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Two-dimensional Ising model near T, : Approximation for small magnetic field
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The study of the equation of state of the two-dimensional Ising model is initiated by use of the recently
calculated n-point spin-correlation functions. In the scaling region where T—+T, and
h = B~l —T,/T! '"' (H/kT, ) is of order l (B is a lattice-dependent constant) the free energy below
T, is of the form f(T, h) —f(T,O) = const(l —T, /T) g"„,(1/n!)C „h" where the lattice-dependent
constant is chosen so that C

&
——1. The constant C2 has been studied previously. In this paper we study

C 3 and C4 and find as a first approximation C 3/3! ——11/72m and C4/4f - 5/189m + 59/162m'. These
are in close agreement with the low-temperature-series values of —0.01538 and 0,0195.
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where oj = +1, j (l's) specifies the row (column) of
the lattice and E, (E,) is the horizontal (vertical)
interaction energy. If we consider a finite lattice
of% rows and X columns, the free energy per spin is
given by

f(T, H) = kT lim(DR%) '
lnZs-ttst, (1.2)

where the partition function Sz„z is

I. INTRODUCTION

In 1944 Onsager' published his remarkable cal-
culation of the free energy of the two-dimensional
Ising model in the absence of an external magnetic
field H. The extension of Onsager's calculation
to the case H40 has remained as one of the most
challenging problems in statistical mechanics.

There are at least two distinct ways in which one
can attempt to extend Onsager's calculation to
H 0. Either one can find an entirely new method
of solution which will produce the H 40 free energy
in one shot, or one can expand the free energy in
a power series in H and compute the coefficients
in terms of spin-correlation functions evaluated
at H= 0. Since no one has made any progress with
the first approach, it is the purpose of this paper
to initiate the use of the recent calculation, car-
ried out in collaboration with Tracy, of n-spin
correlation functions of the two-dimensional Ising
model at H=O to study the equation of state by the
second of these two procedures.

The energy for the two-dimensional Ising model
in the presence of an external field H is

and the sum is over all 0& ~
—-+1. Let the ri-spin

correlation function at H = 0' in the infinite lattice
be

S„(R„.. . , B„)-S,(R„.. . , R,)S„,(R„„.. . , R„) .

(1.6)

%e define the connected part of the n-point cor-
relation S'„as S„(R„,. . . , R„) with all the limiting
behavior (1.6) subtracted out so that S„'(R„.. . , R„)
goes to zero when the separation between any

.points or sets of points becomes large. Explicitly

Ss(R„Bs)= Ss(B„Rs)—Ks, (1.7a)

Ss(Rt, Rs, Bs) = Ss(Rt& Rs, Rs)

-K [Ss(R t, Rs) + Ss(Rt, Rs)

+ S,(R„R,)]+2%s, (1.7b)

S„(R„R„.. . . , R„)=lim lim(o„o„. . . on ).
Q ~oo

(1.4)

For the translationally invariant lattice (1.1), S„
is translationally invariant and, in particular,

S,(R,) =K = [1—(sinh 2PE, sinh 2PE, ) s]'/s (1.5)

is the spontaneous magnetization. '
The correlation function S„has the property that

if the n variables g„.. . , g„are divided into two
sets 8„.. .g, and g„i, . . . , g„and if the distance
between points in each set is fixed while the
separation between the two sets becomes infinite,
then
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S~(1,2,3,4) = S~(1,2,3,4)-3R [Sn(1,2,3)+ S3(1,2,4) + Ss(1,3,4) + Sn(2, 3,4)]

-[S,(1,2)S2(3,4)+ S2(1,3)S,(2,4) + S2(1,4)S2(2,3)]

+ 29R [S (1,2)+ S (1,3)+S (1,4) + S (2,3)+ S (2,4)+ S (3,4)] —6K, (1.Vc)

where in the last line the variable 8 is suppressed.
It is well known that (he free energy is given in
terms of S'„(R„R„.. . , R„) as

(n& T ff n

f(T, H)=f(T, O) —kT Q (, (1.8)
n=, l

It has recently been shown' that for T&T,

S„(R„.. . , R ) =3R "e n' x ~" n'n

where

(1.10)

where

f (n&(T)

Agee ~ ~ QBg ]

S'„(O,R„.. . , R„,) . (1.9)

E.(R„.. . , R„)=g E„"'(R„.. . , R„), (1.11)

with

E(n&(R„. . . , R„)=——1
[2z, (1 —z2)]

~ 1

Tr[a(1 2). . .x(2k-l 2k)]
(4 2( ( 4 2() sin2( 4( Agl 2

(1.12a)

Here A{2l—1, 2l) isannxn matrix with elements,

A(2/ —1, 2l) i~~
—0,

A(2l —l, 2l) i » —- sgn(M»)

&( exp(-iM»(t&„„,-(,N»p„) (1.12c)

&n„~=M
~ [z,(1 —z', )] '~'

~
z,z, + z, +,-1

~
(1.13a)

Moreover, it was shown tha, t if T-T, (z,z, +z,
+z, -1) and all ~R, —R~ ~'=M', ~+N', ~- ~ such that

42(&+1 Al& t&2n+2 42 s

R =(M, N ) (in a row, column notation),

M ~=M -M~, N ~=N -N~,

a(y„(t&,) = (1+ z', ) (1+z,') —2z, (1 —z', )cosy,
—2z, (l —z', )cos(t&„

(1.12d)

(1.12e)

n.,=N.,[z,(l-z;)]-'~ ~z,z, +z, +z, 1~ (1.131&)

are fixed for all n, P then [calling r„=(m, n )]

s„(r„.. . , r„)=limK "S„(R„.. . , R„)=e n

(1.14)

exists with

z, = tanh P&, (i = 1,2),
sgnx=+1 if x&0, -1 if x&0, either +1 if x=0,
and the limit e -0' is understood.

f.(~„,&;)=Q f."&(&„,~.)
k"-1

where

(1.15)

f (n&(& & ) (2&2)-n dx, . . .dxn dy, . . .dy» 'g (1+x2(+y2() ' ' "'. Tr[a(l)a(2). . .a(k)],
Xg-X) g+ ZC

(1.16)

and a(l) is an n x n matrix with elements
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a(l) ~ff =0, a(f) ~/„= sgn(m»)exp( i-mfny, —in/nx, ) . (1.17)

In this paper, we will initiate the study of f (T, H) near T, for T& T, by using the expression (1.14) in
(1.8) and (1.9). We can then write (1.9) for T- T, as

[Z Z (1 g2) (1 Z2)]&n 1)/2 n n 1 n 1
f'"'(T)-K" ', ' ' ', „&n» dm, dn, s'„(0,r„.. . , r„,)

[Z,Z2+ Z1+ Z ~I n ~

(1.18)

Furthermore, as T-T,

(giz2+ zi+ z2 —1) T (1.19)

where

A =4(z„+z„}[Pg,(I -z„) '+ P,E,(1 —z„}'],
(1.20a)

[4(.„+.„)]'/
8z,~„[iI,E,(l-g„) '+P, E2(1 —z„) ']""'

(1.20b)

k (H/kT ) (T /T 1)-13/3II (1.24)

we may rewrite (1.8) in the region where T- T,
and k is fixed as

f (T,k) -f (T,O) - —8kT, z„z„[P,E,(1 -g„) '

+ p, E2(1 —z„) ']'

P, = 1/kT, gn
~

n=1

(1.25)

Z1P2c+ Zic+ Z2c —.

Thus, if we write as T-T,
(1.21)

In this paper, we restrict our consideration to
C,, C, , and C4. Then, using (1.7) and (1.14) in
(1.23) we have

f&n&(T) C - (T /T I)2-&13/3&n~i/3 Hn-1 (I 22)

the numbers C „"will be independent of both tem-
perature and the lattice-dependent constants E,
and E2 and are given as C, = I and

C =
2

C3=

d2r (ef2(0e 1)I)'

d2& ~&f3 o 1 r2 &f2(0 ~1)
1 2~

(1.26a)

C =
n

co n I'"[ dm, dn, s'„(O,r„.. . , r„,) (1.23)
l=1

for n~ 2. Then, defining a scaled magnetic field
as

e~2 2 g 2 1 2 +2~/ p

(1.26b)

[Sf+(0123) (ef3(012)+ef3&013) + S/3&023&+e/3( 3&) (ef2(0 )+/2&23&+S/2&02&+f2(13)+ef2(03)+f2(12))

+ 2(ef2(01)+ef2(02)+sf2(03} f2(12} +ef2(13&+ef2(23)) 6] (1.26c)

To proceed further we use the representation of
f„as an infinite series and expand the exponentials.
In this paper, we study C, , C,, and C~ in the ap-
proximation of keeping the first connected term
f'„'"' and the related connected terms f'„'"' k&n
which are required to produce a globally rotation-
ally invariant function. In f, the term f,"' by it-

self is globally rotationally invariant. However,
in a previous publications we saw that f,"' was not
globally rotationally invariant but that the com-
bination f,"'+f 4' does have this property. In
Sec. III we will study this question for f4 and find
that f4"4'+f2""+f2""is the smallest globally ro-
tationally invariant set. Therefore, our leading
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approximation is

f,(0,r) -f2(2'(O, r),
f, (O,r„r,)-f,(0,r,)+f,(0 r2)+f,(r„r,)

+ [y('&(O,r„r,)+f;(4&(o,r„r,)],

(1.27 a)

(1.27b)

and

3 d'r, d'r, ff, (O,r, )f,(r„r,)

+f,(0,r,)f,(0,r,) +f,(0,r,}f,(r,r,)

+ [f,"'(O,r„r,)+f;"'(O,r„r,)]),
f4(0123) -f2(01)+f,(02)+f2(03) +f,(12)

+f,(13)+f,(23)+f;(012)+f;(013)
+f;(023)+f '(123)

+ [f' ' (0123)+f'"'(0123) +f' "(0123)].

(1.27c)

Thus, using (1.27) in (1.26) we find

which, using (1.27a) becomes

3(I (2))2+I (4)
3 2 3

where

m OQ

(1.29)

(1.30)

(1.31)

( - I (2) d2rf(2)(0 r)
~CO

(1.28) Finally,

C4-12 d rI 2 O,r, d'r, d'r3 s 2 3 + 3 O,r»r,

+16 d'r, d'r d'r f"'(O,r, ) f22'(r„r2)f22'(r»r2) + d'r, d'r, d'r (f'"'+f'"'+f"") (1.32)

which may be written as

C--16(I-(2&)2+ 12I-(4)I-(2)+I-(4&

where

(1.33)

show that

so that from (1.33)

(1.38)

d2r d2r d2r

(1.34}

In obtaining (1.32) from (1.26) and (1.27) the fur-
ther approximation is made that in products II,
f „'","only terms where Z( k( ( 6 are retained.

The integral for I,"' has been evaluated pre-
viously in the study of the magnetic susceptibil-
ity. A simple evaluation is given here in the
Appendix. We find

I2' '= I/6)(-0. 053051647 VO. (1.35)

I-~4& = -~"
3

so that from (1.30)

C,/3! - —11/72(r -—0.015479 6252.

Finally I4"' is evaluated in Sec. IV where we

(1.36)

(1.37)

The integral I,' ' is evaluated in Sec. II where we
show that

C2 = 0.053 102 5 893 ~ ~ ~ (1.40)

The close (O. l%%uo) agreement between the C2 and
the approximation I,"' encourages us to believe
that (1.3V) and (1.39) are also close approxima-
tions to C, and C4.

The numbers C„ for n = 1,2,3,4, and 5 have been
studied by means of low-temperature series by
Essam and Hunter. ' From their calculation of
f'"'(T) on the s(luare (E, =E2} lattice for T-T„
we find the lattice-independent C„" of Table I. We

C4/4! -—' )( '+ —'2 w
' -0.020 166825 66 . (1.39)

The approximation in these calculations is sys-
tematic, in the sense that by retaining further
terms in the expansion of f„a more accurate ex-
pansion may be obtained. However, because there
is no a Priori small paramete'r, it may be ques-
tioned how numerically good approximations (1.37}
and (1.39}are. One partial answer to this is that
for C,, the integral (1.26a) has been carried out
numerically' with the result that
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TABLE I. Values of C„/n!

Series expansion of Essam and Hunter Leading approximation from this paper

1 (exact)

0.026 70 + 0.000 12

1 (exact)

- 0.026 526
1

-0.015 38 + 0.000 16

0.019 5 + 0.000 4

ll
2 -0.015480

727r

59+, 3
- 0.020 167

-0.048 +0.006

also give these the error e quoted by Essam and
Hunter. Note that C, of (1.3V) agrees with C, of
Table I to within the given error and C4 of (1.39)
agrees to 1-,' the given error. Furthermore, by
(1.40), since for n = 2 our leading approximation is
more accurate than the numerical value of Essam
and Hunter, it is perhaps not unreasonable to ex-
pect the same to be true for n = 3 and 4.

II. EVALUATION OF I 3

To evaluate I,(~) of (1.31), we consider first
the region where the vertical coordinates ply and

m, satisfy

distinct term (of weight 6) for 0= 3 and 3 distinct
connected terms (of weight 4) for k= 4. These are
graphically represented in Fig. 1. We saw pre-
viously' that these four diagrams taken together
are rotationally invariant across the lines m, =m,
or m, =0. We further saw that f,'3' could be very
conveniently combined with the term of f 4' rep-
resented by Fig. 1(b) by changing the signs of one
of the ic in (1.16). The integrals of diagrams 1(c)
and 1(d) over the region (2.1) are equal by sym-
metry consideration. Thus, if we take into ac-
count that the contributions from the five other
regions similar to (3.1) will give identical contri-
butions we have

0&m, &m, . (2.1) I,(4) = 6(g, + 2Z,}, (2.2)

In the trace in the integrand of (1.16}there is one where after integrating (1.16}over the y variables

Z, = ——,'(2)))~ dm . dm,
0

dn dn. dx dx dx dx (1+x2)-»2(1/x2)-»2(1+x2)-~+(I+ /)

—(1+x,*)' 'x((xx,')' * (1+x',)' *+(1+x',)' ')
Xy ~ X2 X2 —Ã3+ $C

(1+xx) 1* ((+xx) 1*)
(

(1+x*) 1 ( )(1x}xx*
(X

X3 X@ X4 —X~ —ZC

x exp{-m, [(1+H)')" + (1+x,'}'~'] —(m, —m, )

x [(1+xa)' ~'+ (1+x4)'~ ] —i n, (x, —x2) -i(n, —~)(xs —xg)j ~

(2.3a)

(b) (c) (d)

FIG. 1. Four unlabeled
connected graphs of three
and four lines that contrib-
ute to f& in the region
0& m, &m, .
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00 m2 OO oe{

Z =-/02m)~ dm dm dn dn Cx dh dx Ck (1+x,) ' (1+h ) /0(1+x ) '/ (1+x ) '/
0 0 22200 22200

(1+2*,)' '-(1+h')' * -({hh*)'1*+({+ )h'h)h
XJ X X2 ~XS

(1+2)' —(1+2)'1 —(1+2)' +(1+h,)'
)X3 X4 X4 Xj

x exp(-m|[(1+x0)'/'+ (1+x2)' ']-m [(1+x)'++(1+x )' ']

-in, (x, —x,)-in, (x, —x,)). (2.2b)

Consider first Z, . The g, integrals are easily done to give 5 functions. Then the x2 and x4 integrals are
carried out and we find

1+ x "/'+ /1+ x' '/'
Z, = —,'(2w) ' Cm, dm, dx, dx, (1+x') '/' (1+x,') '/' x, x,

0 m 1 3

x exp[-m, 2(l+ x', )'/' —(m, -m, )2(l+ x',}'/']. (2.4)

Then using the variable m» =m, —m, instead of m, the integrals over m, and m» are done and we
obtain

t, =. -(2h)' f ch, ch, (1+h', )*(1+h*)' ({ + ') +{ +*')
)X) —X3+ Zf

We treat Z, in a similar manner. First carry out the n, integrations and then do the z2 and z4

integrals to obtain

(2 5)

z, = --,'(2w)-' dm, dm, dx, dx, (1+x,) '/'(1+x,')-'/'x, x, ~ 2) ~ sh
m2 &&+ x &' —&1+g & ~

0 wOO . mO X] g3

x exp[ 2m (1+x2)» 2m (1+x2)2/2] (2 5)

The integrand is symmetric in x, and x3 so the m, integrand may be extended from O-m, to 0- ~
if we divide by 2. Therefore,

(1+x2)2 /0 (1 ~ xa)2/2 2

2Z, =--(')(2w} ' dx, Ch, (1+x', )~ (1+x',) ' x,x,
~00 1 3

(2.7)

We rgay now add (2.5) and (2.7) to obtain

z, +2Z, =-,'{2h)*f c c (2+ h)'h(1+hh')1"*hh{h, —h, +{a)*.
moo

If we now write

(h2 —x0+ it) = 2 — (x2 —x0 + ie)-2
~+$

(2;9)

and integrate by parts we find

+ t, c=-,'( 2)'* f2hch, ch (2+ 2*)'™({+hl) ~' [2 &-(1+h)(2+ ))hh
a 2 00

2-3 2
OO ?

—-'(2„)-&
'

dx(1+x0)-&/2 -3 dx (1+x',) '/' Ck, (1+x')~ ' + 2 dx(1+ x') '/'
2

(2.10)
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These integrals a.re readily evaluated as beta
functions' and we obtain

Substituting (2.11) in (2.2) we obtain (1.36).

Z, +2Z2= Sm
' 1 &

—3 I'
& 2 '+~ r —,

' -~
HI. COMBINATION OF FOUR-POINT GRAPHS

1 ~2
tt

6 (2.11)
There are 31 different connected unlabeled

graphs of 4, 5, and 6 lines that contribute to f4
when the vertical coordinates are ordered

22 m~ &m2&rn3 &m4. (3.1)

2 +
I2

Zi = + Zie= +

These are shown in Fig. 2. To interpret this fig-
ure, several remarks are needed: (i) There are
two generic six-line diagrams which we eall z and

y as indicated on the figure. (ii) By the symbol on
the left of each set of diagrams we mean the sum
of aQ labeled diagrams represented by the unla-
beled graphs shown. (iii) The first subscript in-
dicates half the number of poles where the ia
prescription is needed in the six-line graphs.
(iv) Along with the six-line graphs which have
poles, we group the related four- and five-line
graphs which are related by changing the sign of
some of the ie. (v) The relation between labeled
and unlabeled graphs is illustrated in Fig. 3.

Ol 02 08

OO 05 2 5 + 5 CYCLIC
PER MUTAT IONS

(b)

+ I/2

Vip
+ I./2

6 + 5 CYCLIC
PE RMUTAT IONS

"Ol

FIG. 2. Thirty-one unlabeled connected graphs of four,
five, and six lines which contribute to f4 in the region
m& &m2& ms& m4. There are two generic types of graphs
for 0=6 which we call g and y. The first index in the
subscript indicates half of the number of effective i~
terms in the six-line graphs. The graphs are grouped
into sets which are combined using various signs of i&

in the six line graph.

+ 5 CYCLIC
PERMUTATIONS

FIG. 3. Relation between labeled and unlabeled six-
line graphs.
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The combination of terms referredto in point 4 has been previously discussed' for the Z diagrams.
From that discussion we have the following

.i

z2 2 (z2x+ z2 ) 1

where

',3.2)

ez„=i''-' (2m) ' dx, (1+x2g) '~'
eCO

(1+x')' +(1+x)'1
)

((1+x')'1'+((+xx)'&' ((1+x)'1 -((+xx)'&
)Xl —X2+ ZC X2 —X3+ &~1 X3 ~ X4

(—(1+x*)' ' —(1+x')'l* -(1+x')'1*—(1+x')'l' (-(1+x*)'l'+(1+xx)'l')
X4 —X5 —ZC x -x —2f5 6 X Xl6

x exp[ m [(I + x2)~)'~+ (I+x2)~)'2] m [(I+x2)~ @+( I + x2)&/2]

—rq„[(I+x,')' ~'+ (I + x,')' ~'] -in„(x, —x,) - in~(x, —x,) —in„(x, -x,)), (3.3)

—1+x', ' '+ 1+x,' ' ' 1+x,' ' '+ 1+x,' '~' 1+x' '~2- 1+, '~2

4xl l

$ =1 Xl X2 X2 -X3+ Z C x ~ x3 4

-(1+x')' '-(1+x')' ') (
-((xx')' *+(1+x')' ') ((1+x')' '-(1+x)' *)(X

X4 —X5 —SC X5 X6 X6 XJ

x exp[-m, [(1+x')' '+ (1+x )')"]—m [(1+x')' '+ (1+x )')"]—m„[(1+x,')'&+ (1+x )'~']

—in„(x, —x,) - in~(x, —x,) —in„(x, -x,)j, (3.4a)

~12 ~11 2 3

8 =z r r r r2 r
(3.41)

(3.4c)

z14 zl„and z16 are obtained from +11 812 and ~», respectively, by up-down reversal, and lastly

, ,1, (-(1+x')'1'+ (1+xx)'1') (((+x,')'1*—(1+x')'1') (-((+x*,)'1*+((+x')'x)
~ ~ x Xl —X2 X2 X3 X3 X4l=1

(1+x')' ' —(1+x)' (1+x,')'1'+(1+x', )
' (1+x',)' ' —(1+x,*)'1')

X4 X5 X5 X6 X6 Xl

x exp(-m [(1+x')' ~'+ (1+x')')"]—m [(1+x')' ~'+ (1+xz)' ~']

—m „[(1+x',)'~'+ (1+x',)'~'] —in„(x, —x,) —in„(x, —x,) —in„(x, —x,)), (3.5a)

S02 ZP1 r2 r
803 801

04 01

zo5= z„ lr, -r„r,-r„r,-r, .

! r2 rj r3 r4, r4 r2

!r2 " r -r r-r

(3.5b)

(3.5c)

(3.5d)

(3.5e)

time we will make this manifest by explicitly aver-
aging over both signs.

A similar method exists to combine the diagrams
in y» (and y»). The four terms which contribute to
y» are [see Fig. 2(b)]

It is useful to note that the forms (3.2) and (3.4)
are independent of the sign of &. From time to

1
~11 ~11,1 ~ll, 2 ~ll, 3 2 ~ll~ 4

where

(3.6)
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(1+x',)"'+(1+x,')'" (1+x',)'"+(1+x,')"* (1+x,')"' ((+xx')"*)
X~ —X2 '

Xa —X3+ tg

-((xxg'"+ ()xx*,)"') (((xx',)"'- (1+x,')"')(-(1+x')'1'—(1+x,*)"')
(X

Xy~ Xs X, —X6 X,- X, +gg

x(enp( m»[(1~x'g)"'~(1~M)'"] m„[(1+x'g)"*~(1~2)"*]
m»[(1+xg)'~g+ (1+xg)~~g] —in»(x, —x,) —ingg(xg —xg) -in»(x, —xg)j+ r, —rg),

(3.Va)

~+ ~ + ~+X~ j+X2 — ~+ s
~I )xx( I~ X~ —X~+ Z& Xp ~ Xs. 40

- ()+x',)'i*+((+x')"* (1+x')'i' (1+x*,)"' -((xx,*)'1'x(1+x)'")
X ~ X4 Xy ~ X5 Xs XJ

x gnrp( mg, (l+x~g)'~ ' mgg[(1+ xggPI g+ (1+xg)'~'] —mgg(1+ xgg)' '- m»(1+ x'g)'~g

ZP2y2Xg $Ã2g LX2 —Xg) N224X4 ZS4gXS p (3.Vb)

Sl % 5 / gy y/g ~+X] + 1+ g
' lyX2 /AXj ct ~1

]}11

—(1+",')'"+ (1+x,')' ')((1+x,')' ' —(1+x',)' *)(-((+x,'j"'+{1+x,')"'j
c

X
Xs ~Xy X4~ Xs 5 1

xexp[™„(1+x,')' '- m„[(1+x',)' '+(1+x,')' '] m»(1+x', )'~* m»(1+x', )'~'

-in»x, —in, 4(x, —x,) —in„x, —in»x, j, (3.Vc)

1„,= ('(lx)- (j'd„.(lx„)-l ((1+x')'{'—(1+x')'"j(-(}xx'}'"+(1+x'}'")
t il.)(.

Xl 2 XQ . X3

((xxi''~*- ()xx,')'1' —(1+x,')"'x((xx'}'~*)
X3 ~ Xy Xg Xy

x exp[-mg, (l+ x~) —mgg(l+ xg) —m~(1+ xg)'~g —m»(1+ xg)'~g

4in„x, zng~, —gn„xg —gn„x,]. (3.Vd)

%e combine these diagrams together in terms of the function

,g, -(1+x')"'+(jxx'}'1' (1+x',}'1*+(}+A'1')
Xg X2 X2 X3+ gal~gO

g

((xx')"'-((+x'J'{' -(1+x')"'x ((xxx}'&')
X3 ~ Xg X4 ~Xg

„j(1+x',)"'- (1+x',)'" -{1+x,')'" ()xx,')"')
xg . xg. xg+g'Kg

x (exp(-mg, [(1+x,)~~g+ (1+x,)'~ ] —mgg[(1+xg)'~g+ (1+x,)~~g)

- m„[(1+x,')' ' y (1+xg)' '] in»(x, —x,) —in, g(x, —xg) —in»(x, —xJj+ rg —r,) .
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Thus, using

1
+2vH(z),

z —2& z+1& (3 9)

when we have taken advantage of the remark after
(3.5) to average over the sign of q.

Secondly, define for the region (3.1)

we have Z, = d'r, d'r, d'r, (z»+z»+z13) (4.4)

~11,++ ~1121 &

~11,+- ~ll, 1+ ~11,2 ~1123 &

~ll, -+ ~11., 1 ~11,2 ~11,3 &

~11,1 ~11,2 ~», 3+ 11,4 '

Hence, we obtain the desired combination
1= 2(y-, „+3V -„-+3&-,-,+ V-, —).

(3.10a)

(3.10b)

(3.10c)

(3.10d)

(3.11)

ll' 43 & m31 m21

&m31 &0p m21 (m31+m43 j

(4.5a.)

(4.5 )

we can carry out this integral by directly substi-
tuting (3.4} for the three terms andkeeping the re-
striction (3.1). However, it is far more conven-
ient to consider z», z», or z» as functions of
m31 m43 and m21 where

We may now examine the question of global ro-
tational invariances as we did in a previous pub-
lication' for three-point graphs. We may show
that the sum of all the z and y graphs is globally
rotationally invariant, but that either the z or the

y graphs taken separately have discontinuities.

(4.5c)

m„&0, m„&0, m„&0. (4.6)

z]3 m43&0p m31 &07 m21&m31+m43 o

Here (4.5a} is the same as (3.1), (4.5b) is the
same as m, &m2&m, &m4 and (4.5c} is the same as
m, &m3&m4&m2. The sum of all three regions in
(4.5} is the single region

IV. EVALUATIONOFI t'
~

We evaluate I4"' by integrating the z and y
graphs separately over r„r„and r4. In Sec. III,
we have given the explicit expression for the terms
of z and y in the region (3.1). The integrals over
the other 4!-1 regions will be equal by symmetry.
%e treat the z and j graphs in separate subsec-
tions.

Thus the m, integrals are easily done and we find

Z, =-2 (2v) ' dx, dx, dx, (1+x,') (1+x',)

x(1+x',)-'x,x,

Xl X2

A. Evaluation of z integrals
(l+ 2)1/2+(]+x2)1/2 2

X2 —X3+ E&

(4.7)

To integrate the z graphs we proceed in several
stages. First consider the region (3.1).

Z, = d'r, d'r, d'r, z,(r„r„r„r,),

m21 &m32&0, m43&0. (4.2)

Since z2 depends only on m21 m32 m43 the m,
integrals are also easily done and we obtain

where z, is given by (3.2). The n», n22, n2~ i«e-
grals are done to give 5 functions. Moreover, the
integral over the vertical coordinates in the region
(3.1) is just the integral over the region

By up-down symmetry, the contribution from
the graphs z,4, z», and z„ is also Zl which is
best expressed in the equivalent forrp

Z, =-2 '(2v) ' ~ dx, dx, dx, (1+x,'} '(1+ x,') ' '

x(1+x,)- x,x,

(1+x,')''+(1+x,')'*)*
Xl —X2+ Zg

(]'x2)1/2 (1+x2)1/2 2

X2 —X3

Z, =2 'Q(2z) '
dXl dX2 dX3 Finally, we consider under the restriction (3.1)

x(1+x,') '(1+x,') ' '(1+x',) 'x,x,
(1+x,')'i'x(1+x', )'1')*

Xl —X2+ $&

x 2 3 (4 3)
(1+x')' +(1+x )

X2 —X3+ 2&1 m» &0, m4, &0, and m43&0 (4.9)

Z0 = d'r2 d'x3 d x4 z01+ z02+ z03+ z04+ z05 4.8

with z„given by (3.5). We now consider (4.8) with
the integrands all given by (3.5a) which is a func-
tion of the variable PE21 m41 and m43 with the
restriction equivalent to (3.1) that
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in all regions and

t»xx0$ m4$ ~ SZ43 + SZ2$ (4.10a)

02 43 + fft2y Pl4y RZ4y m43 ~4g m2g

1 /x 00

2//(]) =- Q dx'(1+x") '/' (x- x'+ ig)-2
2 dx'

d2 1 dx(1+x")-'/'(x x+,,)-1.
4x 2

03' 43 m411 ~21 ~4l. P

804» Sl2y ~ Vl4$ ~0143 j

805 m43 & m4$ W2g ~

(4.10b)

(4.10c)

(4.10d)

(4.10e)

Using (4.13) we thus find

(4.16)

'&(f) =2(1+ h ') ' —2(1+ h ') ' —I($), (4.17)
d$ df

where

The sum of these five regions is just the single
region (4.9). Therefore, the n; and m, integrals
are easily done and we find

Z, =2 '(2xl' I dx, dx, dx,(1+x,') '(1+x', )
00)

(1+x ') ' t ' —(1+x ')"'
)'x(1+x,') 'x,x,

Xl —X2

I(&) =
—$'+ f' '+ig

(4.18)

(t\)= E 'Jl d('(, t, ,)((+1') '.
o ( —$'+iq &'+ $

'

(4.19)

The integrand may be factorized and decomposed
by partial fractions to give

(1 + x 2)1/2 (1+ 2)1/2 2

(X
X2- X3

(4.11)
Therefore,

i(t.) =(4h ~)/(~+ t-') (4.20)

Accordingly, if we call Z the contribution to
I»

"' from the z graphs satisfying (3.1), we use
(4.3), (4.7) and (4.11) and obtain

Z Z2+ 2Z~+ Zo

and hence from (4.17)

$3
u (~) =16,, [3(1—f')+ 2((' 4('+ 1-)ln(].

(1+ f')'
(4.21)

Thus, substituting in (4.14) and using the variable

=- Q(2w) '
6, 6y

dx, dx, dx, (1+x',) "'

x (1+x') '/'(1+x')-'/'

2 2( i — 2" &) ( 2
—XZ+«2) ~

(4.12)

$2

we are left with

Z=(2x) '2 f dt1 (1+t) ''
0

x [3(1 t')+ (t' —4t+1)lnt]'.

(4.22)

x,—.(&, —&, ). (4.13)

We now proceed to evaluate the triple integral.
First use the change of variable

(4.23)

To proceed further we expand the square and
write

To fxnd

Z=(2)/) ' —[2()(])]', (4.14)

Z = 2»)/ 2(9A + 6B+C),

where

(4.24)

where

2()(() = 2()(x)

=1 00

dx'x'(1+x") '/'(x- x'+i&) '.

dt 1+t 't' 1 —t ',
0

(4.25a)

"0
dt (1+t) 't'(1 —t)(t' —4t+ 1)lnt, (4.25b)

(4.15)

ttx 00

C =
J dt (1+ t) "t'(t' —4t+ 1)'ln't.

0
(4.25c)

If we integrate this by parts the boundary terms
vanish and we find

The first integral is easily expressed in terms
of beta functions' as
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A = 2 [B(3,5) —B(4,4) ]

= [r(8)] '2[r(3)1"(5)—I"'(4)]

x3
71

(4.26)

Secondly we write J3 as

8 «oo

B= — dt (1+t)-'t't'(1 —t)(t' - 4t+1) i, ,
8$ p

00

dt(1+t) 't (t' —5t'+5t —1)i,~
8+ p

8
[B(6+q, 3 g) —5B(5+ q, 4 —q} + 5B(4+ c, 5 —&) —B(3+e, 6- «)] i,w

1 8
= ———[I (6+ t)I (3 —q) —5I (5+ c)r(4 - 6) + 5r(4+ e}r(5—e) —r(3+ 6)r(6 —c)]i,8f 8q

Thus, using the recursion relation for r(s)

(4.27)

B= ——[(5+c)(4+ ~)(3+ e) —5(4+ ~)(3+ ~)(3 —e)+ 5(3+ e)(3 —e)(4 —e) - (3 —e}(4- e)(5 —e)] r(3 —e)r(3+ ~) i.=o
1 8

1 8= ———4gr(3 —q)r(3+q) i, 0
8f 8&

(4.28)

Thirdly, we write

82 ~4

c = — dt(1+ t) iot "(t —8t'+ 1st —st+ 1)I.= 0
8g p

which is expressed in terms of I' functions as

(4 29)

1 8'
C = [r(7+,)r(3 ~) Sr(6+~)r(4 ~) + ISr(5+ &)r(5 ~) Sr(4+ ~)r(6 ~) + r(3+ e)r(7 —~)]i,=, .9) 8g2

(4.30)

Thus, using the recurrence relation for 1" we have

82
[(6+g)(5+ g)(4+ g)(3+ e) —8(5+ e)(4+ g)(9 —g')+ 18(16—q')(9 —g')

9 'f 8~2

—8(9 —e')(4 —e)(5 —e}+(6 —e)(5 —~)(4 —~)(3 —e)] r(3+ ~)r(3 —&) i, = o

1= ——[4(12 —e') r(3+ ~)r(3 —a) ] i, ,8) g~a

2

4(12 ~')(4 5~') '
8~ 8q' sinnq

1= —8(-8+ p'),
7f

Thus, collecting terms we obtain from (4.24)

Z = 64(7!z') '(2 w'+ 35) .

(4.31)

(4.32)
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B. Evaluation ofy integrals where

The y graphs are shown in Fig. 2. In terms of
these we need to calculate, under ihe restriction
(3.1), the integral

d'r, d'r, d'r4y»,

+Q d r2 cf r3 d r4$Qj ~

(4.34a)

(4.34b)
d r2 d r3 d r4(yll y12 y» y02)

=2(r, + 1;), '(4.33) %e first study YQ. The integrand is

X2 —X3

(1+x')' ' —(1+x,')' '
(
—(1+x,*)"'+(1+x',)"')X

X3 ~ X4 X4 X5

(1+x',)' ' —(1+x')' ') (-(1+x')' '+ (1+x',)' ')X
X5 X6 X6 Xl

„,~2 (1+x,')'" —(1+x,')"' -(1+x,')'"+(1+x2}2&2
y»=i 2(2v) i dx(1+x,}

l Xl X2

&& (exp(-m„[(l+ x,')' '+ (1+x',)' ']-m„[(1+x',)' '+ (1+x,')' ']

-m» [(1+x ',)' '+ (1+x ',)' '] —in„(x, —x,) —in»(x2 —x4) —in»(x, —x2)j + r,—r,) .

(4.36)

To integrate this over the restricted region (3.1) it is useful to rewrite y„as
" 6-, 2, „,, &+,"~2- i+X,"~' —&+X"~2+ ~+X2'~2

Xg X2 X2- X3

(1+x*)'~'- ((+x')'1*)
X ' 4

X3 ~X4

(( x x*)'1 ' —(1 +x')'1 ')5 . :6

X5 X6

—(1+x')'1'+ (1+x')'1'
)X4~X5

(
- (1+x')' ~*+ (( x x,*)'1')

X6 X1

x (exp(-m„[(1+x2)' '+(1+x')' '] -m„[(1+x')'~2+(1 x')' ']-m [(1+x,')' '+(1+x')' ']

-in„(x, —x,) —in„(x, —x,) —in„(x, —x,)j+.. .), (4.36 )

where the dots stand for the five permutations of 2, 3, and 4. The integral of (4.36) over the region (3.1)
is the same as the integral of the first term in (4.36}over the region

m4, &0, m3a&0 mn &0

Therefore,

(4.3V)

F, = (2')2-'(2v} '
Jt dx, dx, dx, (1+x,'}-'(1+x')-'(1+x')-'x x x

(4.38)X
/(1+x2) (1+x2)1I2 (1+x2)~)'2 (1+x2)112 (1+x2)) &2 (1+x2)1&2

x, -x, X3 —X5 X ~ X

Next, we study F, where y» is given by (3.11) and y». .. by (3.8). The integral of (3.8) over the region
(3.1}is the same as the integral of the first term of (3.8) over the region

m„&0, m„&0, m„&0. (4.39)
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Therefore,

Y, =2 d(2m) '
~ dx, dx, dx,(1+x,') '(1+x,') '(1+x',) 'x,x,x,[(1+x,')'~'+(1+x~)'~']

(1 +X2)1 / ~ ( 1 + x~)1 / ~

[(1 +x2)) ~ ~+ (1+x~)»2]
X3 XP

1 1 1 1 i 1X— ~ ~ + 3
8 I x1 —X3+ic x, —X1+i& x1 —x3 —iE J x5 x1 +4

~ ~ ~ ~ ~

X1 X3 + ZE' X5 X1 'IdE X1 X3 ZE J X5 Xg ZE
(4.40)

Now we may add F, and F, and obtain

)'=—d (dx) J d, xd, xdx(1 xx,') '((+x', ) '(1+x,*) '
~OO

x x,x,x, [4(1+x,')' '(x,'- x,') —2(1+x,')' '(x', —x,') —2(1+x,')' '(x'- x')]

1 1 t 1 1 1 1
X . X— +3

x3 —x5+ gC 8 ~ x1 —x3+ gE X5- x1+N x1 —x3- gC X5- x1+ gC

X1 X3 + 'tC) EX5 X1 iC (X1 X3 iC X5 X1
(4.41)

If in the 2nd term in the first bracket we let 3-1-5 and in the 3rd term 5-1-3 we obtain

1 co

Y= —-2 d(27)) ' dx, dx, dx, (1+x,')~~'(1+x,') '(1+x,') ' x,x,x,(x3+x,)
~00

(.. .'„;,)(.. .'„.,) -(-.. .'. ..) (-.. .'„;,)
X1 —X3 —EE X5 —X1 + t6 X1 —X3 —M X5 —X1 —Z&] (4.42)

Vfe now use

1/(z s ic) =P(1/z) v mi5(z)

to find

(4.43)

Y=(—', )2 '(2))) ' dx, dx, dx, (1+x,') '~'(1+x~) ' (1+x,) x,x~x, (x, +x,)

I' . . Px x( ll(x, —x, ) +xi- ll(x, x, ) +xd(x, —x, )&(x, —x,))X1 X3 X X1
(4.44)

After performing the x, integral using the 5 func-
tion the imaginary part vanishes because of anti-
symmetry under 3 5 exchange. Therefore,

Y=(3x 5x 7x Qw)-'.

C. Final result

(4.46)

11
Y &-& dx xd(1+x2) -»/&

16 1 1 1 (4.45) We may now combine (4.32) an(i (4.46) an(i obtain
the final result

This last integral is a.beta function. Thus, we

obtain
6) 4 3 5 1—I-&'~ ='-~-'+ —'~-'.

4 t 4 9 189 (4.47)
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APPENDIX

f!"(&)~)=l(&~)' d(, d(, (,„,;, )a 0O&

m posh), + in sinh$ =r cosh(,'

with r =(m'+n')' I', to obtain

(A7)

&«exp[-m(cosh), + cosh(, )

—in(sinhg, + sinhg, )] .
(As)

Now shift the contour g, to gf = $,.+ i8, where

In this Appendix, we evaluate

C.(2)= de (2) 0

From (1.16) we find

22""f,"'(0,r) = —,'(2w') '
J

dx, dx, dy, dy,
~ 00

~+x2+g2 1+x2+g2

~3'1+72 72+71
X1 X2 X2 X1

X e' (»-'2)+ "("1-"2)
y

(A1)

(A2)

00

f ' (0 ) =—(27f) ' d$'d$'—
g~i+ e&2

x exp[ r(co-sh$,'+ cosh),f)] .
(AS)

This is explicitly rotationally invariant and the re-
striction m &0 may be removed.

To now evaluate C,(2) let

e'~ =(1/r)s, .

Then,

which is more symmetrically written by letting
x,--x and y -y as

f« (o, z)= ——'(1«')'f dd, dx, d«, df
0O

S2 S1+S2)

x exp[--,'(s, + s,)]

x exp[- —,'r'(s, '+ s,')] .

We integrate over x to obtain

(A10)

2
1 2 +-im(@1+@2)-in(X14X2)

X1 + X2

(A3)

For the moment consider m &0 and do the y inte-
grals by closing on the poles y, =- i(1+x')' '
Then

f&"(&) &)=—'(1«) f d&: dh(1+&:)'& (1+x)'&'
~ 00

I-,('' = 20 r drf ~((20, r)
0

(O S —S=-', (2w) ' ds ds
0 1 2

($1+$2)/2
X

S1+82

Then let

(A11)

and, if we use

x, =sinh$,

((+d')'&'- (1+&.")'&')'
X

X1 +X2

x exp(-m[(1+x,')' '+(1+x',)'~']

—i~(x, +x,)}, (A4)

(A5)

S1 = ~Q1~

with

@1+e2=1

s =Xo, (A12a)

(A12b)

1

C,("= (20) ' dc., dc(,6(1- c(, —c(,)((x, —n, )'
dp

and do the X integral to obtain the final result

we obtain =1/sw . (A13)
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