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Traces over random degrees of freedom may be performed ab initio, without replicas, provid-

ed one is using a dynamic description of the system. An effective Lagrangian is obtained after
the random degrees of freedom are eliminated. An order parameter is then defined, a la Ed-

wards and Anderson, in terms of the time-persistent part of the correlation function, Taking a

system with random temperature as a model example, we characterize to all orders the equation

of state in the ordered phase. It is found that this equation contains odd powers of the order

parameter that destabilize the simplest solutions. These terms suggest that the t ' decay law,

found by Ma and Rudnick for the correlation function, is restricted to a region close to the

presumed transition point. The formalism is particularly suitable for treating dynamics in the-

ordered phase.

INTRODUCTION

Investigations of the properties of random systems
(random magnetic fields, temperatures, couplings or
bonds) are awkward because physical quantities must
be averaged over the random degrees of freedom. '

This difficulty is often circumvented and with suc-
cess, by using the replica method. that yields phy-
sical results in the limit n 0. However, this pro-
cedure involves an unphysical order parameter and
also leads to certain analytic difficulties at low tem-
peratures. Other authors have therefore employed
direct term-by-term expansions of physical averages
of static' and dynamic' quantities. This second ap-
proach can be performed more systematically by us-

ing the Lagrangian formulation of dynamics intro-
duced by Martin, Siggia, and Rose (MSR).' Indeed,
the trace over random degrees of freedom can then
be performed ab initio leaving a Lagrangian form
where all random degrees of freedom have been el-
iminated by integration. The removal of closed
loops, which is achieved in the replica method by giv-

ing them vanishing weight n, comes about in the
present method by the impossibility to build closed
loops since they cannot be constructed from retarded
propagators alone.

The effective Lagrangian without randomness may
be conveniently employed to derive the critical
behavior near the ferromagnetic transition. At first
glance, the procedure may seem like a step backward
for phase transitions of the spin-glass type. At such
transitions the commonly used order parameter in-
volves distinguishing an average Q = ((@)(@)),over
randomness and over field variables, while our
Lagrangian contains only field variables. That this is
not a step backward, but can be rather turned into an
advantage, is due to the possibility of characterizing

the ordered phase physically as Edwards and Ander-
son did in terms of a long- (infinite) range correlation
in time. Specifically, we define the averaged order
parameter as the persistent time part of the correla-
tion function

Q (x —x') = (y(x, r) y(x', r')) ii, , i

where @ is the (continuous) spin field. For x =x', Q
is the order parameter used by Ma and Rudnick. '

The source H that couples to Q is then proportional
to 5(&o), where cu is the Fourier conjugate of r t'. —

To obtain the "equation of state" in the ordered
phase one expresses H as a functional of the correla-
tion function, an equation that splits into two distinct
equations when the correlation function acquires a

. time-persistent part Q. One of them governs the
averaged order parameter Q (yielding the equation of
state in the ordered phase) and the other gives the
time-decaying part of the correlation. For simplicity,
in this paper we carry out the analysis for a system
with a random temperature. We find that the equa-
tion of state for this system contains destabilizing odd
powers of Q which suggest that the r 'i' decaying law

of Ma and Rudnick' is limited to a region close to
the transition temperature. The same kind of desta-
bilizing term is also found in the random-bond Ising
model. It also was present in the replica Hamiltonian
of Harris et al. 9 The method we shall discuss can be
used with an order parameter that depends on time
center of mass t + t' (and the space variable x +x')
to treat dynamics in the ordered phase. This exten-
sion will be discussed elsewhere.

This paper is organized as follows: In Sec. I we
derive the generating functional (i.e., the effective
Lagrangian) for a system with quenched random de-
grees of freedom including a random easy axis. In
Sec. II, we show how to treat the ordered phase of a
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(nonrandom) ferromagnetic system by the MSR
technique. In Sec. III, we introduce the time-
persistent order parameter 0 and express the source
H in terms of the correlation functions. In Sec. IV,
we derive the equation of state for Q and analyze and
discuss its structure.

contains random variables rR (x),uR (x),h„(x)
governed by probability laws which may, for exam-
ple, be expressed by their cumulants. Assume also
that P(x, t) obeys a stochastic equation of motion.
For convenience, let it be of the Landau-Ginzburg
type 10' 1 1

I. GENERATING FUNCTIONAL AND EFFECTIUE
LAGRANGIANS

Consider the Hamiltonian

H = J) d"x ( —,
'

@(x)(rp —'7') d (»)

=—r, [5e/5@(t)] + ((t)
dt

with the usual noise correlations

+u, [d'(x)/4!] -h(x)@(x)}+0,
whose random part

Htt = J)d~x ( rtt (x) [—,
' 'g'(x) ] + utt (x)

x [@'(x)/4!]—hit (x)@(x)}

(((x,t) ((x', t') ) = 21 p5(t —t') 5(x —x')

that ensure an equilibrium governed by (I). For the
MSR generating functional ZR(l) we have" '4

1 i

Zs (I) = J, m d Sj J (d }exp L (d, p} +
&

d'x dt i (x, t) p(x, t)

L (@, p} = J/dxdt @(x t) —r'"' +(.p —V')d(x t) +—"' 4'(x t) —h
Bt

' 3!

—r j (xt) +L, ,

r

L„(y, @}= J d xdt ip(x, t) rtt(x)$(x, t) +utt(x) ' —hs(x)y'(x, t)
3l

t .

Here i $(x, t) is a field conjugate to Q(x, t) and we
have taken traces over the noise. The Taylor expan-
sion coeScients in l are the correlation functions of
the field @. The Jacobian' J (@}ensures that Ztt (l)
satisfies the normalization condition

ZR(0) =1 (9)

In particular ZR(0) is independent of the random
variables. The only effect of J(P} is to subtract the
self.-contraction ($(x,t)$(x, t)) wherever it occurs.
What is left is a perturbation expansion whose propa-
gator (P(x, t)qh(x', t')) is retardedwhich thus con-
strains to zero all closed loops built with it." It is im-
mediately seen that, in the absence of the source l,

and because of the nature of the @, @ couplings,
there exists necessarily one such closed loop in each
connected diagram contributing to ZR(i =0); hence,
the normalization (9). We may take advantage of
this property of the generating functional to average
Z(i)/Z(0) over the random degrees of freedom. For
simplicity we shall assume that the only nonvanishing
cumulants in the probability law for the random de-
grees of freedom are given by (white noise)

(rtt (x) rtt (x ) ) = 5„5(x» )

(utt(x) uR(x')) = 5„5(x—«')

(h„(x)h„(x')) = d 5(» —x')

We then obtain, after all traces are taken,

Z(i)=J)~d ~jJ{@}

x exp L, (dP}+„d~xdt l(x, t)y(x, t)

t

L, ($@}=L {@@}+—J)d x d, J)dtig(x, t)qh(x, t)

1

+ 6„„' dt i y(x, t) y'(x, t)

+dh J dti@(x t)

(12)

This is the eA'ective generating functional. It con-
tains new quadratic terms'6 in @ that are nonlocal in
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time [Fig. 1(a)]. In the standard replica trick, the
n =0 limit eliminates closed loop (loops that appear
when one averages Z instead of lnZ) leaving only
contributions with no closed loops for correlation
functions (or with one single loop for (lnZ)). Here

the same result is obtained by a ( @$dt) interaction
[Fig. 1(b)] and the Deker-Haake theorem.

The eff'ective Lagrangian (12) may be analyzed in
the vicinity of the ferromagnetic transitions by the
same techniques that have proven efficient in study-
ing critical statics" and dynamics. ' ' ' At the price
of introducing a renormalization constant associated
with the new vertex ($@)' (and the corresponding
Wilson function) one may then reproduce the results
obtained via the Wilson iterative method for stat-
ics"P" and dynamics. ' The forms (11) and (12) are
also quite handy for computing instanton contribu-
tions.

Extension to fields $ with n components is trivial.
In the presence of a random easy axis as(x), i.e., of
an extra term SH& in (I)

i.e.,

'2

J dt(ig @)
n i

(16)

II. ORDERED PHASE: NONRANDOM SYSTEMS

IY(l, h) =—InZ(l, h) (17)

We define a pseudo-free-energy l

W(l, h) +I'(m, m) = im +hm (18)

(19)

Let us first examine how the MSR functional (6)
can be used for systems which have no random de-
grees of freedom in the ordered phase. In order to
work with the observable (@)= m we perform a
Legendre transform on Z(l, h) or rather on

SH~ =—J) d x (att g)' ——(att)'(4)'
2 p?

QS'
Qh

(20)

the result is slightly more complicated,

5L =——
) d x TrlnA

1 (14)

It is easy to see that I is given by the sum of all
one-particle-irreducible (I-PI) diagrams or, more pre-
cisely, all 1-PI diagrams constructed with the (unper-
turbed) propagators for the response and correlation
functions

1 2
Ajk = Sjk — dr[t4'(t) 0 (t)]aa n~

+ J~ dt[i P&(t)P„(t)

(i @@)p=Rp(k, tp) =
i a) + I'p(k2 +—rp)

(44)o = &o(4 ) ~, , (22)
2I p

I Ql +I pk + fp

+ i@k(t)fj(t) l (15)
We may write

I'(m, m) = L [m, m] + (23)

Expanding the log in powers of J dt i P$ one then
relies on dimensional counting to keep only quadratic
terms (the linear term vanishes) in the critical region,

w
I
I
I

where the dots stand for terms with one loop or
more. Here we only have displayed the zero loop
contribution of I', namely L(m, m). Note further
that (18) is stationary with respect to changes of m, m
(at l, h fixed). The stationarity equations are

it(x, t, ) = I'p' —+(rp —'7') m(x, t)
at

+ —m (x, t) + I'pm(x, t) + . , (24)
Qp

FIG. l. (a) Interactions arising from random tempera-
ture degrees of freedom =5,. The dotted line only carries
zero frequency. (b) Closed loop (built witli 5, interactions)
contribution to response function.

i(x, t) = I'p' —+(r, '7') m(x,t)—
Bt

+ ', m(x, t)m'(x, t) + (2S)

where, once more, only the zero loop contributions
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are exhibited. We see immediately that m =0 unless
the source is present (i.e., I WO) and that (24) be-
comes the equation of state when I =0. From (24)
we may also obtain the free energy (as shown in the
Appendix). Note finally that if we were given any of
the three equations (23)—(25) we could infer the
Lagrangian L governing the dynamics [and generating
(23) —(25)].

III. ORDERED PHASE: RANDOM SYSTEMS .

1 A A

introduce sources
2 L@@+, P—$Pand perform a

further Legendre transform

I =tr[lnG —
~

(Gp) 'G] +K [m, m;G]

where G is a 2 x2 matrix

C R
G= AR' C

and the function

(29)

(30)

The contributions arising from the random terms
L, —L introduce couplings that are completely delo-
calizedin time. Consider the trivial system in which
the only nonvanishing coupling is 4h. We then have

C = ($$) (31)

vanishes when the sources L and l vanish. The free
inverse propagator is given by

C(k, «o) = 2I p

(~+ r—o(ro+ k') ('
L i I+I' (or p+k )2'

(Go) —i

i(a+I p—(rp+k ) H+ht, g(«j) +r p
(32)

5(~)
(r +k2)2 (26)

that is,

C(k, t) =
2

exp[ —
I tl "o(ro+k')]1

rp+k

h

(rp+k )' (27)

The second term is generated by the (delocalized)
source h&8(&p), the first results from the (local)
source I/I p.

This type of persistent-time correlation, survives
when the coupling up is switched on. It is obviously
due to the fact that the eliminated magnetic field h~

is random in space but persists with the same
strength and orientation for all times. If, instead,
there is a random temperature fluctuation around rp,

the persistent-time correlation may only set in below
some critical value rpf.

In the spirit of Edwards and Anderson2 we define
the order parameter as the persistent part of the
correlation function, i.e., the part of

r, +++a„s( ) = . +
IR I'- CC aC

(33)

In the absence of the sources Land l, C=m =0,
and we have

+~ g( )
C(k «i)

[R(k, ~)['

+ . [C,R,R;Cjfc~
sC

(34)

where the last term is the "mass operator" associated
with a correlation function

SK

&c
+ +" 35

l

and the functional E has the property that it does not
break into two disjoint pieces when two lines are cut
(no self-energy parts). Otherwise K contains all di-
agrams built with the vertices up, A„A„,m, m connect-
ed by C, R, or C lines.

Note that 8'is now stationary under variations of
C, R, and C or m and m. The stationarity equation
for C yields

—= C(k, «o) +Q(k)5(«~) (28)

which is proportional to 8(co). Here averages are tak-
en over all fields ($, @, noise and random fields).
Q (k) is an averaged order parameter (the analog of
m). As a field [the analog of @(k, cu)] we shall need
4xo(k) where K and 0 are the Fourier conjugate of
the center-of-mass variables.

Below the ferromagnetic transition temperature
(when there is one) the full correlation function

(@@)acquires a disconnected part which is persistent
in time and space. This piece, which is present
whenever h is p'resent, is not incorporated in Q.

In order to obtain an equation for C it is useful to

R '(k a)) =— +rp+ki
I'p

+ „[CRR",C]~,- (36)

For simplicity, we have only written the terms to two

loop order which are present when m =0 (and when
there is no random coupling, i.e., 5„=0). The full
lines stand for correlations (C), the mixed lines for
responses (R), the dotted lines for 5, interactions.
Together with (34) and (35) we also have an equa-
tion for R
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where the last term is the usual mass operator

C

(the Q lines are drawn as full lines bearing one cross)

—=--x" = Q+SK
SR" + + e ~ y 37 X A ~ = X.~ (C;R;Q) =

The response R and correlation C are determined
by (34)-(37) and related by the fluctuation-
dissipation theorem. Under appropriate circum-
stances (e.g. , when 5» & 0, or in a certain range of
temperature) Eqs. (34) and (35) may contain both a

5(«i) part and a part that is nonlocalized in frequency.
That is, Eq. (34) may split into two distinct equations
We separate them out by writing (34) with C(k, &«)

given by Eq. (28). The new equation for the aver-
aged order parameter Q(k) is obtained by collecting
the 5(r«) contributions to (34) which we now discuss.

Let us first make two remarks on the graphical ex-
pansion of Eqs. (34) and (37).

(i) The graphs are built with local vertices (u«) and
time delocalized vertices (5,). The "random" dotted
lines always carry zero frequency (i.e., there is fre-
quency conservation at each end of the b,„copuling).
Thus if a correlation line carries a 5(r«), it will be
preserved by 5, vertices.

(li) If there are no "random" interaction, b„, then

X@& would be built from one single tree of R lines
each of which ends in a noise field (. Pairs of noise
fields coalesce to give C lines (those pairings are ob-
tained automatically when the trace over the noise
field is taken). Likewise X«« is built as a pair of
trees. The coalescence of a pair of noise fields gives
rise to two types of C lines corresponding to intertree
or intratree connections. Distinguishing between
those two types of correlation lines we may write

X««
=—X««(C, R;C, I (38)

where the last argument stands for the intertree corre-
lation functions. Topologically the intertree C, lines
may be defined as the minimum set of correlation
lines that must be cut to separate X«&(«i) into two

pieces. They are also the only set of lines that may
carry the external frequency ao, and they are thus the
set of lines that must carry the Q(k) 5(r«) part of
C(k, co) in order to contribute to the 5(««) part of
(38).

We then have

~„5( ) = ", -X;;(C;R;QI5(~), (39)

~here the portion of X&& with all intertree correla-
tions replaced by Q's corresponds to the X"of Ma
and Rudnick. It falls apart into two pieces, if all the
random 6, lines and all intertree Q lines are opened

IV. EQUATION OF STATE IN THE ORDERED PHASE

+ 0 ~ ~ (40)

Equations (39) and (40) are the equation of state
for the phase with persistent time correlation. In Eq.
(40) the Q' term is made of one intratree and one
intertree Q, whereas the Q3 term is all intertree.
This last term is opposite in sign to the Q term (u«
is.repulsive but 5„ is attractive). Therefore, unless
higher-order terms damp it out, the Q' term acts as a
destabilizing term.

In the presence of the source field d» (random
magnetic field) there always is a nonzero Q solution
of (39) and (40). In zero field (5» =0) a nonzero
solution may exist below some critical temperature Tf
defined by the existence of a zero eigenvalue for the
matrix

56„(k)/5Q (I) (4l)

To lowest order this condition reduces to the well-
kno~n condition for rof

d"k

(r«f + k') ' (42)

I « = C(k, o))/~R (k, «i)
~

—
X««

Xj« = X««{C;R;CI
—X««5(r«)

(43)

(44)

where X«& is given by (35) and X«& by (34), give C,
the time-dependent (nonpersistent) part of the corre-
lation function, the only part that is related to R via
the fluctuation-dissipation theorem

C(k, o)) = (2/«i) ImR (k, «i) (45)

It is easily seen that if X~«(C;R;Q) were linear in its
intertree Q dependence (linear in the Q exhibited ar-
gument) the Ma-Rudnick theorem'«would be exact
and would lead to C(«i) = a&

'i' near zero frequency.
This is certainly true at. T& and nearby where the des-
tabilizing term in (40) is irrelevant. However, when
the value of Q is not small, the cubic term becomes
more important, cutting off the co ' ' divergence.
The destabilizing terms and their effects require more
careful investigation. Do higher-order terms damp
them out? If not, and they are genuinely present,
where do they drive the ordered phase, and with
what characteristic time?

The equations of state (39) and (40) describe the
ordered phase and its order parameter below T~. The
companion equations
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The formalism outlined here allows for the detailed
investigation of these questions. It also enables us to
study the dynamics of the order parameter. Indeed
by letting the sources Lgp+ H@@depend on the
center of mass in space and time, we generate an
average order parameter 0» o (k) S(co) (similar to
mk in the ferromagnetic case). By inspecting the
resulting (time-dependent) equation of state one may
infer the form of the Lagrangian of the composite
field variables 4» o(k) which describe the dynamics
of the order parameter. %'e will examine this ques-
tion elsewhere.

Finally let us note that the same treatment may be
applied to the random bond spin model by (i)
transforming to continuous spin variables (Stratono-
vich transform); (ii) guessing a stochastic equation of
motion for them. In its simplest form it may be tak-
en as a purely relaxational equation for the ferro and
antiferro combinations of the spin variables, with the
appropriate noise fluctuation to ensure a proper
equilibrium limit; and (iii) expanding the hyperbolic
tangent of the local field variables, and averaging the
resulting MSR Lagrangian over bonds.

In this case we also find that the equation of state
contains cubic attractive terms. This fact may not be
too surprising since an attractive coupling appears in
the replica Hamiltonian of Harris, Lubensky, and
Chen in the n =0 limit.

Wore added in proof Global consi.derations show
that the destabilizing terms of the Ising model (or
models with fixed length fields) are damped out for
large fields in contrast with, e.g. , the above continu-
ous $4 model where the destabilization appears to be
genuine.
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The standard free energy is defined as

W(h) +I'(m) =Am (Al)

where

SW/Sh =m (A2)

i.e.,

SI'/Sm = h (A3)

Equation (24) taken for I =0, m =0 gives Ii {m }
where m(x, t) is not necessarily time independent.
By integrating (24) one may define

pm
I {m}=~I Smh {m}+I{m =0} (A4)

that is,

{@}mm contribution to I (weight —}. (b}
2

Corresponding m contribution to V (weight —}.
8
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1 1

"{m}=J~drd x —m(xi) I'o' —+(ro —V') m(xr)+ 'm4(xr) + +I {m =0}
2

(AS)

where we have only exhibited the zero loop term.
The dots stand for the 1-PI graphs built with MSR
rules where one m is replaced by one m (and then m

set equal to zero) with the appropriate weight due to
the functional integration. An example is given in
Fig. 2. Finally I {m =0}are the I-PI graphs contain-
ing no m, obtained directly from the statics. The
time-dependent free energy (AS) enjoys the usual
stationarity property under changes of m(x, t)
The form (AS) may also be retrieved by direct

resummations of

W= W(uo=0) + J duo(d~x dt, '
)

4(x, r)

(A6)

~here the average is computed with the weight eL. It
is easily shown by effecting the frequency integrals
that (A6) itself reduces to —intre H in the m =0
disordered phase.
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