occupied orbital on the
metal ion and one occupied level on the ligand
(generalization is straightforward). The deter-
minant (5.1) forms the essence of the molecular-
orbital description of covalency and it is complete-
ly equivalent to the ground-state wave function
built on the basis of the Heitler-I ondon model with
configuration interaction. " In this last picture,
the ground state Po is written as

4o=&(P +y4 ), (5.2)

where go is the purely ionic state described by
the Slater determinant

&mall'& lg

I& - l I
& )*I'"

and gs is the excited (charge-transfer) configura-
tion

(5 3)

(5.4)

where process A in Fig. 6 has taken place, i.e.,
the ligand to metal half-filled orbital transfer.
A variational calculation shows that to lowest
order in y one finds

(5.5)

where H is the many-body Hamiltonian.
The advantage of writing go in (5.2) as the

Slater determinant (5.1}is that all the magnetic
properties of the cluster can be described in a
one-electron picture, using the antibonding
orbital

V. MAGNETIC MOMENT IN V20~

We shall try in the following to propose a mech-
anism which permits us to find better agreement
with the experiment. As a matter of fact the
point of view adopted above in assessing and in-
corporating the effect of the oxygen lattice on the
magnetic electrons of the V atom is based on the
molecular orbital picture. According to this
picture, the ground-state wave function for a
cluster of a metal ion plus the surrounding oxygen
octahedron is described by the Slater determinant

4+rmi' '~3 t [1-n, &m, ~ 1,&+~']" '[1-2r&m,
l f,&+y']'"

E, +ynz~
[1 —2r&m If &+r'l'"

$G = (1/~3}[m,o, l, 0, l,k), (5.6)

where m, is the magnetic orbital, such as t~(v}
in V,O3 and l2 is the molecular ligand orbital be-
longing to the same. representation as the empty
orbital of the metal m, which we assume of a'

symmetry. Hence (m, ~l, &=0. The two excited
states differing by the spin of the transferred
electron are given by

gs = (1/~3)[m~0, m, 0, l,4), (5.V)

= (1/~3)[m, f, f 0, m, 4] . (5.8)

It should be emphasized that the excited orbital
m, in (5.7) actually differs from that in (5.8) be-
cause of the exchange interaction with m, f. This
difference is not important for our purposes
although it might be in the case when m, repre-
sents a 4s orbital and one is interested in hyper-
fine effects on the metal atom.

The perturbed ground-state wave function can
now be written as

4a =&(4c+ya4s, +ra 4s, ) . (5.9)

The transfer parameters may be calculated using
expressions (5.5). The exchange integral J'be-
tween m, and m, makes the energy of Ps smaller
than that of Ps . Referring again to expression
(5.5) we can write

constructing the one-electron states for the mag-
netic electrons. However, one must bear in
mind that the molecular-orbital picture and the
configuration interaction mood are only equiva-
lent ways of describing covalency if other kinds
of processes are neghgible or cannot take place.
Indeed, one must %cognize that the configuration
interaction method allows for a wealth of proces-
ses which cannot be adequately described in the
framework of a one-electron picture. One of
these, which is important for our purposes is
the ligand-to-metal-empty-orbitals e lectron
transfer depicted in Fig. 6 in process B. Such a
process can affect the total spin distribution of the
cluster as described by the molecular orbital
picture; indeed, it is well known" to produce a
negative spin density on the ligands (spin polariza-
tion opposite to that of the metal ion) and conse-
quently a positive spin polarization on the metal
ion, both of which add to the spin-density distribu-
tion as determined by the process A. (Fig. 6) de-
scribed above, Eq. (5.2). For convenience we
repeat the derivation of Ref. 22, and as there we
consider here a simple three-electron system
unperturbed ground state (Fig. 6).

P =(m, -Al, )/[1 —2K&m„~l, )+A,'] '. y. = f/(~~l- J), r» = ~/«, (5.10)

In fact this is what we have done in Sec. I when where b refers to the numerator. and &E to the
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l, +y,m,
[I + 2y~(m2 il, )+y~2]~

(5.11)

Determinant (5.11) differs from (5.9) by the
presence of small cross products proportional
to y, y& which can be neglected. Notice that ex-
pression (5.1.1) is still valid even for the case
S =(m, il, ) o 0 if terms in S' are neglected. More-
over had we inserted from the outset the occupied
ligand orbital /, belonging to the same represen-
tation as m, in the wave function (5.6) we would
have arrived at the ground state

1 m, —Zl„ l„+ym,
[1—2A(m, il, &+A.']~' '[1-2y(m, il, )+y'] ' '

[1 2y(mal -ii)+y']' '[I+2y.(m, tl, )+y', ]"' '

(5.12[1+2y, (m, i l,)+y', ]~'

which is a straightforward generalization of (5.11)
and more useful for our further discussion. Since
the orbitals (5.12) are mutually orthogonal, the
total spin density is simply a sum of the one-
electron contributions so that to second order in
A.
' or A.(m ll )we find

p( —p) ——m', (1 —A.') —2Am, l, +2k(m, il, )m', +A.'l',

+([y, +(m,
1
l,)]'- [y~+ (m, 1 l, )]']m

+[y, +2y, (m, il, )-y', —2y, (m, il, )]l,'.
(5.13)

The total moment seen by neutrons is just the
integral of (5.13). Hence the moment per metal
ion and per magnetic orbital occupied is given by

ps =1 ~'+ (2 ~/bE)[y', +y&(m. 112&], (5.14)

whereas the moment on one oxygen atom (in an
antiferromagnetic structure) would be

pz =(A.' —(2 J/&E)[y'o+y~(m21l )j)(Nor) -N~))/Ni

(5.15)

where we have indicated by 1V~ the number of
metal nearest neighbors of a ligand of spin 0 and
by N& the number of oxygen atoms around a
metal ion. Also in deriving Eqs. (5.14) and (5.15)
we have expanded y, in powers of J/bs (usuaily
&0.2) writing y, =y~(1+4/&s). The generalization

denominator in (5.5). The exchange integral 4 is
positive and hence iy, i & iy, i. This produces a
negative unpaired spin density on the ligand and a
consequently positive spin density on the metal
which can be calculated by rewriting (5.9) as

1
&

l +ym,
m3

' [1+2y.(m, 11,&+y.'] '

s ——(1- p, z)(N„i -Nui)/Nz, ~ (5.17)

where p„ is taken from (5.16).
Now, in order to calculate the reduced moment

(5.16) on the metal ion we need to know the quan-
tities y, y„y„, &E, and J. The expression for
the covalency parameter y is given in Eq. (5.5)
as a function of «= (gs 1Higs) —(ge iHige). A re-
liable approximation to this last quantity can be
obtained by looking at the photoemission and x-ray
emission and adsorption spectra in V,O, . We
derive, using Fisher's notations in Ref. 4,

&E(lt~-2t~& =3.5 eV,

bE(2e~- 3e~) = 9 eV,

b E(le~- 3e~) = 22 eV

(5.18)

where 1t~ (2t~) represent the bonding (antibonding)
molecular orbital of tm(m) symmetry, 2e~ (3e~) the
bonding (antibonding) molecular orbital of e~(c)
symmetry and le~ the bonding molecular orbital
of e, (v) symmetry of mainly 2s character. In
this way, polarization effects are automatically
taken into account (see Sec. 3.1.2 of Ref. 22,
p. 544). Unfortunately we are not in the same
favorable position when evaluating the matrix
elements in Eq. (5.5). In the lack of many elec-
tron calculations for these matrix elements we

of the case of V,O, is immediate. Since the a~
electrons are engaged in a more or less covalent
bond in the vertical pairs, they are nonmagnetic
except for an intra-atomic exchange partial
polarization already mentioned above. Hence only
one magnetic electron is left on the V atom in an
e, (v) state [that is to say a t~(v) state neglecting
any deviation from ideal octahedral configuration].
There remains an empty e~(w) state nearly de-
generate with the one occupied (remember that the
trigonal degeneracy is lifted in the antiferro-
magnetic phase because of the spin arrangement;
this is important for our purposes since it means
that the ground state is an orbital singlet and that
the wave function of the cluster can be expressed
by a single Slater determinant) and two empty
E,(c) states on the metal ion. As a result the
moment on this latter is given by

p.=l-~: 2(2~/«)[y'. y. (e". iX .)].(2~/bE)[y'. .y.(e", IX...&]

+ 2(2 J/«) [y'„+y„(Q', i}i„,&], (5.16)

since there are two occupied ligand orbitals of
o symmetry which can make transitions to the
empty metal orbital of the same symmetry and
one ligand orbital of m symmetry allowing a jump
on the only empty metal orbital of the same sym-
metry. Similarly
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r. =-[&x2prlvms l4'gg&+&x2pgl glM&~JI« ~

r.=-[&x...lv.. I4'",&+&x...le'.&«]/«.

r..=-[&x...Iv;.. Ieg&+ &x...les', &«]/«,

(5.21)

together with relation (2.5). Although the trans-
fer and overlap matrix elements of Table II in

Ref. 5 are calculated for the metallic state, they
should not be too different in the insul. ating phase.
Moreover we take in Table II, the higher values
for the matrix elements to account for the orbital
expansion of the Sd wave function in the excited
state. The numerical results are as follows (S

indicating the overlap integral):

y, =0.40 A, ,=y, +S, =0.55,

ya = -0 50 Aa =yo+Sa = -0.'72

as =0.10 A'as =yas+Sas =0 34 ~

(5.22)

It is encouraging to see that the total. amount of

2P, component in the occupied position of the t~
band in V,O, (containing the two tM electrons) per
oxygen site (=7%}as calculated in Ref. 5 is in

must resort to the one-electron analogy, that is
to say replace the expression in the numerator of
(5.5}by the following:

&xi If.le& (5.19)
&xi~& &xlH. lx&

'

where again II, represents an effective one-elec-
tron Hamiltonian as in Sec. I and X and g repre-
sent one-electron orbitals for ligand and metal
ion, respectively. This approximation should not

be too bad since the main effects of polarization
of the electron cloud is in the denomination of

Eq. (5.5).
There is still another problem to face for the

calculations of the matrix elements appearing in

(5.19). These latter have been evaluated by
Ashkenazi and Chuchem' in the trigonal metallic
phase. However, these authors use a muffin-tin

potential so that the crystal potential in H, is
split into a position-dependent part V;„, inside the

muffin-tin spheres and a constant part V,„, outside
the spheres; moreover Table II in their paper
provides only the matrix elements &xlV;„, lp&.

If we write (5.19) as

&xlff. le& &xl0&[&miff. le&-&xlff. lx&]-&xlt&&tiff. lt&

=&xlv ~ IP&+&xle&«+&xIT+v- lk&

-&xi@&&el&+v.. +v.. Iv& (5.20)

We estimate that the last two terms of the right-
hand side of this expression nearly cancel.
Hence, we use the fol.lowing formulas to evaluate
the various y's we need:

reasonable agreement with what we obtain from
the calculated value of A. ,(=2 x 2 x —,', X', =-', A. ', =9%}
(two electrons in the t~ band and two orbitals

P„,P„of x symmetry). This agreement justifies
our estimate for the sum of the last two terms
in the right-hand side of (5.20), namely

&xi' v...l~&-&xl~&&clT v... v.. l~&=o.

J=Vx10 ' eV, (5.24)

keeping in mind that J might be underestimated by
as much as a factor of 2. [This J should be dis-
tinguished from the J introduced in the model
Hamiltonian (3.11). This latter is expected to be
substantially less than the former since it includes
in its definition some polarization of the ligands. ]
This value of 8 (5.24) together with the estimated
values for y and S (5.22) allows a numerical eval-
uation of p,„ in (5.16). Writing the contribution of
the various terms separately, we obtain per mag-
netic electron on the metal ion

p~ = 1 —0.28+ 0.14+ 0.13+0.04 = 1.03 . (5.25)

As one can see the covalent reduction due to
process A in Fig. 6 (-A,,' =-0.28} is slightly out-

A further quantity, the intra-atomic exchange
interaction J must be determined to evaluate the

total magnetic moment on the metal ion (5.16) and

on the ligand site (5.17}. A possible source of
information for J comes from the knowledge of
the isotopic ligand transferred hyperfine inter-
action (THI) the strength of which has been mea-
sured in Ref. 3. Actually the mere existence of a
negative THI is an indication of the existence of
process B in Fig. 6. Indeed, since V" ions have

only orbitals of type t,~ occupied, the unpaired
oxygen 2s spin density with polarization opposite
to that of the metal ion must come from process B.
From the measured value3 of the fraction of un-

paired oxygen 2s electrons per moment 2S on one-
vanadium neighbors we derive the relation

(1/2 S)f, = -0.35 x 10 ~ = -
6 (2Z/«)(y „+y „S,),

(5.23)

where 2S =1 because there is only one magnetic
electron per V atom. As a matter of fact, ac-
cording to Ref. 3 the numerical value in (5.23) is,
in absolute value, underestj. mated since positive
frequency shifts ~/H due to 2p-core-polarization
hyperfine interaction (=+0.04%) and 2P-field-
induced orbital susceptibility (=+0.02%) have been
neglected compared to the measured hH/H =

-0.09%. Hence the actual value of f, in (5.23) might

even be a factor of 2 bigger in absolute value.
From (5.22) and (5.21) we derive a lower bound to
J given by
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balanced by the covalency enhancement due to
process B. To find the effective magnetic moment
one should allow for a further reduction due to
itinerancy. We have already anticipated the re-
sult of a self-consistent HF calculation with three
Wannier states per site. For the set of hopping
integrals shown below, we have obtained a mag-
netic moment per site of approximately 1.0 p.~ in
the ground-state configuration. This would seem
to imply that the value of J in (5.24) is somewhat
underestimated and that as a consequence, the
extra (0.2+ 0.1) p,s still missing is due to covalency
enhancement as suggested in Ref. 3. However, due

to the number of approximations used [neglect of
the influence of the distortion on the transfer
integrals in Hamiltonian (3.11), lack of self-con-
sistency for these latter, use of the HF method to
treat interelectronic correlations, especially for
electrons inside the vertical pairs, as already
pointed out, etc.] it is extremely difficult to say
with certainty how much of the observed moment
is due to polarization of the a M electrons and how

much to covalency enhancement. For example,
a better treatment of the interelectronic corre-
lations would certainly increase the value of the
intra-atomic exchange polarization of the aM

electrons compared to that obtained with the un-
restricted HF calculations, using the same set of
parameters in the model Hamiltonian. Neverthe-
less, what we should emphasize clearly in our
argument above is the importance of the ligand-
to-metal-empty-orbital transfer process, if not
its necessity to account for the experimental
evidence (e.g., a negative "0 nuclear resonance
frequency shift). Direct experimental evidence
for a negative f, due to process B has been given

by Freund, Owen, and Harm" for Cr" in MgO
where on the basis of process A we would expect
f, =0. Combined neutron scattering and ENDOR
measurements of transferred hyperfine inter-
actions have been used to determine the spin
transfer coefficients f„f„f,. We feel that in the
case of V,O, a similar combination of antiferro-
magnetic state "0 nuclear resonance studies and
spin-density neutron scattering from factor mea-
surements (although difficult) might help decide
the relative importance of the two effects dis-
cussed above.

Notice in this connection that in the configura-
tion interaction picture the net magnetic moment
on a ligand atom is slightly negative [Eqs. (5.17)
and (5.25)] due to the nearly compensating effect
of process A. and B. In a molecular-orbital
picture (process A only) the ligand would be po-
larized parallel to the metal ion, the ratio being
5&',/(1-&', ). This negative ligand polarization is
in keeping with a negative "0NMR shift observed

in the metallic phase of V,O,. A similar obser-
vation should be possible in the antiferromagnetic
insulating phase. We did not invoke an orbital
contribgtion to the observed magnetic moment
since, as explained above, the degeneracy of
the e~ states is split in the antiferromagnetic
ground state because of lack of trigonal symmetry.
Hence within a phase factor, the ground state can
be chosen to be real with consequent quenching
of the orbital moment. This is also borne out by
the impossibility which we encountered when at-
tempting to build a self-consistent complex ground
state. Every time we tried to start from input
averages of the kind

(&gwrcgma) = 51 m =1, 2,

(C)~5C1mi5) =2 55, m 15 m

indicating occupancy on site j of an orbital of the
type (1/&2)(m, ai1v, ), the output self-consistent
solution was convergent to off-diagonal averages
(m 55 m') equal to zero.

Before presenting the results of the HF self-
consistent calculations for the general case in-
cluding both the a~ and e~ states in Hamiltonian
(3.11), we would like to point out that the calcu-
lated values for the covalency parameters in

(5.21) are consistent with what one can derive
from measurements of the spin-lattice relaxation
rate for "0 in V,O, at T =300 K.' Quoting the
authors of Ref. 3, "For an oxygen site covalently
coupled to four Vanadium neighbors with uncor-
related spin fluctuations and d bands of t~ symme. -
try, the orbital relaxation rate of "0 can be re-
lated to that of "V by

(1/T, )17o 4 (r ')at' ' y("0) f, .
'

(1/T, )51v 3 (r ')„, y("V) 2S

(5.26)

This assumes that m covalent transfer is pre-
dominant. The factor 4 is the number of Vanadium
neighbors, and the factor 3 is a further orbital
reduction factor produced by coupling only two
of the three t~ orbitals to any one oxygen site."
Since all the quantities in (5.26) except (f,/2S)'
are already known or measurable, a value of 0.07
is derived for ~f,/2S[ by the authors. However,
in the light of what we have been discussing up
to now, it is apparent that we must modify the
relation (5.26) into

(1/T, )17o 4 (r '),1,
' y('"0) ' 1

(1/T, )51v (r '),„y("V) 2S

(5.27)

where we have eliminated the factor 3 in the de-
nominator since all the 3d orbitals are now
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coupled to every oxygen site and f", indicates the
fraction of ligand unpaired spin coming from
process 4 in Fig. 6 as opposed to fs which comes
from process B. From the definition of the
quantities f we easily calculate (2S =1)

f", =—,', A.', = 2.5 x 10 ',
fs, =—,', (2J'/&E)(y', +y, S,) =1.1x10 ',
f, =-', (2Z/&E)(y', +y, S,) = 1.1 && 10 ',

and find

(f,")'+(f,)'+(f, )'=8.V x10 '

(5.28)

(5.29)

in reasonable agreement with that derived from
(5.27) i.e., s (7 x 10 ')' = 13 && 10 ~ considering
the uncertainty in the covalency reduction of
(r~'). The authors in Ref. 3 reduce this quantity
from 3.36 a.u. to 2.8 a.u. because of covalency.
However, if we take into account process B as
well as process A of Fig. 6 and calculate the
amount of charge transferred back to the V" ion
we see that the V atom is nearly neutral, only
0.5 electrons are missing. Hence (r~') should
not be reduced that much by covalency which
would bring the measured value for the last
quantity in (5.27) nearer to our estimated value
in (5.29).

VI. RESULTS OF THE HF CALCULATION IN THE

INSULATING PHASE FOR THE GENERAL CASE

We are now in a position to present the self-
consistent HF calculations for the general case.
As already mentioned, due to the complexity
of the problem, it is imperative that we keep the
number of parameters down. As far as the over-
lap integrals are concerned, on the basis of
(2.16) and (2.17) by taking A.', = 0.3 and &E=4 eV
we obtain

such as to obtain best fit of calculated density of
states with optical measurements. Account must
be taken for the fact that our approach is a kind
of perturbation-theory approximation to the more
complete calculations of Ref. 5; moreover, the
effect of the trigonal distortion of the surrounding
octahedra of a metal ion has been neglected as
well as the energy dependence of &, (the s~ band
is approximately 3-4 eV wide). Thus we have
(somewhat) changed the values in (6.1) to obtain
a calculated density of states better fitting than
that given in Ref. 5, at l.east as far as the dis-
tances between the peaks are concerned, which
is what matters most in a comparison with optical
experi, ments.

The resulting bare-band density of states
is shown in Fig. 7 together with the values of the
transfer integrals which have been used for the
self-consistent HF calculations. The most dis-
tinct and important feature of this set is that the
transfer integral p along the vertical pairs of
a,~ state is, in absolute value, twice the next
biggest overlap integral. Within a reasonable
variation of the parameters in (2.16) it is a well
established fact that ~pi must be substantially
bigger than all the other transfer integrals, mainly
because the interference between bare (3d, 3d)
transfer and covalent transfer is constructive,
contrary to what happens for all the other quan-
tities in (2.16), except for 7' which in any case
is less favored both by the orientation of the 3d

states
,

~( ~ ev V-atom spin&

--2

p, =0.24/1. 2 =0.2, v=-0.05/1.2 = -0.042,
—u = -0.16/1.2 = -0.13, s = 0.01/1.2 = 0.008,

P = -0.05/1. 2 = -0.04, 5 = 0.12/1.2 = 0.1,
p = -0.86/1. 2 = -O.V2, s = -0.17/1.2 = 0.14,

(6.1)

c' = 0.06/1.2 = 0.05, A. =0.04/1. 2 = 0.03,
-v'= -0.28/1. 2 =-0.23, (u = -0.16/1.2 = 0.13 .

Actually, the values given in (6.1) should be taken
as orientative values. The transfer integrals
given in (2.1V) are calculated from Ref. 5, keeping
the potential V,„, outside the muffin-tin spheres
equal to zero (V,„, is kept as a parameter in
Ref. 5) to account for the contribution of the kinet-
ic-energy operator neglected in the calculation of
the (3d, 3d) matrix elements and is determined

k. 4

.I.o,e.» e. ,
~e

J, E(sY)

FIG. V. Bare band density of the states curve (full
curve) together with the partial density of the states
curves of e~ character (dotted curve) and a~~ charac-
ter (dashed curve). The values of the transfer integrals
used in this calculation are (in eV) p= 0.40, 0.= 0.28,
P= 0.10, p =- 0.75, 0 = 0.06, y = 0.30, p =—0.04, 'g = 0.012,
is = 0.011, q = —0.125, A, = 0.025, u = —0.125.
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orbitals and by smaller covalency contribution.
This is an important fact to note because our
conclusions in the following are not affected by
reasonable variations of the other overlap inte-
grals, but do strongly depend on whether or not

jpj is substantially bigger (a factor 1.5 or more)
than the other quantities.

The fact that p is so big suggests the idea of
diamagnetic pairs along the vertical direction for
a«electrons. However, since it will turn out
that 2jpj = U, we shall be faced with the problem
of best describing the correlation inside the
vertical pairs. As discussed at length in Sec. I
of this paper, we know that the best HF approxi-
mation for a. diamagnetic pair is a molecular-
orbital wave function (state a) in (1.18) for
2 jpj & U whereas a spin-density-wave state,
although fictitious, is most appropriate for
2 p &U. Hence in all those cases for which
2 p & U, we should use an antiferromagnetic-spin
(AS) structure to best describe the correlations
in the g«band. However, this fictitious structure
tends to polarize by intra-atomic exchange the
electron in the eg band, making the
AO(] )-AS(e )AS(a', ) state competitive in energy with

the AO(1)-RS(e, )PS(az) state, the one that we con-
sider to realistically represent the features of the
true ground state in the antiferromagnetic in-
sulating phase of V,O, . In support of this con-
jecture stands the fact that if the ratio U/2jpj is
decreased the AO(l)-AS(e, )AS(az) state increases
its energy compared to the other.

Having thus fixed the values of the overlap
integrals, the only parameters left are U and
J'/U, since we can eliminate U' on the basis of
the relation (8.13). As a matter of fact from the
Stoner enhancement factor derived from suscep-
tibility measurements as will be discussed at
length in III, we derive a further relation U+ J= 2

eV. Hence we choose to move the parameters
U and J/U so that they approximately satisfy this
relation and we take reasonably 0.1 s J/Us 0.2.

The results of the self-consistent HF calcula-
tions in the general case with the a«band included
can then be summarized as follows: For J'/U
& 0.15, the AO(1)-RS structure for g, electrons and a

diamagnetic a~ band (PS) is found to be the most
stable (lowest ground-state energy) configura-
tions among various possible self-consistent
structures which we tried. For U big enough, a
gap opens in the density of states (Fig. 9) which
is of the order of 0.2 eV for U+ J= 2 eV and
J/U= 0.1. The amount of polarization of the a,'
band by the e' band depends on the ratio J/U and
the position of the a«atomic level compared to
the eg level. By slightly varying these parameters
(together with j pj) one can change the amount of

(E~'states
~eV V.atom spinI PQ-Ps eg

~ ~

X-X-g

2E E(eV)

FIG. 8. Total density of the states curve for the con-
figuration PO-PS(eg)PS(p«) of Table V for the case U
=1.80, U'=1.44, J=0.18. Also shown are the partial
density of the states curves for eg (curve with circles)
and a~ g (curve with crosses) electrons.

polarization as much as 100/0 from 0.1 to 0.2
electrons per site.

By increasing the ratio J'/U(=0. 2), the number
of possible self-consistent HF configurations is
reduced in the sense that several input configura-
tions merge into a single one at self-consistency.
Moreover, it appears that the most stable self-
consistent solution is the one in which the eg band
contains 1.5 electrons per site, is ordered in the
RS structure and obviously not orbitally ordered,
whereas the a«band is half full with 0.5 elec-
trons per site and polarized in the same spin

(states
),ev atom spinI AQ([)-PS(e&)P$(~„,)

$\
I ~

b
I ~

I

C
~ 0

~ ~

„'0
g' ~

jLb

~r

~)C
e

~ ~

~ ~

Xg
)JPAA

pL P ~o

/ E(e~)
FIG. 9. Same as Fig. 8 for the configuration AO(1)-HS

(eg )PS/ f g).
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structure. The moment is 1.7 p, ~ per site and
should be reduced by the covalency factor
(1 —A.',/2) leading to a net result of 1.45 p,s per
site, in marked disagreement with the experi-
mental findings, not considering, as already
mentioned, the influence of the back-bonding
processes described in Sec. V, which would tend
to increase it. Moreover, this state is metallic,
since now we must put 0.5 electrons in the e~

band above the point where it would be easy to
open a correlation gap (Fig. 10). It would never-
theless still be possible to open a gap even in
this second case by invoking the distortion taking
place in the antiferromagnetic insulator phase of
V203. In fact up to now, we have considered the
transfer integrals as transforming according to
the trigonal symmetry. If we take into account
the fact that the crystal symmetry, not only the
magnetic symmetry, is lower, we are forced to
introduce new transfer integrals (proportional to
the distortion for small displacements of the
atoms). Using them as parameters and modifying
the preexisting transfer integrals according to
the distortion, we are able to open a gap. This is
the picture which we presented previously in
Ref. 20. However, it should be realized that
from this point of view, the negative value of f,
in (5.23) would remain unexplained without in-
voking process & in Fig. 6 and the value of the
negative moment per site would turn out to be
too big, whether or not process B is considered.
Moreover the gap found is extremely small
(0.05 eV) and it is difficult to increase it by rely-
ing only on the distortion of the lattice. For
these reasons we are inclined to believe the
picture where the 4/U ratio is small enough as
to make the AO(1)-RS(e, )RS(az) state the true ground
state, with one magnetic electron per site in a
e~ band partly polarizing the a~ band electrons
and the magnetic moment per site being enhanced

(E)( t t AG-Rs(eg)PS(a. , )

- l.5

~ ~ I

( ~

I

0

3 4 E(eV)

FIG. 10. Same as Fig. 9, for U=2.0, U'=. 1.2, J=0.4.

by covalency. In this view the distortion is purely
magnetostrictive in origin having little influence
on the opening of the gap which is primarij, y
caused by electron correlation.

Table V gives the ground-state energies in eV
per mole of V,O, for various configurations and
different values for U and J'/U. Included also is
the state PO-PS(e~)PS(a~) which for the case of
three states per site is strictly speaking no more
equivalent to a bare band-structure calculation
although the two densities of states are quite
similar (Fig. 8). Tlie reason is that the additional
a~ state is not equivalent to the other two e~ so
that optimum occupancy of the three types of bands
must be sought according to the reciprocal shift
of the iwo atomic levels and the ratio J/U. In the
spirit of the HF approximation, this state should
represent the metallic phase of V,O, . We shall
discuss at length, in III, the properties of the
metallic phase. For easier understanding of the
notation of the configuration quoted in Table V,
Tables VI-XI give the occupation numbers for the

TABLE V. Illustration of the ground-state energy and gap in the density of states for vari-
ous ground-state configurations. Values of the hopping integrals are those given in expression
(6.2). Dots indicate the impossibility of opening a gap while the value 0.0 in the column for
&&~ indicates that a gap can be opened by a small increase of U or that the gap is less than

0.05 eV.

U
U'
J'

eVi'molecule V203 E

2.0
1.6
0.2

2.Q

1.2
0.4

1.80
1.44
0.18

1.5Q

1.30
0.15

AO- RS(e~) PS(ai ~)
AO- AS(e~) AS(ai ~)
AO- RS(e,)RS(a„)
2RS(e,)
AO RS(eg) AS(a f g)
PO- PS(e~) PS(ai~)

1.408
1.407
1.461

' 1.477
1.420
1.650

0.3
0.3

0.2

0.0341
0.160
0.0341
0.0341
0,072
Q.319

0.0
0.960
0.981
Q. 960
0.975
'Q. 967
1.115

Q.20 0.256
0.15 0.297
0.2Q 0.262
0.0 0.262
0.15 0.259

~ ~ ~ 0 316

0.0

0.0
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TABLE VI (a). Self-consistently determined unrestricted HF occupation numbers and off-
diagonal elements (ct„ t c~„t) (m, a=1, 2, 3) for spin-up electrons appear underneath the
corresponding input parameters which have been used to characterize theAO(1)-BS(e~) PS(Q&g)
structure; (b) Self-consistently determined unrestricted HF occupation numbers and off-
diagonal elements (ct„~k c«k) (mn=1, 2, 3) for spin-down electrons appears underneath the
corresponding input parameters which have been used to characterize the AO(l)-BS(ez) PS(a&~)
structure; (c) Spin and charge distribution for the eight V atoms in the rhombohedral unit cell-
for the AO(1)-BS(e~) PS(a«) structure.

Site

(a)

2 1

2 2

1 3

2 3

3 3

1.0
0.792
0.0
0.039
0.0
0.004
0.0
0.039
0.0
0.220
0.0

-0.008
0.0
0.004
0.0

-0.008
0.5
0.336

0.0
0.302
0.0
0.023
0.0
0.001
0.0
0.023
1.0
0.807
0.0
0.023
0.0
0.001
0.0
0.023
0.5
0.513

0.0
0.046
0.0
0.001
0.0

-0.003
0.0
0.001
0.0
0.059
0.0

-0.029
0.0

-0.003
0.0

-0.029
0.5
0.288

0.0
0.302
0.0

-0.023
0.0

-0.001
0.0

—0.023
1.0
0.807
0.0
0.023
0.0

-0.001
0.0
0.023
0.5
0.513

1.0
0.792
0.0

—0.039
0.0

-0.004
0.0

—0.039
0.0
0.220
0.0

-0.008
0.0

-0.004
0.0

-0.008
0.5
0.336

0.0
0.063
0.0
0.006
0.0
0.006
0.0
0.006
0.0
0.104
0.0
0.062
0.0
0.006
0.0
0.062
0.5
0.467

0.0
0.063
0.0

-0.006
0.0

-0.006
0.0

—0.006
0.0
0.104
0.0
0.062
0.0

-0.006
0.0
0.062
0.5
0.467

0.0
0.046
0.0

—0.001
0.0
0.003
0.0

-0.001
0.0
0.059
0.0

-0.029
0.0
0.003
0.0

-0.029
0.5
0.288

Site

3 2

0.0
Q.063
0.0

—0.006
0,0

—0.006
0.0

-0.006
0.0
0.104
0.0
0.062
0.0

—0.006
0.0
0.062
0.5
0.467

0.0
0.046
0.0
0.001
0.0

-0,003
0.0
0.001
0.0
0.059
0.0

-0.029
0.0

-0.003
0.0

—0.029
0.5
0.289

0.0
0.302
0.0
0.023
0.0
0.001
0.0
0.023
1.0
0.807
0.0
0.023
0.0
0.001
0.0
0.023
0.5
0.513

0.0
0.046
0.0

-0.001
0.0
0.003
0.0
0.001
0.0
0.059
0.0

-0.029
0.0
0.003
0.0

-0.029
0.5
0.289

0.0
0.063
0.0
0.006
0.0
0.006
0.0
0.006
0.0
0.104
0.0
0.062
0.0
0.006
0.0
0.062
0.5
0.467

1.0
0.792
0.0

-0.039
0.0

-0.004
0.0

-0.039
0.0
0.220
0.0

-0.008
0.0

-0.004
0.0

-0.008
0.5
0.337

1.0
0.792
0.0
0.039
0.0
0.004
0.0
0.039
0.0
0.220
0.0

-0.008
0.0
0.004
0.0

—0.008
0.5
0.337

0.0
0.302
0.0

-0.023
0.0

-0.001
0.0

-0.023
1.0
0.807
0.0
0.023
0.0

—0.001
0.0
0.023
0.5
0.513

Spin
Charge

0.715
1.983

1.228
2.017

—1.228
2.017

(c)

1.228
2.017

0.715
1.983

—0.715
1.983

—0.715
1.983

-1.228
2.017
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TABLE VII(a), Same as in TableVI(a) for the Ao(1)-S(e~)AS(a| ) structure; (b) Same as in
Table VI (b). for the AO(1)-AS(e~)AS(~) structure; (c) Same as inTable VI (c) for the AO(1)-
AS(e~)AS(~~) structure.

(a)

Site

3 2

3 3

0.0
0.06 1
0.0

-0.006
0.0

-0.002
0.0

-0.006
0.0
0.164
0.0
0.004
0.0

-0.002
0.0
0.004
0.0
0.239

0.0
0.063
0.0

-0.006
0.0

-0.006
0.0

-0.006
1.0
0.858
0.0
0.033
0.0

-0.006
0.0
0.033
1.0
0.615

0.0
0.063
0.0

-0.006
0.0

-0.006
0.0

-0.006
1.0
0.858
0.0
0.033
0.0

-0.006
0.0
0.033
1.0
0.615

0.0
0.063
0.0
0.006
0.0
0.006
0.0
0.006
1.0
0.858
0.0
0.033
0.0
0.006
0.0
0.033
1.0
0.6 15

0.0
0.061
0.0
0.008
0.0
0.002
0.0
0.006
0.0
0.164
0.0
0.004
0.0
0.002
0.0
0.004
0.0
0.239

0.0
0.061
0.0
0.006
0.0
0.002
0.0
0.006
0.0
0.164
0,0
0.004
0.0
0.002
0.0
0.004
0.0
0.239

0.0
0.061
0.0

-0.006
0.0

—0.002
0.0

-0.006
0.0
0.164
0.0
0.004
0.0

-0.002
0.0
0.004
0.0
0.239

0.0
0.063
0.0
0.006
0.0
0.006
0.0
0.006
1.0
0.858
0.0
0.033
0.0
0.006
0.0
0.033
1.0
0.615

te 1

1 2

1.0
0.861
0.0
0.020
0.0

-0.005
0.0
0.020
0.0
0.072
0.0

' 0.050
0.0

-0.005
0.0
0.050
1.0
0.602

0.0
0.174
0.0
0.001
0.0
0.002
0.0
0.001
0.0
0.057
0.0

—0.017
0.0
0.002
0.0

-0.017
0.0
0.235

0.0
0.174
0.0
0.001
0.0
0.002
0.0
0.001
0.0
0.057
0.0

-0.017
0.0
0.002
0.0

-0.017
0.0
0.235

0.0
0.174
0.0

-0.001
0.0

-0.002
0.0

-0.001
0.0
0.057
0.0

-0.017
~ 0.0

-0.002
0.0

-0.017
0.0
0.235

1.0
0.861
0.0

-0.020
0.0
0.005
0.0

-0.020
0.0
0.072
0.0
0.050
0.0
0.005
0.0
0.050
1.0
0.602

1.0
0.861
0.0

-0.020
0.0
0.005
0.0 '

-0.020
0.0
0.072
0.0
0.050
0.0
0.005
0.0
0.050
1.0
0.602

1.0
- 0.861
0.0
0.020
0.0

-0.005
0.0
0.020
0.0
0.072
0.0
0.050
0.0

-0.005
0.0
0.050
1.0
0.602

0.0
0.174
0.0

-0.001
0.0

-0.002
0.0

-0.001
0.0
0.057
0.0

-0.017
0.0

-0.002
0.0

-0.017
0.0
0.235

(c)

Spin
Charge

-1.0.70
1.998

1.070
2.002

1.070
2.002

1.070
2.002

—1.070
1.998

-1.070
1.998

-1.070
1.998

1.070
2.002
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TABLE VIII. (a}. Same as in Table VI (a) for the AO(l)-RS(e~)RS(a«} structure; (b) Same as
in Table VI (b) for the AO(1)—RS(e~)RS(a«) structure; (c) Same as in Table VI (c) For the
AO(1)—RS(e )RS(a«) structure.

Site

(a)

1 2

1.0
0.793
0.0
0.037
0.0
0.004
0.0
0.037
0.0
0.223
0.0

-0.006
0.0
0.004
0.0

-0.007
1.0
0.341

0.0
0.301
0.0
0,021
0.0
0.001
0.0
0.021
1.0
0.806
0.0
0.024
0.0
0.001
0.0
0.024
1.0
0.508

0,0
0.047
0.0
0.001
0.0

—0.002
0.0
0.001
0.0
0.060
0.0

—0.030
0.0

-0.002
0.0

-0.030
0.0
0.291

0.0
0.301
0.0

-0.021
0.0

-0.001
0.0

-0.021
1.0
0.806
0.0
0.024
0.0

-0.001
0.0
0.024
1.0
0.508

1.0
0.793
0.0

-0.037
0.0

-0.004
0.0

-0.037
0.0
0.223
0.0

-0.007
0.0

-0.004
0.0

-0.007
1.0
0.341

0.0
0.063
0.0
0.006
0.0
0.006
0.0
0.006
0.0
0.104
0.0
0.061
0.0
0,006
0.0
0.061
0.0
0.464

0.0
0.063
0.0

-0.006
0.0

-0.006
0.0

—0.006
0.0
0.104
0.0
0.061
0.0

—0.006
0.0
0.061
0.0
0.464

0.0
0.047
0.0

-0.001
0.0
0.002
0.0

-0.001
0.0
0.060
0.0

-0.030
0.0
0.002
0.0

-0.030
0.0
0.291

Site

2 1

3 1

2 2

0.0
0.063
0.0

—0.006
0.0

-0.006
0.0

-0.006
0.0
O.104
0.0
0.061
0.0

—0.006
0.0
0.061
0.0
0.464

0.0
0.047
0.0
0.001
0.0

-0.002
0.0
0.001
0.0
0.059
0.0

-0.030
0.0

—0.002
0.0

—0.030
0.0
0.291

0.0
0.301
0.0
0.021
0.0
0.001
0.0
0.021
1.0
0.805
0.0
0.024
0.0
0.001
0.0
0.024
1.0
0.508

0.0
0.047
0.0

- —0.001
0.0
0.002
0.0

—0.001
0.0
0.059
0.0

—0.030
0.0
0.002
0.0

-0.030
0.0
0.291

0.0
0.063
0.0
0.006
0.0
0.006
0.0
0.006
0.0
0.104
0.0
0.061
0.0
0.006
0.0
0.061
0.0
0.464

1.0
0.793
0.0

0.0
-0.004

0.0
-0.037

0.0
0.223
0.0

-0.007
0.0

-0.004
0.0

-0.007
1.0
0.341

1.0
0.793
0,0
0.037
0.0
0.004
0.0
0.032
0.0
0.223
0.0

-0.007
0.0
0.004
0.0

-0.001
1.0
0.341

0.0
0.301
0.0

—0.021
0.0

-0.001
0.0

—0.021
1.0
0.805
0.0
0.024
0.0

-0.001
0.0
0.024
1.0
0.508

(c)

Spin 0.725
Charge 1.988

1.217
2.012

—1.217
2.012

1.217
2.012

0.725
1.987

—0.725
1.987

—0.725 —1 217
1.987 2.012
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TABLE IX (a). Same as in Table VI (a) for the 2 HS(e~) structure; (b) Same as in Table VI
(b) for the 2 RS (e~) structure; (c) Same as in Table UI {c) for the 2 RS (e~) structure.

Site

(a)

3 2

1.0
0.543
0.0
0.179
0.0
0.010
0.0
0.179
1.0
0.543
0.0
0.047
0.0
0.010
0.0
0.047
0.0
0.416

1.0
0.543
0.0
0.179
0.0
0.010
0.0
0.179
1.0
0.543
0.0
0.047
0.0
0.010
0.0
0.047
0.0
0.416

0.0
0.068
0.0

-0.007
0.0

-0.017
0.0

-0.007
0.0
0.068
0.0

—0.012
0.0

-0,017
0.0

-0.012
0.0
0.360

1.0
0.543
0.0

-0.179
0.0

-0.010
0.0

—0.179
1.0
0.543
0.0
0.047
0.0

—0.010
0.0
0.047
0.0
0.416

1.0
0.543
0.0

-O.179
0.0

-0.010
0.0

-0.179
]..0
0.543
0.0
0.047
0.0

-0.010
0.0
0.047
0.0
0.416

0.0
0.069
0.0
0.007
0.0
0.017
0.0
0.007
0.0
0.068
0.0

-0.012
0.0.
0.017
0.0

-0.012
0.0
0.360

0.0
0.068
0,0

-0.007
0.0

-0,017
0.0

-0.007
0.0
0.068
0.0

-0.012
0.0

—0.017
0.0

-0.012
0.0
0.360

0.0
0.069
0.0
0.007
0.0
0.017
0.0
0.007
0.0
0.068
0.0

—0.012
0.0
0.017
0.0

-0.012
0.0
0.360

Site

(b)

2 1

1 2

1 3

0.0
0.068
0.0
0.007
0.0
0.017
0.0
0.007
0.0
0.068
0.0
0.012
0.0
0.017
0.0
0.012
0.0
0.360

0.0
0.068
0.0

—0.007
0.0

-0.017
0.0

-0.007
0.0
0.068
0.0

-0.012
0.0

-0.017
0.0

—0.012
0.0
0.360

1.0
0.543
0.0
0.179
0.0
0.010
0.0
0.179
1.0
0.543
0.0
0.047
0.0
0.010
0.0
0.047
0.0
0.416

0.0
0.068
0.0
0.007
0.0
0.017
0.0
0.007
0,0
0.068
0.0

-0.012
0.0
0.017
0.0

-0.012
0.0
0.360

0.0
0.068
0.0
0.007
0.0
0.017
0.0
0.007
0.0
0.068
0.0

-0.012
0.0
0.017
0.0

-0.012
0.0
0.360

1.0
0.543
0.0

-0.179
0.0

-0.010
0.0

-0.179
1.0
0.543
0.0
0.047
0.0

-0.010
0.0
0.047
0.0
0.416

1.0
0.543
0.0
0.179
0.0
0.010
0,0
0.179
1.0
0.543
0.0
0.047
0.0
0.010
0.0
0.047
0.0
0.416

1.0
0.543
0.0

-0.179
0.0

-0.010
0.0

-0.179
1.0
0.543
0.0
0.047
0.0

—0.010
0.0
0.047
0.0
0.416

(c)

Spin
Charge

1.006
2.000

1.006
2.000

-1.006
2.000

1.006
2.000

1.006
2.000

-1.006
2.000

-1.006
2.000

-1.006
2.000
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TABLE X (a). Same as in Table VI- (a) for the AO( 1)-RS(e~)AS(a~~) structure; (b) Same as in
Table VI (b) for the AO(1)—RS (e~)AS(a&~) structure; (c) Same as in Table VI (c) for the AO(1)—
RS(e~) AS (a~~) structure.

ite
(a)

2 2

1.0
0.782
0,0
0.021
0.0
0.007
0.0
0.021
0.0
0.221
0.0
0.000
0.0
0.007
0.0
0.000
0.0
0.306

0.0
0.296
0.0
0.009
0.0

-0.002
0.0
0.009
1.0
0.816
0.0
0.027
0.0

—0.002
0.0
0.027
1.0
0.545

0.0
0.052
0.0
0.001
0.0

-0.005
0.0
0.001
0.0
0.066
0.0

-0.054
0.0

-0.005
0.0

-0.054
1.0
0.432

0.0
0.296
0.0

-0.009
0.0
0.002
0.0

-0.009
1.0
0.8 16
0.0
0.027
0.0
0.002
0.0
0.027
1.0
0.545

1.0
0.782
0.0

-0.021
0.0

-0.006
0.0

—0.021
0.0
0.221
0.0
0.000
0.0

-0.006
0.0
0.000
0.0
0.306

0.0
0.059
0.0
0.004
0.0
0.003
0.0
0.004
0.0
0.098
0.0
0.029
0.0
0.003
0.0
0.029
0.0
0.326

0.0
0.059
0.0

—0.004
0.0

-0.003
0.0

-0.004
0.0
0.098
0.0
0.029
0.0

-0.003
0.0
0.029
0.0
0.326

0.0
0.052
0.0

-0.001
0.0
0.005
0.0

-0.001
0.0
0.066
0.0

-0.054
0.0
0.005
0.0

-0.054
1.0
0.432

~ Site

2 1

1 2

2 2

0.0
0.062
0.0

-0.004
0.0

-0.006
0.0

-0.004
0.0.

0.102
0.0
0.070
0.0

-0.006
0.0
0.070
1.0
0.516

0,0
0.052
0.0
0.001
0,0

—0.001
0.0
0.001
0.0
0.056
0.0

-0.024
0.0

-0.001
0.0

-0.024
0.0
0.254

0.0
0.273
0.0
0.009
0.0
0.002
0.0
0.009
1.0
0.794
0.0
0.037
0.0
0.002
0.0
0.037
0.0
0.384

0.0
0.052
0.0

-0.001
0.0
0,001
0.0

-0.001
0.0
0.056
0.0

-0.024
0.0
0.001
0.0

-0.024
0.0
0.254

0.0
0.062
0.0
0.004
0.0
0.006
0.0
0.004
0,0
0.102
0.0
0.070
0.0
0.006
0.0
0.070
1.0
0.516

1.0
0,815
0.0

-0.021
0.0

—0.000
0.0

-0.021
0.0
0.230
0.0
0.016
0.0
0.000
0.0
0.016
1.0
0.462

1.0
0.815
0.0
0.021
0.0
0.000
0.0
0.021
0.0
0.230
0.0
0.016
0.0
0.000
0.0
0.016
1.0
0.462

0.0
0.273
0.0

-0.009
0.0

—0.002
0.0

-0.009
1.0
0.794
0.0
0.037
0.0

-0.002
0.0
0.037
0.0
0.384

(c)

Spin
Charge

0.628
1.990

1.295
2.020

—0.901
2.000

1.295
2.020

0.628
1.990

-1.023
1.990

-1.023
1.990

—0.901
2.000
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TABLE XI (a). Same as in Table VI (a) for the PO-PS(e~)PS(a«) structure; (b) Same as in
Table VI (b) for the PO-PS(e~)PS(a«) structure; (c) Same as in Table Vl (c) for the PO-PS
(e~ )PS(a «) structure.

(a)

Site

3 1

1 2

2 2

3 2

0.25
0.318
0.0
0.000
0.0
0.002
0.0
0.000
0.25
0.308
0.0
0.001
0.0
0,00.&~

0.0
0.001
0.5
0.375

0.25
0.318
0.0
0.000
0.0
0.002
0.0
0.000
0.25
0.308
0.0
0.001
0.0
0.002
0.0
0.001
0.5
0.375

0.25
0.318
0.0
0.000
0.0
0.002
0.0
0.000
0.25
0.308
0.0
0.001
0.0
0.002
0.0
0.001
0.5
0.375

0.25
0.318
0.0
0.000
0.0

-0.002
0.0
0.000
0.25
0.308
0.0
0.001
0.0

-0.002
0.0
0.001
0.5
0.375

0.25
0.318-
0.0
0.000
0.0

—0.002
0.0
0.000
0.25
0.308
0.0
0.001
0.0

-0.002
0.0
0.001
0.5

0.25
0.318
0.0
0.000
0.0

-0.002
0.0
0.000
0.25
0.308
0,0
0.001
0.0

-0.002
0.0
0.001
0.5
0.375

0.25
0.318
0.0
0.000
0.0
0.002
0.0
0.000
0.25
0.308
0.0
0.001
0.0
0.002
0.0
0.001
0.5
0.375

0.25
0.318
0.0
0.000
0.0

—.0.00 2

0.0
0.000
0.25
0.308
0.0
0.001
0.0

-0.002
0.0
0.001
0.5
0.375

Site

3 1

1 2

2 2

2 3

3 3

0.25
0.318
0.0
0.000
0.0
0.002
0.0
0.000
0.25
0.308
0.0
0.001
0.0
0.002
0.0
0.001
0.5
0.375

0.25
0.318
0.0
0.000

. 0.0
0.002
0.0
0.000
0.25
0.308
0.0
0.001
0.0
0.002
0.0
0.001
0.5
0.375

0.25
0.318
0.0
0.000
0.0
0.002
0.0
0.000
0.25
0.308
0.0
0.001
0.0
0,002
0.0
0.001
0.5
0.375

0.25
0.318
0.0
0.000
0.0

-0.002
0.0
0.000
0.25
0.308
0.0
0.001
0.0

-0.002
0.0
0.001
0.5
0.375

0.25
0.318
0.0
0.000
0.0

-0.002
0.0
0.000
0.25
0.308
0.0
0.001
0.0

—0.002
0.0
0.001
0.5
0.375

0.25
0.318
0.0
0.000
0.0

-0.002
0.0
0.000
0.25
0.308
0.0
0.001
0.0

-0.002
0.0
0.001
0.5
0.375

0.25
0.318
0,0
0.000
0.0
0.002
0.0
0.000
0.25
0.308
0.0
0.001
0.0
0.002
0.0
0.001
0.5
0.375

/'

0.25
0.318
0.0
0.000
0.0

-0.002
0.0
0.000
0.25
0,308
0.0
0.001
0.0

-0.002
0.0
0.001
0.5
0.375

(c)

Spin
Charge

0.000
2.000

0.000
2.000

0.000
2.000

0.000
2.000

0.000
2.000

0.000
2.000

0.000
2.000

0.000
2.000
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electrons relative to the eight sites in the mono-
clinic unit cell (Fig. 3 of I) for the case U =1.80,
U' =1.44, and J =0.18. They are self-explanatory.
There is only one more comment in order. Al-
though we start with a paramagnetic type of oc-
cupation number for a~ electrons, as for example
in the AO(1)-RS(e )PS(a&}state, the self-consistent
solution shows an antiferromagnetic type of cor-
relation between a~ electrons in the vertical
pairs. As discussed at length in Sec. I, this type
of correlation is an artifact of the unrestricted
HF method. It reflects only the fact that at
self-consistency 2p, ff/U ff & I for a~ electrons,
so that intramolecular correlations are better
described by a spin-density-wave solution. The
antiferromagnetic arrangement within vertical
pairs leads to the apparently "crazy" distribution
of total spin occupation numbers per site in
Table VI.

The way to interpret the results should however
be clear from the preceding discussion in this
paper. We have to consider the a~ band para-
magnetic (e.g. in Table VI there are =0,33a~
electron in the up-spin state on site 1 and = 0.47
in the down-spin states), the missing electrons
necessary to make up one electron per site having
been promoted to the e~ band by intra-atomic
exchange correlation.

VII. CONCLUSION

It is perhaps instructive to conclude this second
paper with a comparison of the low-temperature
phases of the corundum structure compounds
Ti,O„V,O„and Cr,O, . Indeed the formulas
for the relevant effective transfer integrals of
Eg. (2.16}apply as well to 3dt~ electrons in any
corundum structure compounds, provided X'„«1.
In particular, this is true for the relative signs
of the direct transfer integrals (p,', ~ H, ~

p~„) and
the ligand correction (y, ~)(~)X',aE (AE is the gap
between the oxygen 2p band and the metal Sd
band) since they depend only on the geometrical
arrangement of the lattice. Only the relative
magnitude of the two contributions change
from one compound to another. In the case of
Ti,O~ there is only one potentially magnetic a,~
electron for which the effective transfer integra1.
p for pairs along the c axis of the corundum lattice
is big, since the interference between direct and
covalent contribution is additive. On the contrary,
transfer to nearest neighbors in the basal plane
(v) is smail since the above interference is de-
structive. For more distant neighbors, the direct
transfer integral is negligible and the covalent
contributions predominant, this latter being as
small as 0, the transfer integral in the basal

plane. All this is consistent with what is ex-
perimentally observed in Ti,O, at low tempera-
tures, which shows an insulating diamagnetic
ground state. The system gains energy by forming
diamagnetic pairs along the c axis since inter--
action of the two electrons in the bond with neigh-
boring pairs is either small or hindered by the
Coulomb repulsion. Hence a diamagnetic full a,~
bonding band is split off the upper e~ conduction
band leading to an insulating state. The smooth
transition observed at around 500'K is then ex-
plained on the basis that the excitation of these
bonding electrons to the upper conducting band and
the consequent creation of broken pairs reduces
'by screening the Coulomb repulsion and tends to
reduce the energy gap through a modification of
the c/a ratio and a consequent increase of the
jumping possibilities. Finally, the a~ bonding
band merging into the e~ band gives rise to a
conducting state. There is no change of symmetry
during this process so that the transition can be
a smooth one. Cr,O„on the other hand, is an
antiferromagnetic insulator. This is in keeping
with the fact that one expects an increasing local-
ization of the Sd atomic wave functions as one
moves along the first row of the transition metal
series. As a result, both (Q~~~HO~Q~~„) andX', ~ gg
are smaller here than in the isostructural com-
pound Ti,O, and V,O„compared to the on site
Coulomb repulsion U and O'. Therefore one can
apply perturbation theory of the kind used in I in
order to study the most stable magnetic struc-
ture. This latter consists of ferromagnetic
planes perpendicular to the c axis stacked anti-
ferromagnetically. Again, the peculiarity of the
interference between direct and covalent cont& ibu-
tion to the effective transfer integrals explains
this structure. There are three 3d electrons in the
t~ subband which are coupled to a spin- —,

' state
by intra-atomic exchange (Hund's rule coupling)
and the band is half full. Neglecting transfer to
the higher empty E~ band (which would form weak
ferromagnetic coupling along all directions) the
kinetic exchange mechanism would lead to an
antiferromagnetic coupling of a site to all its
nearest neighbors. However, only transfer
integrals along the c axis are strong enough to
stabilize the antiferromagnetic coupling. The
transfer integrals along the basal plane towards
the three neighbors are relatively mall due to
the covalence destructive interference and an
antiferromagnetic coupling with the much more
numerous neighbors (nine) in the adjacent planes,
though a moderate purely covalent exchange is
preferred. Hence the experimentally observed
structure is obtained.

The properties of V,O, are in a series inter-
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mediate between that of Ti,O, and Cr,O, . As ex-
tensively discussed in the previous sections, one
of the two potentially magnetic electrons goes into
a diamagnetic bonding band of a ~ character just
as in the case of Ti,03. The other electron goes
into the doubly degenerate e~ band; however, the
ratio of the on-site Coulomb repulsion energy
U' to the bare e~ bandwidth is just enough to
localize it at low temperature. The resulting
magnetic structure is in a sense peculiar in the
corundum compounds, due to the exceptional
situation of the bare band being one quarter full.
Since in practice there is only one e~ magnetic
electron per site, the gain in intra-atomic ex-
change energy obtained by fully polarizing the

a~ electron is not sufficient to outweight the
increase in kinetic energy due to localization.
Hence only those a~ electrons near the Fermi
level become polarized and, consequently, local-
ized. It is not until another magnetic electron
is present and the bare bandwidth shrinks due to
the better atomic localization of the metal elec-
trons that we get more or less complete local-
ization of all the potentially magnetic electrons,
as is observed in Cr,O, with an effective magnetic
moment per site very near to 3 p.~. This compari-
son serves also to illustrate the behavior of
V203 doped with T i on Cr; however, me shal l not
discuss here this subject which mill be taken up
in III.

APPENDIX

Qutzwiller's idea for constructing the ground-
state wave function for a Hubbard Hamiltonian mas
to minimize the amplitude of all the components
of an uncorrelaied Bloch state in which v atoms
are doubly occupied by an amount g" with 0& g & 1.

Expressing the Hubbard Hamiltonian in terms
of q and v he was able to express q in terms of a
v =(n,ln, &) which minimizes the inner energy.
Gutzwiller used this calculation for establishing
a criterium for ferromagnetism. It mas realized
consequently by Brinkman and Rice" that v and g
(the discontinuity in the single-particle occupa-
tion number) could be expressed in terms of the
Hubbard U which gave them the following relations.

v= &(1-U/Uo),

g =1- (U/U, )',
from which one observes the occurance of a metal
to insulator transition for a critical Hubbard Uo.
The effects of this highly correlated Qutzwiller's
ground state onto the enhancement in the suscepti-
bility and specific heat were noticed to be char-
acteristically different from the enhancement
factors due to paramagnons.

In order to see whether the Gutzwiller-Brink-
man-Rice idea of a highly correlated electron gas
can apply to V,O„we have evaluated the critical
values for U, U', and J for the Gutzmillers ground-
state for a doubly-degenerate band Hubbard
Hamiltonian. Following the work of Chao" and
Chao and Gutzwiller" we find, starting from the
corresponding Hubbard Hamiltonian in the Hartree-
Fock approximation

& = Q &~ (k)ncaa+ Cg Q nsmsn)m e
, may

+C2 g. n, ~n;~, + C, g n, ,n, , (Al)
f mmmm'a f mm'fy

that for the paramagnetic state

(@p=g~¹p+2C,v, +2C2v, +2C3v~

where the definition of v, (i =1, 2, 3) follows
straightforwardly from (A.l) and

g =~(-,' —v -v —v)
&& [v 2(v, + v, + v, )'~'+ vP + v, '+ vs 2]'

(A2)

(A3)

- &~ denotes the average band energy of the filled
part of the band

de(e —e,)p(e) = e~
dmin

with the normalization condition

6max

de(& —eo)p(q) = 0 .
fi min

Minimizing (ff)~ with respect to v, (i =1, 2, 3),
the relations

1 3 2
&v, &v, Vv,

' (A6)

Relation (A6) indicates that v„v„and v, must

can be written in the form
—", [v 2 (v, + v, + v, )'~' + v v, + v v, + Pv, ]

&&(- [P2 (v, + v, + v, )~'+ Rv, + v v, + Rv, ]
+ (g —v, —v, —v, )[v 2/(v, + v, + v, )~'+ 1/+v, )

= -2C)/e~ . (A5)

Solution of the set of Eq. (A5) provides us with the
critical values U'; for which the system becomes
insulating. In investigating these solutions we
have however to take into consideration the re-
lation, equivalent to ours U=U' +2J.

C, —3C =-2C,

which leads to the equation



5000 C. CASTELLANI, C. R. NATOLI, AND J. RANNINGER 18

at the phase transition go to zero equal. ly fast.
In the limit v;- 0 Eq. (A5) together with (A6)
yieM

—,
' [+(1+x,'+x, ')~'+ 1+x, '+x, ']
x [+2(1+x,'+x, ')' '+ 1]= -2C, /e~,

(A'I)
—,[+2(1+x,'+x, ) '+1+x2'+x, ']
x [&2(1+x, 2+x, ')~'+ x, J

= -2C, /e„
with x, =(v, /v, )" and x, =(v, /v, )".

Substituting xs = 2(3x~ —1) into (A'f) we can easily
determine the critical values C, and C,' as function
of any value for x,. These solutions are plotted
in Fig. {11)below. On the same figure we have

also indicated the values for C&/e~ (i = 1, 2, 3)
which served as the parameters for our Hartree-
Fock calculation reported in detail in this paper
and for which a gap could be found. As apparent
from Fig. (11) these values lie considerably
below the critical values needed for the Brinkman-
Rice mechanism to work. We have determined
the location of these points in Fig. (11)by satisfying
the relations C,/C, = U/(P' —J) and C,/C, = U~/{U' —j).

We should finally mention that some solutions
of Eq. (A5) given by Chao and Gutzwiller which
lead to lower critical values than the ones which

we have determined here, are not compatible
with condition C, -3C, = -2C3.

20--

12-

10-.

4- U/6'
p

a/sv

0.4 0.6 0.8 1 1.2

FIG. 11. Variation of the critical values C~= U, C~
= U', C3= O' —J, the intrasite Hubbard electron-elec-
tron e interactions, as functions of the ratio of doubly
occupied states v~/v2= (n~(2)on|(2) ) /(nt(2)zn2(&) )
according to Gutzwiller and Chao (Ref. 15). The three
separate points indicated correspond to the critical
values which we found by means of our unrestricted HF
calculations. e& denotes the average band energy of the
filled part of the band.
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