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A phase diagram for all the possible collinear spin arrangements for V,0; is derived within the atomic
limit. Due to the fact that the a,, electrons of the V atoms form a diamagnetic bond for the vertical pairs of
V atoms, the magnetic structure of V,0; can be considered to be essentially determined by the remaining
one electron per V atom in a twofold degenerate e, level. Depending on only two parameters: t,i,’ /t 52, the
ratio of the hopping integrals within the two orbital states 1 and 2 and between a certain pair (i,j) of V
atoms in the basal plane, and J/U, the ratio of the exchange constant to Hubbard’s U, the regions of
stability for a particular magnetic and orbital order are determined.. The experimentally observed magnetic
order falls into a region of values of these parameters which are expected for V,0,.

I. INTRODUCTION

Of all the transition-metal oxides which exhibit
a metal-to-insulator transition (MIT), the most
extensively studied in recent years has been V,0,,
both from the experimental point of view (done to
a large extent by McWhan and co-workers') and
from a theoretical point of view (mainly by Rice
and Weger and collaborators?). Yet the mechanism
of the first-order transition at 150°K has remained
up to now a controversial matter if not an unre-
solved one. Issues like the singular magnetic
structure among the corundum type of compounds
(Fe, 0,4, Cr,0,) in the insulating phase,®** the rather
unexpected number of Bohr magnetons per site
(1.2 uB) for a V3* configuration,? and the peculiar
lattice distortion taking place at the transition,®
are all phenomena which as yet have received no
explanation. Equally lacking is a consistent in-
terpretation of the metallic phase, both under
pressure at zero temperature and at the transition
temperature at atmospheric pressure, and one is
looking for a realistic calculation that might give
preference to a certain model over another one.
Some very interesting suggestions have already
appeared in the literature®:®*® which throw some
light onto this almost classical problem.

This is the first of a three-paper series (Papers
I, II, -and III, hereafter referred to asI, II, and
III, respectively) in which we attempt to paint a
more consistent picture of the MIT problem in
V,0,, providing a unified and consistent point of
view on all the issues we have mentioned above.
InII,° realistic calculations which explain the
rather singular magnetic sturcutre of V,0, are
done for the antiferromagnetic insulating phase
with a fairly good degree of reliability. Less real-
istic calculations, although sufficiently indicative,
are carried out for the metallic phase which will
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enable us to discriminate among various possible
interpretations of this phase and to support one in
particular. Finally, in III,’° a conclusive inter-
pretation of the mechanism of the two transitions
(at 150 and 500 °K) is attempted, although due tothe
complexity of the system, the last word in favor or
against our interpretation must be left to certain
specific experiments which we suggest in order to
verify our interpretation.

Our first aim.is to understand the insulating
phase of V,0, and notably the unique antiferromag-
netic structure. A Luttinger-Tizsa method (or an
equivalent alternative method!) has previously
been applied to an Heisenberg Hamiltonian for a
corundum type of structure with isotropic exchange
constants J( p) up to fifth neighbors [isotropic in |

_the sense that J(p) is assumed to be equal for

neighbors of the same distance] which has provided
all the possible solutions for colinear spin struc-
tures in a corundum lattice. Their domain of"
stability was delimited on the basis of inequality
relations among the exchange constants but not a
single one of them described the magnetic colinear
spin structure experimentally observed in V,0,.*
Obviously, some basic assumptions must not be
satisfied in this type of approach. If we think of
an Heisenberg Hamiltonian as an effective Ham-
iltonian derived from a Hubbard model in the
atomic limit (W/U -0, where W is the bandwidth
and U the Coulomb repulsion for two electrons on
the same site), then the isotropy of J(p) means
that the magnetic electrons are assumed to belong
to a nondegenerate atomic state. A closer inspec-
tion of the atomic structure of V,0,, as explained
in Sec. II and from a band point of view in II,
forces us to abandon this assumption and to con-
sider a generalized Hubbard model for electrons
in a doubly-degenerate atomic state.

Although the real situation of electrons in V,0,
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is far from being near the atomic limit (W/U ~ 1
as will become more apparent in II), we choose,
in I, to study this limit for the following reasons.
Firstly, we are not aware of any previously re-
ported general and complete derivation of an ef-
fective Hamiltonian from a generalized Hubbard
model with two degenerate atomic states per site,
nor of an application of the result to a corundum
type of structure. We hope to fill a gap in the in-
formation urgently needed as far as the orbital de-
generacy is concerned in determining the magnetic
structure. Our derivation will parallel that of
Cyrot and Lyon-Caen.”” Secondly, it will turn out
that, due to the complexity of the V,0, structure,
this preliminary study is essential for determining
the type of symmetry-breaking solutions, in a
realistic unrestricted Hartree-Fock calculation,
that will be attempted in II. In other words, we
believe that the kind of instability against certain
symmetry-breaking operations which already show
up for our degenerate-band Hubbard model in the
atomic limit persist with varying W /U ratio until
the real situation (W/U= 1) is reached. The actual
calculation in II bears this out. A somewhat dif-
ferent approach has been followed by Kubo and
Inakaki'® for the special case of a cubic lattice
(with mixed transfer integral between band 1 and

2 being equal to zero) which consists in studying
within the RPA the response functions for the
order-parameter operators relative to certain
broken symmetries and in looking for the instabil-
ity condition when varying the parameters of the
Hamiltonian. Unfortunately, this method can only
be applied when the crystal structure of the Sys-
tem under consideration is simple enough or
severe simplifying assumptions are made so

that an analytical calculation is possible. For our
case of a corundum structure, this method be-
comes prohibitive.
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FIG. 1. Arrangement of metal atoms (full circles)
and oxygen atoms (open circles) in the corundum struc-
ture.

II. CHOICE OF THE MODEL HAMILTONIAN

The arrangement of'cations and anions in the
corundum structure is shown in Fig. 1, Although
the immediate surrounding of metal ions has an
almost octahedral type of symmetry with point
group O,, a slight trigonal distortion and the in-
fluence of more distant cations in the lattice re-
duces the point group symmetry to D,,, lifting the
degeneracy of the three T,, orbital in cubic envi-
ronment (Fig. 2). In this way, we obtain a higher,
simply-degenerate a,, orbital and a lower, doubly-
degenerate e, orbital. Since three electrons are
already engaged in forming more or less covalent
bonds with the 2p states of the oxygens (this state-
ment will be elaborated in II), we are left with two
magnetic electrons for each cation. Moreover,
the fact that the trigonal field splitting of the
simply degenerate T,, level is much smaller than
the cubic splitting between T,, and £, levels per-

£,

SEZTJC FIG. 2. Schematic ener-

gy splitting of the 3d level
in the corundum structure
and formation of a stable
bond between the a;, orbi-
tals of a vertical pair of
cations.
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mits us to take, as the Hilbert subspace in which
to diagonalize our Hamiltonian, the space spanned
by the two e, orbitals and the a,, orbital for each
cation. In other words, our fields operator (%)
is expanded in terms of a complete set of Wannier
functions of a,, and ¢, symmetry (complete in our
Hilbert subspace chosen):

3
b®) =3 2 Wy E)Cjmo (2.1)

where j runs over all the cation sites, w'}‘(;{) being
the Wannier function centered on site j, of sym-
metry type m. Henceforth m=1, 2 will indicate
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the two Wannier functions of eg-symmetry type,
whereas m =3 will denote the Wannier function of
a,, type.

In the spirit of a Hubbard type of approximation
(that is to say by retaining in the interaction part
only the terms on the same lattice site) the general
Hamiltonian

D s

+%Z¢I &yl & )VE-

V24 V(X )] $(E)d %

XX o (X)d3x d3x’
(2.2)

becomes

Z ; [(1 - 6mm’500 ,)Umm,n,m(,njm:o, - 5001(1 - Gmm')Jmm" Rimallim' o
mm’ ’

T T
oo')Jmm’ ijocjmo’cjm'a'cjm’o

+(1 - Gmm /)(1 - éoo:)Immlc}rmlcIijIOijchmol]. (2.3)

Since we can choose our Wannier functions to be
real we have

fw, Ho(X)aw™ (%) dx, (2.4)

where H, = (7?/2 m)V2 +V(X) and V(%) is some
crystal potential having the symmetry of the lat-
tice, and

Unns = [ 107 @V = xuof &) 2055 %, (2.5)

Tt = Imr = f w;"(i)w;f"&)v&-i')
whEwh &) d3xd3x’ (2.8)

where V(X - X’) is taken to be a screened Coulomb
potential having the property that for any rotation
R,

V(RX-RX')=V(X-X%'). (2.7)

In deriving Eq. (2.3) from Eq. (2.2), we have used
the fact that all the terms in the interaction part

in (2.2) containing an odd number of functions of a
certain symmetry type vanish. This property fol-
lows from the fact that our basis Wannier functions
can be obtained by means of a real symmetric
transformation T from a basis transforming like
the xy, xz, and y yz three-dimensional functions of
symmetry type T,,. (This latter property will be

shown to hold in II.) Indeed, it is well known*
that in this latter basis ¢, (m =1, 3) we have

Ussiea= [ 9 GI07 GV (E-%)p0(®)

X ¢ (X)d®x d3x’
= Uléabacdéac + U26ad5bc(1 - 5ab)

+ J[Gabccd(l - 6ac) + Gacébd(:l - éab)}’ (2'8)
where we have indicated for later convenience the
complex conjugate despite the reality of the basis.
Moreover, the three parameters in (2.8) are not
independent, since

U,=U,+2J. L (2.9)

This can easily be verified by performing an arbi-
trary rotation R on the integration coordinates x
and x’, taking into account the transformation
properties of the basis under rotation and noticing
that the integral remains unchanged by this opera-
tion. As a consequence, Eq. (2.8) can be rewritten
as

Uabica =UpOug 640+ (8,005 + 0430.4) . (2.10)
If we now go over to another basis f, = 23, Dypms O
(where for the moment we take the matrix 7 to be
unitary: E,DZ,D,, =0,,), we find for the corres-
ponding quantities in (2.8)
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Uspica = j FIRFIGIWE-X),.&) f,&)d3xd3x’

= Al
- ; Dach;BDcdeéUaB:yé
aBys

=U26ad6bc+ Jéacébd
+J§; D¥D¥D.oDys - S (2.11)
o

Hence, we see that we recover the previous form-
ula (2.10) if the transformation matrix is real
since in this case the unitary relation becomes -
simply E,D,-,Dj, =0,;. This discussion points out
that there are actually two independent parameters
in the interaction Hamiltonian (2.3), a fact that
will prove very useful in the following, since we
shall be able to estimate with rather reasonable
accuracy the transfer integrals (2.4) at least in the
trigonal metallic phase. In a problem of such a
complexity, a minimal number of parameters is
essential to give a minimum of credibility to the
eventual conclusions.

As already pointed out in the introduction, we
want to study the atomic limit of (2.3), that is to
say lim(W/U) -0 where U is the smallest of the
quantities U,,. and W is the bandwidth as obtained
by the diagonalization of the kinetic part of (2.3).
In this limit, the unperturbed Hamiltonian H, is
taken to be the interaction part of (2.3), the kinetic
perturbation lifting the spin and orbital degeneracy
of the ground state of H,. This arises from the
fact that we can arrange the orbital and spin oc-
cupancy of the two electrons independently of each
other in the three atomic states at each site. Even
in the atomic limit this problem would be quite
complicated to treat in full generality if some
simplifications were not possible. A hint comes
from the experimentally observed number of Bohr
magnetons per site: 1.2 uB. This fact and the
consideration of the corundum structure which
favors pairings of the cations along the z axis,
strongly suggests, as already anticipated by sev-
eral authors,’®:!® that one a,, electron per site is
engaged in forming a more or less covalent non-
magnetic bond between the vertical cations pairs.
This bond is enlarged into a band by interaction
with neighboring pairs (Fig. 2). This leaves the
remaining electron in a doubly-degenerate band to
determine the magnetic structure experimentally
observed. A covalency-enhancement mechanism
and an exchange polarization of the a,, electron
can then be invoked as discussed at length in II,
to account for the rather unusual amount of
1.2 u 4 per site.

Other possible interpretations are to be ruled
out on the basis of the following consideration:
The observed magnetic structure cannot be ex-
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FIG. 3. Corundum structure together with the unit
cells for the trigonal and monoclinic phase, respectively.
Only cations are shown (black circles: spin up; white
circles: spin down). 0 is the origin of the xyz refer-
ence (oriented as in Fig. 1) placed midway between atoms
1 and 4, while I is the inversion center midway between
atoms 4 and 5.

clusively determined by the qg,, electrons. Neg-
lecting for the moment the presence of the other
electrons on each site, an g,, electron per site
would be described by an Hubbard Hamiltonian for
a nondegenerate band, leading, as is well known,
to an antiferromagnetic coupling with the immedi-
ate neighbors, contrary to what is observed.
Moreover, the observed magnetic breaking of the
trigonal symmetry would be inexplicable in such

a situation. In fact, in the atomic limit, the mag-
netic system would be described by the Heisenberg
Hamiltonian

(2.12)
7 :



where

£3= fw‘ (D, ®)03 () d°x . (2.13)
By the trigonal symmetry and the invariance of

w3 under C; [w3(C,X)=wy;(X)], the value of +3
[and consequently of the exchange constant

(¢33 /Us3] would be the same for all the three
basal-plane neighbors of a central cation (in Fig.
3, th=tH=1t3)

On the other hand, we run into the same kind of
difficulties if we think of putting the two electrons
per site in the doubly degenerate e, states. Since
by Hunds Rule they should occupy an orbital, each
with parallel spin, the situation, as far as the
magnetic structure is concerned, would be exactly
analogous to the case of one electron per site in a
single band. This leaves us the first possibility
so that in Sec. III, we shall take as our model
Hamiltonian the expression (2.3) where the sum
over m is to be understood to range from 1 to 2
and the “unperturbed” ground state containing one
electron per site.

III. EFFECTIVE HAMILTONIAN IN THE ATOMIC LIMIT

Under the assumption of Sec. II, the ground
state of the unperturbed Hamiltonian in Eq. (2.3)
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is 22¥_fold degenerate, N being the number of
sites. Denoting by @ and a’ two particular ground
states and by 8 one of the excited states (we shall
neglect the excited states with more than two elec-
trons per site), second-order perturbation theory
gives the eigenvalue equation

(a|H'|B)(BIH" ") _ =
ZB: Ei-E, Eboar =0  (3.1)

for the lifting of the degeneracy by the perturbation

H = ; ; OZ T oCiimta (3.2)
In (3.1) E, =E,, (for every @ and a’) is the ground-
state energy common to all the 22 degenerate
states, whereas E; is the energy of the intermedi-
ate excited configuration. For each site, there
are six such configurations given in Table I, where
as usual in the literature, to visualize the electron
occupancy on a site, we have used a circle divided
into halves indicating the two orbitals: orbital 1
(left half), orbital 2 (right half). The state |0) is
the vacuum state. It follows that the operator

18:0¢Bul
Zg;l Ek E:) (3.3)

when acting on the state H’|a) is given by X =2J,X,
where

1 1 .
~-X,= — Ry Mo+ ——— (U + I ; T s Cime
a3 U, —J Zc: jroltjzo Uz;z — gz \7e mlm: , Rim ”Hm'& J,;m: , Cimt Cimy Cjm*y Cijm4

1
tgE o (U Z‘:njm,njm— J z; c';m,c’;m;c,m,‘cm.o . (3.4)
11 m#m’

TABLE 1. Six excited states | 8;) (i=1,6) together with their energy Eg,~E, which deter-
mine the effective Hamiltonian in second-order perturbation theory.

Eg—E,-=
| BY=clycry| 0)= @ Up—-dJ
| B2)= ATyl + clyelpl o= & (@+@) Up—d
| B3y=clyehyl 0)= @ Upp—d
| 80= ATyl - ekl 0= /& (@—@) _—
| B3)= WAyl — chyel )l 0= & (@D_@) Un—d
| Be)=UANZ)clely+ ehyel ) 0)= \,;T (@D+@) Uy+d
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We have eliminated the operator |0){0| by replac-
ing it with the complete set 25, |n)(n| (equal to the
identity operator) since the states other than (0,
cannot contribute to the sum because of the par-
ticle-number conservation. Also, we have written
Jy, =J for simplicity.

Coming back to the expression (3.1), we see that
in the Hilbert subspace spanned by the states |a),
we have to diagonalize the effective Hamiltonian

H =H'XH'. (3.5)
Moreover in this subspace, only terms of the kind
LTt et oCimoX i€t Cintor (3.6)

can contribute. In this same subspace, the opera-

|

+ _ 1
—{ijo![zh ij'c’]}" U_i;t? [U116mm'(njm -0500' - c;m 'ocjmaéo -0)—
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tor cjmo_)_(jcf,,,,o, when applied to the states
Cinor |®) is equivalent to

ija_)_fjc,‘lrm'c' =cjmo[§j9 ijm'o']
2—[519 C}m'o’]cjmo +{cjmo’ [Ej! c;m'c’]}

= {ijm [_)_(jv c}m'o']}y (3-7)

_where [4, B] indicates the commutator between two

operators A and B, and {4, B} their anticommuta-
tor.

The use of the usual anticommutation rules be-
tween the ¢ fermion operators leads to the follow-
ing (-0 indicating the spin orientation opposite to
o).

J(1=8,m)

T i)
X(Cjm -oCim* ~0gar = Cim -oCim'a00 -]

+ 2 [Ulz Z;;m,(cmm’ﬁoo’njm” o~ 50 -o’émm”c;m' ~ccjmc)
m
+
+ Jml;m'(émm'éo 6/ Cim -gCmmre = OmmnOg 61C s -0Cim _o)]
[ !
+ Ulz—-J et (Gmmléoalnj,,,o—5mm,:500,cjm,ocjmo) . (3.8)
Hence, upon introduction of the symbol -m to in- Z:
eff = c
dicate the orbital other than m and suitable group- nZn mm'z ¢hofeime: (X, Cimror}
ing of the various terms, we can write the effec-
tive Hamiltonian XCirart TR (3.9) .
|
in the following form:
= U, U, 1
Herr ; n;lz L tii Cmocin o (Uil_ 72 im -0t Uz, - J° Rj-m -0t m n; -mc)
U, J
Zj: ; Z tf;"tlf cmccin’ -o( U2 qu C;m -0Cima * Uz, - J° C;-m -6Cj -mo)
- rom J T J ! 1
‘Z]:’;‘Z t n Cino in’ o( -Uil_ JZ Cim -6Cj-m -0~ Uiz_ Jz C}‘-m -oCim -0~ T]Tz—:—j c}"mccjmo)

_Z Z Z tnmt" " tnccm’ -0 J

ij nn'm

— 2 LT
(277 el o ono

U

Uﬁz" J2 C;-m -ocjmo)' (3.10)



Now let us turn our attention to the states |a).
These states can be represented as H,C}m,s,l())
where m , can take up two values (1, 2) per site j
and similarly for the spin s,. Hence, the state of
our electron localized at the site j can be charac-
terized by two quantum numbers: the spin s and
the number of the occupied orbital. In our case of
twofold degeneracy, it is convenient to describe
the orbital state by means of the “pseudo§pin”
operator T with properties that are exactly ana-
logous to the properties of the usual spin operator
s. -Then a value 7=3 will correspond to the oc-
cupied orbital m =1, whereas 72=-3 will indicate
the orbital m =2. Correspondingly, the state |a)
can be represented as 11, |74 s#), the state |72, s%)
being an eigenstate of the product 7%s*, (Notice
that the axes in the 7 space are independent from
those in s space, although we shall continue to
use the same notation for convenience.)
Moreover, it is straightforward to check that
the operators c?,,cc,,,,c: acting onto the states |@)
=1II,; c;',,jsj |0y (which describe a charge in the or-
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bital and/or spin quantum number) can be set in a
one-to-one correspondence (depending on the in-
dices n,»n’ and o, ¢’) with the product 7s acting
onto Ia) I,|7,;s,) in accordance with the following
rules:

(n=1,ﬁ’=1)~%+73, (2,2)=3-7% (1,2)=7",
(2,1)~7"
(o=4,0"=4)~3 +5%,
(4, =55 (4, )=S", (+, =5, (3.11)
where, as usual, we have defined
T*=7%+47% and S*=5%+{S?,

Hence, as an example, the operator cL,cm is
represented by (3+7%)S} and the operator ¢}, ¢,y
by 73(3 - S%). A straightforward but nevertheless
tedious algebra leads to the following expression
for Heff in (3.10):

—Her = Z { =7 [4,,(F) = 3B,,(T)+ Cyy(F)+ D, (F )](25; '§1+ 2)
12

[F]

+ ([A,,.(?)w”(?)] ( J J

+
U%,-J% U3 -Jg2

1 U;,z U ) L
- + B,,(F)+Dj; ()| (28, -§,- )¢,
H (szz J? U?l_ J H b z

where

{[(tll 2 _ ]( +Tz)+(t1}t t12

(3.12)

BT+ ()2 - (323 - TH}Ts,

B,,(T)={ [(35)2 + (¢§ )] (+7)+ @5+t 2T +7 )+ [P 2+ 022N - 79,

C,,(?):[ WEGHTHERHBEG-TD] (7] + 7)),

Dij [(tlltzzT +t21t”T )Tj (tlltZZT +t21t

D,’,(?)=[(t“t T 12 )(U2 JJ e o

J ) J
X , 1 .
(Uzu— Er T T’)]

The usual Heisenberg Hamiltonian for electrons
in a nondegenerate band is recovered by putting
TE=i, t2=42=J=0, U, =U,=U.

Before going on to discuss the orbital and spin
ground-state configuration (for our case of inter-
est), we want to treat the case of the diatomic

(3.13)

™7,

molecule with one electron per site in a doubly-
degenerate Wannier state. The exact eigenstates
and eigenvalues (exact in the Hilbert subspace
spanned by the four Wannier orbitals) can be easily
found and are given in Appendix A, This discussion
will enable us to check the correctness of (3.13)

in this particular case and what is more import-
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ant, to have an insight into the structure of the
ground state and the low-lying excited states. Let
us indicate with a and 5 the two sites, that is to
say the two atoms constituting the molecule; and

R(0Yw} 5, (X) = w; , (R(8)X) =coslow) ,,

R(O)w}, 5, ®) = w5, (R(8)X) == sinlgw]

since the combination w!+iw? must transform
RO +iw®)= (™) (w* +iw?)

in the £, representation (/=1,2,...) of the group

(%) + sinl w?

(X)+cosigw? , ()

let the four real Wannier functions be w§(§), wi(i),
w}(x), and w3(x). Since the axis joing the two atoms
is a symmetry axis for rotation R(9) of any angle

8, we must have

»X),

(3.14)

«©/mm. As usual we have indicated by R(8)X a
rotation of the coordinates about the symmetry
axis taken as z axis. Moreover, since the one
body potential V(X) is invariant under R(4), we have

ta5(0)= Jw},(R(e)E) V(R(6)X) wi(R(0)X) dx = j dPxw {FVE)wiX) =11

=cos’6t}, +sin®16 £33+ coslg sinlg(t 5+ £2}) ,

t22(0) =22 =sin®10 ¢ 3+ cos®10 t%; — sinl coslf(t1 +21),

t22(0) =t =cosif sinlf(¢25 — t1}) +cos®10t 2~ sin®19 ¢

t21(0) = ¢%, = cosl0 sinlf(t2% — t13) + cos®16 t%}

implying that ¢,}=#¢23=¢ and ¢23=¢2,=0 ( all this
will also apply for particular values of 6 (=+37)
and /=1 to any particular pair of cations along the
z axis (three-fold rotation C, axis) in V,0,. More-
over, we shall put without loss of generality ¢7,"
=¢7" =0(m=1,2). Defining the functions u(x)
=[x— (x2+16¢2)1/2] /4t and €(x)=5(x - [x® + 16£2]/2) it
is shown in Appendix A that the ground state of the
molecule is given by

toot toot
[(caur co2t = 4ot Cut)

+U'(U12‘T)(CJHCIM +C;ﬂ";2f)”0> (3.16)

with an energy €(U,, — J). In the atomic limit
[4¢/(U,, - J).<<1] we find

€Wy —-d)~—4t2/(Uy, =)
and

pUyp =) ~=2¢/(U, - J).

In the 7s space, the nonpolar part of the state
(3.16) becomes

2 —sin?l0¢

(3.15)

21
ab?

21
ab’

T

o) =ANVD @7 =3) [ b:7*==3) = |a:7*
=-p|b:mi =g ]a:s*=3)[bis*=3),  (3.17)

where we have used the convention that the first
ket of the Kronecker product refers to the orbital
part (s indicating a singlet state in T space) where-
as the second ket refers to the spin part (¢ indicat-
ing a triplet state in spin space). Then it is easy
to verify that

(U |A,(F) [¥,) =—32%,
(U, = 3B,,(D)|¥,) =3t
| Cop(P¥ =0
<‘I’leab(?)l\Ijs> ==,
(6128, 8, + Doy =1,
(9:128,+8,- )|y =0,
so that
(D¢ (¥ [Hesr [¥,)| @) =—42t2/(Uy,=J),  (3.18)

as it should (the extra factor of two is coming
from the 25,, in Hy). Actually
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that is |¥,)|¢p,) is an eigenstate of Herr. The perturbed ground state turns out to be

2¢
)l — To-7

which is the atomic limit of (3.16).

From (3.19) and (3.16) it is apparent that the
electrons in the ground state assume a singlet or-
bital and a triplet spin configuration as a conse-
quence of the fact that in their virtual jumps on the
same atom, they want to pay the minimum of re-
pulsive Coulomb energy possible, i.e., U, -J.
This is the reason why the vertical pairs in the
antiferromagnetic-insulating phase of V,0, are
ferromagnetically coupled. Exciting the orbital
state to a triplet configuration,

[ =A/V2)[la:3) |b:=3) + |a:=2) [5:3)], (3.20)

we find, taking into account that (¥, [A,,(T)|¥,)
1.2
——Et ’

<\I’tl - %Bab(“;)l\l’t> =-%t2 )

<‘ptlcab(?)l\1[t> =0

(¥4 [ D ¥ ) =12, (3.21)
(D¢ (¥, [Herr [¥) |90 =0,

which corresponds to the “exact” eigenstate
H(clycloy +cloy i) 0y =0. (3.22)

In this configuration, the electrons cannot gain
kinetic energy by jumping onto the same site since
this is forbidden by the Pauli principle. Hence,
the excitation energy connected to this orbital ex-
citation leaving the spin configuration unchanged
is given by

—€(Uyy = Iitomtim 4t%/ (U, =J). (3.23)

A lower excitation energy is found if we change
simultaneously the spin and orbital configuration;
that is to say, we consider the state

[0y [6,) =A/V2 @ d) |b:=D) + [a:=D |6:D]
X(A/V2)|a:s*=3) |b:s*==3)
— |la:s*==%)|b:s*=3)]. (3.24)

Since { ¢, [(2S,* S, +3)|¢p,) =—1 and
(ps](28,S,~3)|ps) =—2, we have still to evaluate

(¥, Dgy(P) [ ¥ )

=, leoms
(7,

-
Ue-d® *

J J -
—5 TH+ 7T 'rb)+H.c.|‘I/t)

=t2

1
7 73 U=z, s =3 |arf ==z, =) + [b: 7=}, s*=3) [b:77=~4, 5" = )],

(3.19)

Summing up the various contributions, we find

(Ps [C, [Hegr [¥4) |5

1 2
——— (= . 212
UIZ—J(Zt t)

J J
+2[-¢2 )
[t(Uiz_Jz +U31“J2

U U J
_tz( 12 b b )+2t2 ]
Uzlz'Jz U%l‘Jz 'Uzlz‘Jz

4
T UL+’

(3.25)

which is the atomic limit of the energy e(U,, +J)
relative to the exact excited state

T T ot T t + T
[(Ca1t Cazt = CariCoat +Caat Cory = Cqzy Cont )
T T T t
+ N'(Ulz +J)(calf Cazy ~ Ca1y Cazt
(3.26)

The excitation energy of this state relative to the
ground state is given by

+C;1f C:z& - C;H Cg‘z't )10 .

42 4
E(Ulz-q.J)—G(Ulz"J)atomlim - U12+J * Um"J
8¢2J
N 3.27
U?z"J ’ ( !

which is much lower than (3.23).
Similarly, for the state [¥,)|¢,) corresponding.
to the exact eigenstate

Tt oot
H(cgiy Coay = Cari Cozt

- CIz't CIH +C22¥ CIH )[0y=0,
we find

<¢s|<\1’si HeffI\IIs> l¢s> =0

since
(U DL [y ==t2d /(U2 = J?).

The excitation energy relative to the ground state
is given by (3.23), the Pauli principle again pre-
venting two electrons from jumping onto the same
site. Hence, we see that the pure spin excitations
or the pure orbital excitations would have in the
atomic limit a critical temperature of the order of
[4¢2/(Uy, — J)]/k 5, whereas for the combined or-
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bital and spin excitations we would get a critical
temperature of the order of [8J¢2/(U%, - J%)]/ky.12

Other excited states have an excitation energy
relative to the ground state comparable to the one
in (3.27). These states take advantage of the last
term in the Hamiltonian (2.3) by having the two
electrons on the same orbital with antiparallel
spin when they jump on the same site. Since the
last term in (2.3) does not conserve the total z
component of the orbital spin 7 =72+7%, the non-
polar part of the states is not an eigenstate of 7f:
although it is still an eigenstate of (7,+7,)%. From
Appendix A, we derive that one of these states is
given by

T T t T t T T +
[(can Co1y = Ca14 Cput = Ca24 Cpay T Coay Ch2t)

T t T
+ /J‘(Ull - J)(C:ﬂ Ca1y — Ca2t Cazy

+C;1$ C;ﬂ - c;zi 0;26 )]0y, (3.28)
with eigenvalue
€Uy, = ) omim — 42/ (U = J), (3.29)

remembering that U, =U,, +2J is the same as
(3.25).
The corresponding state in 7s space is given by

XD ey =Vl a:z) 10:3) = |a:=3) [6:=2) ]Io,)
(3.30)

where we have indicated the new orbital part by
|x") and used the same symbol for the spin singlet
state. As seen from (3.30) :

X7 =Q/V2) ¥, TEhe=1) = [¥,, TEH==1))

is a mixture of states with different 74;.
Since one finds

<X-,Aab(:;)lx-> =%t29 <X-' - %Bnb(?)lx-> =_%t2v

(X 1DMxy =0, (XD %) ==dt2/(U% - %),
XlC,MIxy=0

one can easily verify that

(0 KX NHerr X7 [ 95) ==422/(U,, =), (3.31)
as it should.
A nearby lying level is given by the state
[(C:u C;u - CIH CZM +Csz C;z{ = c:ﬂ C;ﬁ )
+u(Uy +J)(C:1f C:ﬂ M Cz;rzf C:;:# + CZM CZH
+elar el )]0, (3.32)

with energy
€Uy +d)womtm — 482/(Uyy +J).

For the corresponding state in 7s space, we find
X 6e) =D [ad) [0:) + [a=D |5:=H]] 9,) ,

for which it is easy to check that

Cos X" [Herr X" | g) =—42/(Uy, +J)

with an excitation energy relative to the ground
state of

(U, +dJ) - €(U12—J)

41%4J
(U12 - J)(UIZ +3J) ’

(3.33)

= &‘(U12 +3J) - E(Um - J) atom lim

Finally, it is straightforward to check that
(¢; l(Xi | Her 'X*)l¢)t) =0,

corresponding to the exact eigenstates

Hlchy ey 2clyyciny )0V =0, (3.34)

where again the Pauli principle prevents electrons
from jumping onto the same site. Throughout the
previous discussion, there is a threefold degener-
acy associated with the spin-triplet states which
must be taken into account when counting the num-
ber 'of independent states. The conclusive and in-
teresting picture stemming from this discussion
relative to the diatomic molecule is that there are
two groups of excited states well separated from
each other; one being quite near to the ground
state with an excitation energy AE of order of
t%J/U%, in the atomic limit, while the other has a
AE of about t2/U,, (we have been considering that
J/Uy;»< 0.1 to 0.2 as known from atomic calcula-
tion). This fact will be of interest when discussing
the properties of V,0,.

IV. SYMMETRY CONSIDERATIONS

To apply the effective Hamiltonian (3.13) to our
case of interest we have to specialize the values
of the relevant transfer integrals. To limit the
number of parameters in our discussion, we shall
consider only nearest and next-nearest neighbors
interaction so that one atom interacts with only
four neighboring atoms. Since our aim is to study
the symmetry-breaking solutions of the Hamilton-
ian (3.13), we shall assume this latter to be in-
variant under the space group of V,0, in the metal-
lic state, i.e., the group D§,,(R3_c). This space
group has the following generators: (a) C,: Rota-
tion byZ 7 around the corundum c axis (z axis in
Fig. 1),

cs(%,9,2)=(=3x-3V3y,3V3x-3y,2);
(b) C,: Rotation by 7 around the y axis,
Colx,9,2)=(-x, 9,~2);

(c) C: A glide plane consisting of a translation in



the xz plane by half a unit cell in the x and z di-
rection followed by a reflection in the xz plane,

(a/V3),-y,z+%¢).

All 12 operations of the group are products of these
three generators. In particular C,C=1I, the inver-
sion with respect to the center between atoms 4
and 5 (Fig. 3).

There are four vanadium atoms per unit cell
(1, 2, 4, and 5) in the trigonal phase, and eight
(1, 2, 8, 4, 5, 6, 7, and 8) in the monoclinic unit
cell. The above symmetry operations transform
them as follows

Cs(Ry, Ry, Ry, Rs) = (Ry, Ry, Ry, Ry),
CZ(RDRZ!R4’R5)=(R4)R5!R15R2)7 (4-1)
C (Ry,R,, Ry,R;)=(R5,R,, Ry, R").

C(x’ y,2)=(x—

In particular ‘
I(R,,R,,R,,R;)=(R),R{,Rs,R,). (4.2)

R”; indicates the doubly underlined positions 7 in
Fig. 3. It will be shown in II that our basis wave
functions w}ei(x’:),wﬁz‘(i) transform under these
operations as follows

Ca[wR wR x)] [w}::;Ri(Cs(;()’w%gR‘ (C3(§)]
% Js—.w%}‘sRi(—i) b

VB wh g, ()= %5 ],

= [, (D) +

(4.3a)
Colwk X), w%,(X)]= [~wh,r,(X), 0%, X)], (4.3b)
Clwk, ), wh, (X)) =[~whe,®), 0%, ®)],  (4.3¢)
Ifw &, &), wk,(X)]= ig, &), wig®)], (4.3d)

where the result of the operations C ;, R, or IR,
is given in (4.1) and (4.2) for i=1,2,4,5. More-
over, the one-particle Hamiltonian Ho(;{) in (2.5)
is assumed to be invariant under the group gener-
ators (hence under the whole group)

Ho(C (3 2)%) =Hy(X). (4.4)

An immediate application of the Eqs. (4.2) and
(4.3d) is to show that ¢}% =¢3] for ij nearest neigh-
bors in the basal plane. In fact, remembering
the definition of these quantities in (2.4), we have

t)?llez f wR (X)H (X)WR (®)d®x
= f wie, (IR H, (IX) whe, (IX) d°x
= [ 0l PHE e F) dx

waz(x)H @k X)d°x=thp, =thr,, (4.5)
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the last step being a consequence of the fact that
our Wannier functions are real. This is also suf-
ficient to establish that ¢} RyRy = =¢2 4Ry Since by ap-
plication of C, we have

Ryrs = jwn (®H,(X) %, (X) d*x
== [ whya OH R0, (0

——wa Ho(x)wR X)d3x=-t2 Ry (4.6)

(remembering that C,'=C,). Similarly one obtains
3 =—t§1R For more distant pairs in the sys-
tem R‘,R the equality ¢  =¢2!x is in general
not true. We shall see an example of this later on.
Making full use of the symmetry properties allows
us to express all the relevant transfer integrals

in terms of the following four, which we denote
using the same notations of Nebenzahl and Weger :

[ wh G E o, B @ x==a,
[ wh, G, B avx=x,
[ wh B, F0%, R ax =,

ij X)wR X d3x=p.

Then, denoting by t'”’" the transfer integrals ¢}’
relative to the two Wanmer functions centered at
the two ends of the vector § =R; - R, and making
reference to Fig. 4, all the relevant transfer inte-
grals are given in Table II, where it is apparent
that t?ﬂ"‘ is related to t'”"" (t%’;"') by C; (C31),

FIG. 4. Nearest-neighbors of atoms 1, 2, 4, and 5
needed for the calculation of the transfer integrals rele-
vant to our problem.
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TABLE II Transfer mtegra.ls for electron hopping between the two e, states and along the

directions &;, ;(¢=1,3) and &;, 8.

fim-efgl=—der a5V
=6 f=-3e+1p- 43X
=X t52=~\f—(a+ﬁ)_2x
t%:=_a tli——4a+45+2\/§x
= b 5 =~30+3f-3V3X
4= A ey

tl=—go+3p-3V3x tg=p
& 4

tg =—ga+ip+zV3x t%j=#

tﬁl§=—%\/’§(a+ B -zx tl:—o

= —fo+3p-5V3x ty=p
3 4

= ~40+ 36+ 53X t5=p

t2=3V3+ p+35x t8=0
4

as, for example,

H =t = [ w0, GG, B

- 1
.I wcalRl(

1 X)H,(C;t

. f [~ 2wk, (R) - 38w, B Ho()[~ bk () - 4 VT wl, (B)]d®x =—ta+ip+3v3y,

and that
pom = (=1)mrmipmmt (=1, 2,3) by C,
4 ¥
and

2 =2 by I.

Notice that the last column of Table II follows
from the same consideration already used for the
diatomic molecule (unvariance of the transfer in-
tegrals under the particular rotation C;). More-
over, again with reference to Fig. 4, we easily
derive that t2™ =¢%7" (i=2,3) by I, and 3™ =27
(i=2,3) by C,IC,. !

We are now in a position to discuss the sym-
metry properties of the Hamiltonian (2.3) and of
the -effective Hamiltonian (3.9)-(3.10). [For com-
pleteness we shall also consider the state
a,,(m=3), which is shown to be invariant under
DS, in1I.] The invariance of these two Hamilton-
ians under the DS, group is easily verified if we
show that they are invariant under the group gen-
erators. In so far as the trigonal rotation C, is
concerned, the c,,, operators are transformed
the following way:

)u)cs 1R3 (C3

X)d3x
(4.8)
I
Ciio cos%”Ccsno +sinky c Cgi2o
Cs| Cya0 | = [—singmeg yq+cosdnee,,0
0130 Ccalao
ccajlo
=D | Cc4420
c03/30
cos¥n siniy 0 Ccyno
= | —-sinZr cosin 0 Ccyi20 |
0 0 1 003/30
(4.9)

where C,j is the site obtained from the site j under
the C; transformation. The interaction part of the
Hamiltonian (2.3) is then invariant under the
transformation (4.9) because of (2.11). For the
kinetic-energy part

mm'
; 2 ¢ Cimocfm o

mm'o

(4.10)



(which can also be formally written as

Cio
Cja20

Z: ( Cuocizociao)Ti
- c/sa

where T, =(t7]) is the 3 X3 matrix of the transfer
integrals between sites 7 and j) the operation (4.9)
gives as a result

Cc,ito

toot b T
Z:(Ccsuoccaczuccamo)g TiD| ccyizo | »
7

(4.11)
ccsjso

D" being the transposed matrix of D. Now, it fol-

Tows from (4.8) that

(4.12)

so that the expression (4.11) is identical with the
one in (4.10). The proof of the invariance of the
Hamiltonian (2.3) under C, and C follows the same
lines as for C; if account is taken of the transform-
ation properties (4.3) together with the fact already
used that for any operation D of the DS, group,

D'TD= Tegicyss

Dcj30=Cpys0-

The question of the invariance of the effective
Hamiltonian (3.9) is now easily set up, since from
Eqgs. (3.5) and (3.6) it appears to be a product of
two kinetic-energy operators times the X operator
defined in Eq. (3.4). Hence, its invariance under
D5, can be verified if we show the invariance of X.
We now remember that

X, B (Bl
E 2: ; Eqo- E)

and that the states |g,,) in Eq. (3.3) are eigenstates
of the interaction part of the Hamiltonian (2.3)
(where now the sum over m is to be understood
over orbitals 1 and 2). Hence, if they are nonde-
generate, they are left unchanged by any trans-
formation D of the group DS,; that is to say from
the fact that H,|B,,) =£,|8,,) and D'H,D =H, it fol-
lows that DlBlk> ‘31)”‘) so that E |BJ).><B]A|/

(Eq - £ ) is invariant. If there are states degen-
erate in energy, like |8,,) and |B,;) in Eq. (3.3.),
then one has D|B;,) = 2y Dy»+|Bp;»+) and the ma-
trix D,,. is unitary. Again, we have
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exploiting the unitary of the D, ,, matrix together
with the fact that the sum over A is to be under-
stood over states which are degenerate in energy.
The proof of the invariance of the effective Ham-
iltonian (3.9) is now completed and we can turn in
Sec. V to the search of the possible types of spin
and orbital configuration.

V. POSSIBLE GROUND-STATE CONFIGURATIONS
FOR THE EFFECTIVE HAMILTONIAN

The problem of finding all the possible ground-
state orbital and magnetic structures would be
best discussed in all its generality by use of a
convenient generalization of the Luttinger-Tizsa
method. However, since we have restricted our-
selves to first- and second-neighbor interactions,
we do not expect noncollinear solutions for spin
and orbital order. This fact allows us to use a
simpler and more direct method. We shall use a
variational procedure taking a trial wave function
of the type

=TT Iooley (5.1)

where the state ]zp,) refers to orbital occupancy on
site j and it is acted on by the 7, operators in the
effective Hamiltonian (3.12), whereas the state
|¢,) refers to spin occupancy on site j, and it is
acted upon by the spin operators S e

Quite generally, we can choose

|¢j> = cos%l”" =3)+ Sin%l TE=—3),
(5.2)
,‘Pj) =cos¢,ls*=3)+ Sin¢j| sf==3), i
and then minimize the average value of the Ham-
iltonian in the state (5.1) with respect to g, and ¢,.
Since the effective Hamiltonian acts only onto two
sites at a time and it can be factored in the orbital
and spin variables, we need only to calculate aver-
ages of the type

SZK70: FEPAIPR

and (5.3)

Coil{o; | Hylo o)

where H}$ is the ij term in the effective Hamilton-
ian (3. 12) referring to orbital (spin) variables.

The second average in (5.3) is straightforward
whereas for the first term, we find after some
algebric exercise
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(GilCyjle[A;;+A ;= 3(B,;+B;)+Cyy+Cyy +Dyy+ Dy )93 |93
=c[=(T%; - 2S,;)sin® (9, +9,) + T3, sin2y, sin2p, - 2(¢12)2 cos2(y, +9,)+ (R - t%2) sin2(, +9,)], (5.4)
(lCu,l[(A;+A;,+ 3B, + 3By, +Cyy+ Cya— (By;+B;)b+D{,+D; v, 14

=2a[t}jcosy, cosy, + 2 siny, siny, + t1% sin(y, + v, ]2

- {[(¢ 9%+ (£1))* 1(cos?y, +cos?p,) + [(£32)2 + (+13)2 I(sin?y, + sin?y,) + L 2T, (siny, +sin2¢,)}, (5.5)

where we denote for sake of convenience
c=1/(Uyp=J), b=U,/(U% ~J?),
a=J/(U% - J?)+J/(U%, ~J?),

(5.6)

and

Ty =t3+t5, Sy=tits-(t1H). (5.7)
In specializing to the corundum structure, itis
useful to take advantage of the symmetry proper-
ties of the effective Hamiltonian in evaluating the
expressions (5.4) and (5.5). In our case, it will be
most convenient to exploit the trigonal symmetry.
Indeed, if we know, for example, the matrix ele-
ment (5.4) along the pair i1 - ;2 of Fig. 3, then for
the same matrix element along the pair i1-j3/, -
we find '

Wil dgorl Hizgsr 19580 01
=( ‘l’uKlpn"C:IHujos'd’js' )llﬁ;,)
= Pt %'” K Yo + %”lezl s + %”) Iip1+ %"”) (5.8)

since from (5.2) and the transformation properties
(4.39) of the orbitals 1 and 2, we derive

i=1,4

Cyl¥s3) = C;[cospam (%) + sing, w2/(X)]
=cos(y, + £m)w}(X) + sin(y, + E7)wiX)

ﬂl[@*%‘ﬂ’), (5.9)

Csl¥y,) = C5[cosy, wi(X) + siny, w?(X)]
=cos(y, + M) wi(X)+ sin(y, + E1)w? (%)

=l‘/)1+§'7">' (5.10)

The same relation as for (5.8) holds for the pair
along i1-j3 with —Z7. One can directly check the
validity of (5.8) from the general expressions (5.4)
and (5.5), respectively, evaluated for the two di-
rections.

One more simplification is achieved if we take in
Table II ¢¥ =y =0 as will turn out in II. In this
way, two consecutive basal planes in the corundum
structure are translationally equivalent. Use of
the transfer integrals in Table II and of the Eq.
(5.8) gives the following expression for the average
value of the Hamiltonian (3.12) in the trial wave
function (5.1):

—(¥ | Herr | W) =-;— uZ,:) ()28, - §, +2)|o ) (1= 8, {3u[1 - cos2(y; +¥,) cos2(y, +v,)]

+2(u = 20) sin2(y, +y,) sin2(y; +v,)} + wd,, sin®(y, - y,))

i=1.4 - .
+ ';‘ ;;W’J(%— (2S;-8))pp ((1-6,){(6~ %a)% - 7cos2(y,+y;) cos2(y; +y,)

+s[cos2(y; +y,;)+cos2(y; +y,) ]+ tsin2(p; +y,) sin2(y; +v;)}

+ 20, b-acos?(y,~ 4)]) , (5.11)

where we have introduced the quantities
u=(a?+B%)c, v=z(a-p)’c, w=2u’c,

r=3a(@®*+p%), s=3(b—a)e®-4), t=aaB,

(5.12)

and used the convention that the symbol 2(;;

means summation over all the four nearest neigh-
bors 7 of all the sites j in the lattice; ¢ indicating
the site at the end of the vector 3,. in Fig, 4 if the
site j is the site number 1 in Fig. 3. If this latter
is the site 2 of Fig. 3, the association is i-——E{ in
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FIG. 5. Possible spin orderings in the corundum
structure.

Fig. 4. With this assumption,
71=0, va=+%m, y=-%7. (5.13)

\
Notice that either from (5.2) or from (5.11), we
see that the range of variation of §; and ¢, is be-
tween 0 and 7 since |y +m) ==[)). Since we are in-
terested in the possible ground-state configura-
tions for certain range of variation of the param-
eters in our effective Hamiltonian, we immediately
see from (5.11) that the coupling along the vertical
direction , must be ferromagnetic and such that
by =iy +37. In such a case, the term proportional
to s in the second term of (5.11) never contributes
to the ground-state energy since given the corun-
dum structure each site j will have a vertical
nearest neighbor with an orbital occupation out of
phase of 37.

This contraint on the vertical pairs restricts us
to the consideration of collinear spin structures
such as shown in Fig. 5. The possible associated
orbital ordering is derived by minimizing with re-
spect to the angles y; and y;, of the vertical near-
est-neighbors sites j and j’. This will give some
conditions for the orbital occupancy of their near-
est neighbors in their respective basal planes and
a solution of the variational problem will be found .
by consistently filling out the whole lattice with
these particular solutions (where by “consistently,”
we mean that the solutions for the orbital occupan-
cy relative to a site j with its four neighbors must
match those centered on any other neighboring
site).

The minimizing equations for the orbital oc-
cupancy are derived from (5.11) to be
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9 —
a_‘l);- (| Hege | ¥) = sin2(p; - ¥;)

3
+) [, sin2(p, +y,) cos2(p, +v;)
=1

+B; cos2(p; +y,) sin2(y, +v;)]=0,
(5.14a)

55— (¥ Her [¥) = —w sin2(p,— 9,/)

3
+Z [0, sin2(y;, +y,.) €OS2(h;r +v;0)
i'=1

+B;,C082(P, s +v;,) SIn2(P;. +v,))=0,
(5.14b)

where the indices ij and ¢’j’ refer to adjacent basal
planes and the coefficients @, and g8; are easily de-
rived from (5.11) taking into account the fact that
a ferromagnetic spin coupling along a certain di-
rection picks out the first term in (5.11), whereas
an antiferromagnetic spin coupling picks out the
second. Since we have

sin2(p, +v ;) cos2(y; +y,;) = sin2y, cos2y, cos*2y,
+sin2y; cos2y; sin®2y;
+cos4(y, +¢,;)1 sindy,,
(5.15)

we see that we can achieve a solution of (5.14),
whatever «; and 3, are, provided we take y, = s,
$;= ;. =37 (the solution y,— ;=0 is to be dis-
carded since it leads to a maximum) and we take

{sinZsz. cos2y, =0,
cos2y; sin2y, =0,
(5.16)

sin2y,, cos2¢y,. =0,
{ oo (1,i'=1,2,3)

cos2y;, sin2¢,, =0,

to be satisfied simultaneously.

This leads to the set of solutions for each plane
given in Table III together with the condition y,
=y =47 for adjacent basal planes. This means
that we want to match solutions of setI with setII
in the adjacent plane, and similarly set III with set
IV. As a consequence, the only possible orbital
structures are those given in Fig. 6 and those ob-
tained by increasing all the angles in Fig. 6 by 57.

We are now in a position to derive a general
phase diagram for our system, that is to say a
plot of the regions of stability of a certain orbital
and spin structure for definite ranges of the pa-
rameters appearing in the effective Hamiltonian.
For this purpose, we rewrite Eq. (5.11) as follows:
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(5.2).
1 ELt *';
~(EHar[9)=5 D [77, X928, -8;+3 9

ij)

+J(6, )@l 5 - 25,8, 9],
(5.17)

where J%(Z, j) and J°(i, j) represent, respectively,

the exchange contribution to the ground states from
a ferromagnetic or antiferromagnetic spin coupling
along the direction #j. Their explicit expression is
easily written as follows:

TABLE III. Four possible configurations for orbital occupancy of the two degenerate e, states per V atom in the

basal plane.

1 % ¥ s oy Py Yoag o ¥ Y1 Poag IV Y Y P
1 0 0 0 5 7 0 0 9 ir §T 37 13 2r 37 &7
2 0 0 %‘n 6 %w 0 %w 10 %Tr %‘n’ %77 14 %W i‘rr :i*‘lr
3 0 37 0 7 37 Fm 0 11 $r $r  irm 15 27 3r in
4 0 %w %r 8 é‘w ’é‘ﬂ “é‘ﬂ' 12 in %r Ti‘Tf 16 %‘n %w %7(
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J*(1,7)=3[u(1 - cos2y, cos2y,) + (u— 2v) sin2y, sin2y, |,

J*(2, j) = 3[u+3(u— 3v) cos2yp, cosy, — 3(u+v) sin2y, sin2p, + 3 V3 (u— v) sin2(Y; +¢,)],
%

J¥(3,7) =3[u+3(u— 3v) cos2y, cos2y, — 3(u +v) sin2y, sin2y, - 3 V3 (u— v) sin2(y; +¢,)],

J*(4,7)=w sin®(y; - ¢,),

J1,§)=(1/c)(b - 3a)u—r cos2y, cos2y, + ¢ sin2y, sin2y, + s(cos2y; + cos2y, ), (5.18)

J%2,7)=(1/c)(b = za)u— (v — 3t) cos2y; cos2y, — 5 (37 — ¢) sin2y, sin2y,

-2 V3 (r +1t) sin2(y; +¢,) — £5(cos2y, + cos2y,) + 3 V3 s(sin2y, +sin2y,),
J8,5)=(1/c)(b - 3a)u— 5(r — 3t) cos2y, cos2y; — 5 (37 — t) sin2y; sin2y,

+5 V3 (r +1)sin2(y; + ;) — 35(cos2y; + €os2y;) +3V3 s(sin2y; +sin2y;,),

J%4,7)=(w/c)b- acos®([y,; - y,)].

The ground-state energy for a particular orbital
and spin structure is then easily obtained from
(5.17) and (5.18) by picking out for each pair the
appropriate J* @ (4j) contribution and then summing
over all the sites of the relative unit cell.

The following Table IV giving the quantities
J f®(p,, v;) for all the possible orbital occupancies
given in Table III is of some help in this computa-
tion.

Notice that we have introduced the quantity
2959(,0,) =I5 W,0;) + T 5 (9;9,) since the sites
2 and 3 are always translationally equivalent for
all structures considered.

Use of this table allows us to readily construct
Table V giving the ground-state energies for the
orbital and spin structures most relevant to our
purposes, that is to say the ones which have low-
est energy.

In Table V the column heading refers to the spin
structure on each basal plane (the coupling be-
tween planes being always ferromagnetic); FS,

AS, and RS, indicating, respectively, a ferromag-
netic, a antiferromagnetic, and a “real” spin
structure. Moreover, “real” refers to the actual
spin configuration realized in V,0,, namely a
ferromagnetic coupling along the vertical pair and
one pair in the basal plane, the other two pairs in
the basal plane being coupled antiferromagnetical-
ly.

The row heading a(1), 5(1), ¢(1), d(1), e(1), A1)
refer to the orbital structures represented in Fig. .
6. The row headings a(2), 5(2), c(2), d(2), e(2), A2)
refer to an arrangement which is obtained from
Fig. 6 after changing each angle ¢, into ¥, +47.

The quantity at each crossing of a column (spin
structure) and a row (orbital structure) represents

TABLE IV. Various orbital-dependent terms of the effective Hamiltonian expressed in
terms of the matrix elements of the trial wave function (5.2).

J{;(0,0)=0
29500,0)=3(u —v)
JGm,zm=0
294G, 5m) =3 —2)
J{0,5m=u
28%,(0,3 ™) =3 (u+ 30)
J{j(%w,%w)r:u—v
294G 1M =5—v)
I G, im=u—v
284G, im =5 —v)

1 3
JjGm.im=v

2,Gm,3m)=3Bu+0)

J3;(0,0)=(1/c)(b —3a)u—r+2s
28%;(0,0) = (2/¢)(b - 3a)u—3 (r — 38) — 2s
J3Gm,5m=(1/c)b—3a)u—v—2s
293G 7,5 = (2/c)(b—3a)u —3(r— 3t)+ 25
J4;00,3m=(1/c)b—3a)u+r
28%;(0,3 m) = (2/¢)(b — Fa)u+3 (v — 3t)
J4Gmim)=(1/c)(b - 3a)u+t

283G, 5™ = @/c)b—3a)u—5 (37 —1)
J4G T, i) =(1/0) (b —3a)u+t
29%,G,3m)= (2/c)(b—ta)u—L@r—1t)
JLGE T, in=1/c)b-3a)u~t

283,G 7,31 = (2/c)(b—3a)u+3Br—1)
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TABLE V. Variational ground-state energies for the three spin structures FS, RS, and AS and various orbital struc-

tures.

FS

AS

RS

;(01)(1) 43w —v)+wl 4[2(b —3a)(u/c)— 5 (r = 38)+ w)

Oy w—vrul  Allu—v) 20— da) /)~ 67—+ ul

by ABlrsotel  4120-3a)w/o) il -30+ul

ft((z))(z) 4[5 6y —v)+wl 4 —v)+2(b—3a)(u/c)+5 Br — )+ w)
Ce() 436U —v)+w] 4+ 200 —3a)(w/c) - 5(r - 3t)+wl

c(2) 43 (u+v)+w) 4lv+2(b—3a)u/c) =58y —t)+wl

jig’(l) aBro)rwl A2 —ta)w/e)+ S =30+ w]

Z(Cz))(z) 43w +v)+wl 4lv+2(0 —3a)(u/c)+5Br —t)+wl

e(1) 4(3u+w) 4[3u+2(b-3a)(w/c)+wl

e() 4(3u+w) 4l3u+2( —3a)(u/c)+w)

F) 4(3u+w) 430 +2(b —3a) (u/c)+ w)

f@) 4(3u+w) 4[Eu+20=3a)(u/c)+ wl

4[3(b —3a)(u/c) - (v — )+ wl
4[3(b —3a)(w/c) = v — 1)+ wl
4130 -3a)(w/c) =3 (r+38)+wl

4[3(b—3a)(w/c)+5Br+t)+wl
4[3(6 —3a)(u/c)+5(r+3t) +wl
4136 - 3a)(w/c) =3 Br+1)+w)
4[3(b —3a)(w/c)+ Hr — )+ wl

4130 - za)(w/c)+ $r— )+ w]
4[3(b - 3a)(w/c)+ w]
4[3(b - 3a) (w/c) + w)

436 —3a)(u/c)+w]

4[3(b-3a)(u/c)+wl

the ground-state energy per monoclinic unit cell
(8 vanadium atoms, Fig. 3) corresponding to this
orbital and spin ordering. :
A glance at Table V and at the definitions (5.12)
shows that the differences between ground-state
energies depend within a factor o?/U,, only upon
the ratios 8/« and J/U,,, the dependence on « and
B being symmetric. Hence, the phase diagram of
Fig. 7 is easily drawn. Here, the y axis refers to
the ratio 3/a ranging in the interval (-1, 1) and the
x axis to the ratio J/U,, ranging from 0 to less '
than 1. We see that there is a reasonably large
range of the physical parameters 8/« and J/U,,
for which the RS spin structure is stable. More-
over, the competition is always between two ferro-
magnetic spin states RO(2)-FS, AO(1)-FS or

B/a
+1
0(2)-RS
RO(2)-FS
)-
0 IAQ(1)-RS " As /0
13 12
AO(1)-FS
RO(2)-FS
-1

FIG. 7. Phase diagram for the orbital and spin order-

ing in the corundum structures in the atomic limit for
first- and secopd—nea'rest neighbors interactions.

AO(2) - FS and two “real” spin ordering states
RO(2)- RS or AO(1)-RS. AO(1) and AO(2) stand
for antiferromagnetic orbital order corresponding
to configurations in Fig. 6(d) and Fig. 6(d) on re-
placing (0, 37) by (37, 47).. RO(2) stands for real
orbital order and corresponds to the configuration
Fig. 6(b) on replacing (0, 37) by (i7, 37). All the
other orbital and spin configurations are higher
in energy in the whole range of variation of the
physical parameters. In particular the AS states
(complete antiferromagnetic coupling in the basal
plane) lie always higher than the RS states, being
degenerate with them only for J=0. All the other
spin structures which are not mentioned in Table
V have been found to have higher ground-state en-
ergy.

So starting from a Hamiltonian invariant under

- C3; we have found a stable ground-state orbital

and spin ordering which breaks this symmetry.
Looking at Fig. 8, where the RO(2)- RS and AO(1)
— RS configurations are drawn, and remembering
Table II, the reason for this is not difficult to un-
derstand. The coupling along the vertical pair is
always ferromagnetic in the spin and antiferro-
magnetic in the orbital occupancy, since along this
direction ¢,, =0 because of C;, so that there is no
transfer between orbitals 1 and 2, The electrons
can in this way achieve the maximum of kinetic-
energy lowering and at the same time take full ad-
vantage of the exchange energy give up as little
repulsive energy as possible (U,, — J) when being



d RO(2)-RS

c AO(I)-Fs

FIG. 8. Orbital and spin ordered solutions of
phase diagram in Fig. 7 depicted in form of clusters
representing the corundum lattice. The left and right
halfs of the circles represent orbital 1 and 2, respect-
tively. The +signs above each circle in configurations
b, d indicate orbital occupancy for the wave function
AANZ) (W +w 2), each arrow representing, in this case,
half spin.

on the same site. In the basal plane, this situation
is again met along the direction 31, since we have
taken t¥ =x =0 (actually, even if the chosen Wan-
nier functions were not already such that the inter-
band transfer integral t;{ is zero, we could al-
ways choose a Wannier basis in which this is the
case. Obviously, in such a new basis 1t-lgz4 would
still be zero).

Along §, and &, however, C, symmetry demands
that tlgzz, tlgz3 be comparable, or even bigger than,
the corresponding t;*; . '2522’3. As a result, an
antiferromagnetic spin coupling is preferred to
achieve the maximum lowering of kinetic energy
compatible with the necessity of giving up as little
repulsive energy as possible when two electrons
happen to occupy the same site. Notice that if 8/
a=~0, this situation is achieved with complete
antiferromagnetic orbital ordering for the Wannier
functions '(X) and w?(X). When g/a=1, the or-
bital ordering becomes RO(2), that is to say an or-
dering similar to the spin order for the Wannier
functions (1/v2)[w!(X) tw?(X)]. Notice that in this
latter basis ¢ 3] =¥ =3(8 - @) ~0 whereas t¥
=—(a+B)~-2a, so that the ferromagnetic orbital
ordering along 51 is justified. In the vertical di-
rection instead, we still have tlgl‘1 - t%i =y and &?
=0 so that the orbit and spin ordering does not
change. We then see that relative magntiude of the
various transfer integrals may be essential to de-
termine the actual orbital and spin ordering in the
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corundum lattice (and in general in every lattice).

This fact raises the question whether inclusion
of the transfer integrals up to the nine third neigh-
bors of a vanadium atom (Fig. 9) (we shall see in
II that they might not be negligible due mainly to
covalency effect) does not affect the conclusions
we have drawn up to now. As far as the possible
orbital and spin structures are concerned, there
is no change in the conclusions. Quite generally,
we can see from expressions (5.4) and (5.5) that
our new transfer integral can bring about in the
minimizing equations (5.14) only new terms of the
type

3

3
D e sind(y, +y), D ejsin2(y;+y,)
i=1

i=1

or

3
Z €/ sindy, cosy, .
=1

These terms are always zero when evaluated for
the solutions in Table III. However, inclusion of
new transfer integral can modify the phase dia-
gram in Fig. 7. In fact, if we introduce the trans-
fer integrals ¢}, ,¢%,, and ¢}, =—¢9; between
sites 1 and 5 in Fig. 9 (all the other ones needed
can be derived by symmetry operations from

these) and define the quantities
(t31,)%=p, (t5,)%=q, (5.19)

5
(from II, it will turn out that ¢%; =~ 0) the ground-

I3 8

FIG. 9. Nine third nearest neighbors of a certain in
the corundum structure. Numbering of the cations is
the same as in Fig. 3.
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state energies for the four most relevant states mentioned above become

E(RO(2) - FS) =4[ 3(5u-v)+15g + $p],

E (AO(1)-FS)=4[F(u+v)+w+8¢+L p],

E,(RO(2)-RS)=4[(u—v)+2(b - 2a)u/c+ 537 - 1) + w + 6g(1+2b/c - 3a/c) +p(¥ +6b/c)- L a/c)],

E;(AO(1)- RS)=4[u+2(b~ za)u/c+3(r = 3t)+w +6qE& +2b/c ~"Ta/c)+p(1+6b/c-3a/c)]. (5.20)

Hence, if the new transfer integrals are a sub-
stantial fraction of @ and 8 in Table II, the con-
figuration RO(2) - RS at least for positive 8 can
cover the whole stability domain of the real spin
configuration. Moreover, the boundary of this lat-
ter domain can be altered according to the relative
weight of ¢ and p. It will turn out in II that these .
latter values are such as not to disturb too much
the picture of the phase diagram given in Fig. 7.

Up to now, we have been concerned with the
ground-state configuration of our system. How-
ever, its orbital spin excitations according to the
effective Hamiltonian (3.12) are interesting phe-
nomena to discuss and to compare with what has
been found for the diatomic molecule.

The spin excitation for a given orbital configura-
tion is easily obtained from (5.17) by dropping the
spin averages and the constant terms. The result-
ing Hamiltonian H¢f is

i=1,4 - -

~HE =“Zj:) (576G, )= 7%, ]S, -§,, (5.21)
where the effective exchange constants are to be
evaluated from expression (5.18) for the particular
orbital configuration under study. As an instruc-
tive example also useful for later purposes, we
discuss the spin excitations for the orbital struc-
tures RO(2) and AO(1). Since in these (actually in
all orbital) configurations, the ordering for the
orbital occupancy for the vertical pair along 54 is
always antiferromagnetic (§; - ,.,=27), we find
from expression (5.18) that

J(4, ) - T4, j)=w -% b

1 U
=2M2/ _ 12 >
\Ulz"J Uﬁz‘ 2
J 2u2  J
=2 2 Y e Y .
# Uiz—Jz U12 U12 ’

that is to say, a weak ferromagnetic exchange
[remember the minus sign in (5.21)] relative to a
hopping from a full to an empty orbital, in accord-

ance with the Goodenough-Kanamori-Anderson
rules’*'®!® since the transfer integral 3* between
occupied orbitals is zero.

The situation along the direction 51 can be dif-
ferent according to the orbital structures. In the
AO(1) ordering, we find from Table IV that

1
Jf(l,j)_Ja(lsj) =u- _C (b" %a)u -7

_ U12
sz -J Uz;z -J?

=(a? +ﬁ2)<
J
=(v2 102 .
(a +B ) Uiz_Jz 9
that is to say again, a weak ferromagnetic ex-
change, since we have put from the outset the
transfer integral tlgzl =x relative to the occupied
orbitals equal to zero. In the RO(2) ordering how-
ever, Table IV gives an exchange

J’(l,j)—J“(l,]‘)=u-v——i—(b— sa)u~t

J 1

= (@ +4%) = — 3(a=p)?
Uh-J2 " °
U ‘ J
X 12
{Uﬁz—ﬁ ¥ Ufl-ﬁ] ’

which can be positive (ferro-) or negative (anti-
ferromagnetic) according to the spin and the mag-
nitude of 3. When & =3 we find the usual weak
ferromagnetic exchange between an empty and a
full orbital. In this latter case in fact, since the
occupied orbital on each site is (1/v2)(w!+ w?),
whereas the other (1/v2)(w'-w?) is empty, we
have

1 , '
[ 5t =0t Hol? = 0®) =3 =18/= 4 (8- ) =0
and
1 ' '
[0t swh mwt s w) =12 =18 <~ Yaep),

so that there is only transfer to an empty orbital.



Departure from the relation a =8 introduces more
and more transfer between occupied orbitals,
finally making the net exchange antiferromagnetic,

~“%(Q‘B)2/(U12_J)a

Along the other two direction 52 and 8'3, we can
easily check from Table IV that the net coupling
is always antiferromagnetic (for the orbital struc-
tures under consideration

Jf(a)(z’j) =Jf(u)(3 ’]) = g;}a)),

transfer between occupied orbitals always prevails
over the empty ones. For the AO(1) structure, we
find

J*(2,5) - J(2, /)= 5(u+30) - (1/c)(b-za)u

- ir=3t)c—4(a®+p%)/(Uy,-J),
whereas in the RO(2) case, the cxchange is
J1(2,7)= %2, 5)=iBu+v) = (1/c)(b - 3a)u

+3@r - ) —3(a? +82)/(Uy, - J).

All the above exchange constants represent the en-
ergy needed to turn a spin i situ and the results
of the previous discussion parallel those we have
found in the case of the diatomic molecule although
in the case of the lattice, the Pauli principle is
less effective and we can have spin excitations re-
quiring an energy «t2/(U,, —J) without having to
change the orbital order.

The orbital excitations for a given spin config-
uration and the orbital and spin excitation are
easily obtained from Table V or expression (5.18).

It is to be noticed that up to now, we have been
talking of orbital and spin excitations of the Ising
type. In the lattice, the proper excitations would
be orbital and spin waves for the description of
which the effective Hamiltonian (3.12) should be
considered and the usual techniques used. We are
not interested in this aspect of the problem for our
purposes.

APPENDIX

The exact eigenstates for a diatomic molecule
with one electron per site in degenerate atomic
levels are easily found if one uses the following
procedure. Since the Hamiltonian is the sum

H=H'+H, (A1)

of a kinetic-energy part H’ transferring electrons
from site to site and an interaction part H, which
operates within the sites, we choose right away
eigenstates of H, which can be constructed by tak-
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ing linear combinations over the two sites a and &
of the molecule of the “polar” statesin(3.3). For
example, let us take

(1/‘/:2—)(04711‘ C:zi + c;ﬂ c;zi )0y =[Sp).

Application of the Hamiltonian (A1) onto these
states results in a nonpolar state easily derived
since

H|Sp) = Uiy = )| Sp) +H' | Sp)
= (U= DS+ [H', A/V2)c ]y cla
+ chH C;rzl )10y . (A2)

But quite generally, since H'=3 t"™'¢}. cymo and
mm’=0 (m#m’) in our case, we obtain
[H', CimoCanr01)= HeimoCamior + CamoCiniar) - (A3)
Hence,
H'|Sp) =2t(1/V2)(ch cloy + el ciay )0 =2¢] Sne) .

The result of this application of H onto the nonpolar
state | Sxp) is now immediate, since Hy|Snp) =0
and obviously H'|Sxp) =2¢|Sp) because

- T T
[H', cnoCimior |2 HehmoCimior + ClmoCimigr) . (A4)

Collecting all the previous results, the matrix to
be diagonalized is
H| Sp) =(Uy, = J)| Sp) +2t|Sne) ,
H|Sne) =2t|Sp),

(A5)

which leads immediately to the eigenstate (3.16)
and to the eigenvalue €(U,, - J) of the text. It goes
without saying that the combination of the polar
states on site ¢ and b must be such that the cor-
responding nonpolar state is different from zero.
In such a way, we can easily obtain all the states
for which the Pauli principle does not prevent the
electrons from jumping from one site to another.
It is easily recognized that the states given in
Sec. III exhaust this class apart from spin degen-
eracy.

The nonpolar states for which the Pauli principle
prevents jumping of the electrons on the same site
are then immediately found by inspection from the
ones already found since they must be antisymme-
tric under interchange of the sites @ and 6. For ex-
ample, from (1/v2 )(cly clo = cly4 ¢fit )| 0) which
is symmetric under this operation, one im-
mediately finds (1/v2)(cly cot +clat ey )| 0) which
is antisymmetric under the same operation and
such as to give zero when operated upon by H’.
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