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The study of the equation of state of the two-dimensional Ising model is initiated by use of the recently
calculated n-point spin-correlation functions. In the scaling region where T — T, and

h =Bl —T,/T|['*® (H/KT,) is of order 1 (B is a lattice-dependent constant) the free energy below

T, is of the form f(T, h)— f(T,0) = const(l — T,/ T)? 2‘” ~1(1/nY)C ;h" where the lattice-dependent
constant is chosen so that C i = 1. The constant C; has been studied previously. In this paper we study
C 3 and C; and find as a first approximation C 5/3!~ —11/72%% and C ; /4! ~ 5/1897 + 59/1627°. These
are in close agreement with the low-temperature-series values of —0.01538 and 0.0195.

I. INTRODUCTION

In 1944 Onsager! published his remarkable cal-
culation of the free energy of the two-dimensional
Ising model in the absence of an external magnetic
field H. The extension of Onsager’s calculation
to the case H#0 has remained as one of the most
challenging problems in statistical mechanics.

There are at least two distinct ways in which one
can attempt to extend Onsager’s calculation to
H=+0. Either one can find an entirely new method
of solution which will produce the H#0 free energy
in one shot, or one can expand the free energy in
a power series in H and compute the coefficients
in terms of spin-correlation functions evaluated
at H=0. Since no one has made any progress with
the first approach, it is the purpose of this paper
to initiate the use of the recent calculation, car-
ried out in collaboration with Tracy,? of z-spin
correlation functions of the two-dimensional Ising
model at H=0 to study the equation of state by the
second of these two procedures.

The energy for the two-dimensional Ising model
in the presence of an external field H is

=-E, Z 05,8 Og,ne1 =Lz Z %52 Ojetsr ‘HZ Oj,es
ik ik ik

(1.1)

where o; =1, j (k) specifies the row (column) of
the lattice and E, (E,) is the horizontal (vertical)
interaction energy. If we consider a finite lattice
of W rows and N columns, the free energy per spinis
given by

F(T, H) =~k T Lim (ON90) ™ InZr, (1.2)

»oo

where the partition function Zyq,q 18

Gn= Y 1.3)

{o}

and the sum is over all 0; ,=+1. Let the n-spin
correlation function at #=0* in the infinite lattice
be
S,(R,R,, ..., R,) 2,1,1133 ériz.lg (cR1 Opy - - - UR,,> .
Neco
(1.4)

For the translationally invariant lattice (1.1), S
is translationally invariant and, in particular,

S,(R,)=9M=[1- (sinh 2BE, sinh 28E,)2]*/8 (1.5)

n

is the spontaneous magnetization.?

The correlation function S, has the property that
if the » variables R,, ..., R, are divided into two
sets R;,...R; and R, ,,...,R, and if the distance
between points in each set is fixed while the
separation between the two sets becomes infinite,
then

SuRyy -y R)~S)(Ry, ..y R)S,y(Rysss - --» R

(1.6)

We define the connected part of the #-point cor-
relation S§ as S,(R,, ..., R,) with all the limiting
behavior (1.6) subtracted out so that S3(R,, ..., R,)
goes to zero when the separation between any
points or sets of points becomes large. Explicitly

SR, R,)=S,(R,, R,) ~ M2, (1.7a)
S(R,, Ry, Ry)=S4(Ry, Ry, R)
M [S,(R,, R,)+ S,(Ry, R,)
+S,(R,, R,)]+ 2903, (1.7D)

and
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18 TWO-DIMENSIONAL ISING MODEL NEAR T, 4887
85(1,2,3,4)=S,(1,2,3,4)-9m[S,(1,2,3) + S;(1,2,4) +S,(1,3,4)+ 5,(2,3,4)]
_[82(1;2)82(3:4) + 32(1,3)32(2,4) + 52(1’4)82(2:3)]
+ 2025, (1,2) + S,(1,3) + S,(1,4) +S,(2,3) + S,(2,4) + S,(3,4)] - 69, (1.7¢)
|
where in the last line the variable R is suppressed. It has recently been shown? that for T<T,
It is well known that the free energy is given in
terms of SS(R,,R,,..., R,) as S, (Ryy..., R)=MreFn EuerasRy) (1.10)
T n
F(T, H)=F(T,0)- kT };f D(E)" 48 yhere
where =
F(Ry ..., R)=D F¥®, ..., R), (1.11)
o= Y. SOR,,...,R,.). (1.9) =
RyseeesRpoy with
1 T do do
(k) - - z2)]* 291 7.3
F®(R,,...,R,) % [22,(1~2%)] f R

-7

1 smz( Doy 1+¢zt+1)

|3
X g A(¢21-1’ ¢2l)

Here A(21-1,2])isannXn matrix with elements,
AQ2l-1,21)|,=0, (1.12b)
A(21-1,21)| ;,=sgn(M )
X eXP(=iM ;, Py~ Nypbpy)  (1.12¢)
b1 ¢z

R,=(M,,N,) (in a row, column notation),

¢2k4-1 ¢2k4~2

My=My =M, Noz=N,-N,, (1.12d)
Ay, dg) = (1+22) (1+ 23) = 22,(1 - 2%)cos ¢,
- 22,(1=2%)cos¢,, (1.12e)

z,=tanhBE,; (i=1,2),
sgnx=+1 if x>0, -1 if x<0, either +1 if x=0,

and the limit € - 0* is understood.

fy(.k)('rp ey 7,,):“—“(2772)-'2/ dx . dx,, dyl .

and a(l) is an % X % matrix with elements

Tr[AQ1,2)...A@k-1,2R)].

sinz (¢’21 —ap,at+i
(1.12a)

Moreover, it was shown that if T—T; (z,2,+2,

+2,~1) and all |R,-R,|2=M2,+N2%;~ = such that
Myp=Mygl2,(1 =22 /2|2,2,+ 2, +2,-1|  (1.132)
and

Nag=Nogl2,(1 = 22)]7/2 |2,2,+ 2, + 2, -1 | (1.13b)

are fixed for all a, 8 then [calling 7, =(m,, n,)]

Sp(¥y, oo oy ) =limM™"S (R, ..., R)=¢'n
(1.14)
exists with
Faltis ooy v)=3 0 FiP0, ..o 1), (1.15)
k=1
where

=Xt 1€

.dy, ;[fI <(1 +x2 +y2)'1—y’ji&— )Tr[a(l)a(2) .a(®)],

(1.18)
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a(l)|;;=0, a(l) | ;= sgn(m ,)exp(=im ;Y , = ing, x,) . (1.17)

In this paper, we will initiate the study of f (T, H) near T, for T<T, by using the expression (1.14) in
(1.8) and (1.9). We can then write (1.9) for T~T, as

[Z z (1—22)(1—22) (n=1)/2 o  n=1 n=1 (1.18)
Frm~m llzzlzz+z11+ zz—i I]"""’” .[ ITam, IT dnsi@, 70, - s 7 -

1=1 i=1

Furthermore, as T~ T,

9 ([2122(1 =23 (1- ZE)]1/2> -t (& _ 1) 2-(15/8)n

(2,2, +2,+2,— 1) T

where

A=4(2,0+ 250) [BEL (1= 250) + B, E,(1 - 2,)7],
(1.202)

B= [4(z,,+ 2,,)] 178

82,250 B E (1= 2,0)™" + B, Ep(1 —2,)]*3/8

(1.20D)

B.=1/kT,,

and

2, Zopt 21t Zoe=1=0. ' (1.21)

Thus, if we write as T~T'_
ff,")(T)"’C;(Tc/T— 1)2-(15/B)nA1/BBn-1 (1.22)

the numbers C ; will be independent of both tem-
perature and the lattice-dependent constants E,
and E, and are given as C7=1 and

o n=l1
C;,zf H dmydn;sS0,7y, ..., Vo) (1.23)

=® =1
for n>2. Then, defining a scaled magnetic field
as

Al/spmt (1.19)

h=(H/RT)(T,/T-1)"/8B, (1.24)

we may rewrite (1.8) in the region where T~T,
and % is fixed as

f(Tyh') —f(T:O) - 8chzch20 [ﬁcEl(1 —ZZC)-I
+B Ey(1—2,)"F
T 2 o C-
X [ =€ - Zn pn
(T 1) ,,Z:; A . (1.25)
In this paper, we restrict our consideration to

C;, C;, and C;. Then, using (1.7) and (1.14) in
(1.23) we have

C-z-zf dr (efz(()vf)_l), (1.263.)

L]
C;= f dz,’,.1 d21’2 (ef3(0,r1, '2)_ef2(0' r1)
-o0
—ef2(0 1) __pfalriany) 4 2) ,

(1.26b)
and

0
C;' - f dz,’,ld 2rzd 2,},.3 [ef4(0123)_ (ef3(012)+ef3(013) + efstozs )+ef3(123)) — (efz(Ol)+f2(23)+ef2(02)4-f2(13)+ef2(03 )+f2(12,)
-cO

+ Z(efz(ox)+ef2(02)+ef2(os )+ef2(12) +efz(13)+ef2(23)) —6] .

To proceed further we use the representation of

f, as an infinite series and expand the exponentials.

In this paper, we study C;, C;, and C; in the ap-
proximation of keeping the first connected term
FS™ and the related connected terms fS* k>n
which are required to produce a globally rotation-
ally invariant function. Inf, the term f{’ by it-

(1.26¢)

I

self is globally rotationally invariant. However,
in a previous publication* we saw that £ &’ was not
globally rotationally invariant but that the com-
bination &'+ £’ does have this property. In
Sec. III we will study this question for f, and find
that FS@) 4+ £S5 1 £S(® ig the smallest globally ro-
tationally invariant set. Therefore, our leading
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and

~f2) 1.27a ©
L0 ©.7), ( ) CSNf dzyldzrz{fz(oy'rl)fz("'n 72)
fs(o’,r]" 72) ~f2(0’rl) +f2(0’72) +f2( r]_’ 72) e
+[F 0,7, )+ £40,7,,7,)],  (1.27h) HHONYL0,72) +£o(07alalrara)
and + [fzga)(o:'rp 7’2)+f§(4)(0;71’ 7’2)]} )
£,(0123) ~£,(01) + £,(02) + £,(03) + £,(12) (1.29)
+£5(13)+£,(23) +£5(012) + £5(013) which, using (1.27a) becomes
-~ -(2) -(4)
+£2(023)+£5(123) Cs~3U;@)P+159, (1.30)
+[£$(0123)+ £552(0123) +£5©’(0123)] . where
(1.27¢) ;W= f d2r, d%r,[f 0,7, 7,) + 90,7y, 7,)] -
Thus, using (1.27) in (1.26) we find - (1.31)
C;~I1;®= f d*rf(0,7) (1.28) Finally,
j
Ci~12 [ar, @O [ @, dnlf (0, 7+ 500,77 ~ :
+16 /: A%, @27, a7, f20,7,) FP0r, 7)) P 73) + [ &, AP, APy (F5+F50 +£5), (1.32)
¥
which may be written as show that
C;~16(I;@)P4 121 ;W [;@ [0 (1.33) (1/4!)1;‘6’=§7r'3+%9n'1, (1.38)
where so that from (1.33)

I;(s)=f % d%, d%r, (fz(4)+f2(si+f2<e)) )
(1.34)

In obtaining (1.32) from (1.26) and (1.27) the fur-
ther approximation is made that in products II;
w# only terms where 2, , < 6 are retained.
The integral for I;®’ has been evaluated pre-
viously® in the study of the magnetic susceptibil-
ity. A simple evaluation is given here in the
Appendix. We find

I;®=1/67~0.05305164770. (1.35)

The integral I;® is evaluated in Sec. II where we
show that

I;®W=_q2 (1.36)
so that from (1.30)
C;/31 ~-11/7272~-0.015479 6252 . (1.37)

Finally I;‘® is evaluated in Sec. IV where we

- ~ 25 -1 59 - =3 ~
c;/4! =T +R-27'r3 0.02016682566. (1.39)

89

The approximation in these calculations is sys-
tematic, in the sense that by retaining further
terms in the expansion of f, a more accurate ex-
pansion may be obtained. However, because there
is no a priori small parameter, it may be ques-
tioned how numerically good approximations (1.37)
and (1.39) are. One partial answer to this is that
for Cj, the integral (1.26a) has been carried out
numerically® with the result that

C;=0.0531025893 -~ . (1.40)

The close (0.1%) agreement between the C; and

the approximation I;®’ encourages us to believe
that (1.37) and (1.39) are also close approxima-
tions to C; and C;.

The numbers C; for n=1,2,3,4, and 5 have been
studied by means of low-temperature series by
Essam and Hunter.® From their calculation of
f™(T) on the square (E, =E,) lattice for T~T,
we find the lattice-independent C; of Table I. We
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TABLE 1. Values of C, /n!

n Series expansion of Essam and Hunter Leading approximation from this paper
1 1 (exact) 1 (exact)
2 0.02670+0.00012 -—1—~0.026 526
127
11
3 —0.01538+0.00016 ———5~~=0.015480
. 72w
4 0.0195 =0.0004 -—-5—‘—+ 59 ~0.020167
’ ) 1897 162m
5 —0.048 £0.006

also give these the error € quoted by Essam and
Hunter. Note that C; of (1.37) agrees with C; of
Table I to within the given error and C; of (1.39)
agrees to 13 the given error. Furthermore, by
(1.40), since for »=2 our leading approximation is
more accurate than the numerical value of Essam
and Hunter, it is perhaps not unreasonable to ex-
pect the same to be true for =3 and 4.

I. EVALUATION OF /-

To evaluate I;“ of (1.31), we consider first
the region where the vertical coordinates m, and
m, satisfy

0<m,<m,. (2.1)

In the trace in the integrand of (1.16) there is one

distinct term (of weight 6) for =3 and 3 distinct
connected terms (of weight 4) for k=4. These are
graphically represented in Fig. 1. 'We saw pre-
viously* that these four diagrams taken together
are rotationally invariant across the lines m, =m,
or m,;=0. We further saw that f{*’ could be very
conveniently combined with the term of ¢’ rep-

" resented by Fig. 1(b) by changing the signs of one

of the i€ in (1.16). The integrals of diagrams 1(c)
and 1(d) over the region (2.1) are equal by sym-
metry consideration. Thus, if we take into ac-
count that the contributions from the five other
regions similar to (3.1) will give identical contri-
butions we have

I;9=6(z,+2Z,), 2.2)
where after integrating (1.16) over the y variables

Z,=-32m)* f dm, _/o‘ dmlf dn, dn, f dx, dx, dxg, dx,(1+x3)1/2(1+ x2)"1/2(1+ 22) 1 (1 + x2)™1 /2
0o -0 =0

« (—(1 +xf)1/2+(1+x§)1/2> < (1+x§)1/2+(1+x§)‘/2)

%y =%,

Xy — Xg+ 1€

x , ((1+x§)”2—(1+x§)1/2> (_(1+x2)1/2_(1+xf)1/2>

X3 =Xy

X, — %, — 1€

x exp{—m,[(1+22) 2+ (1+ x2)/2] = (my —my)

0 (a) o  ®

X [(1+ 22124 (L+ 22) /2] = imy (%, = %,) =i, — m,)(%5 — %)} -

2 2
/ /
° (0 ° @

(2.3a)

FIG. 1. Four unlabeled
connected graphs of three
and four lines that contrib-
ute to f; in the region
0<my <m,.
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and

2, =—42n) fo dm, fo dm, f_’ dnydn, [ dydx,dr,de 1+ Y214 a3 )AL )

% ((1+xf)1/2-(1+x§)1/2> ( —(1+x§)”2+(1+x§)1/2>

xl—'xz xz—xB

(L2202 = (14 a2)1/2 [ =(L+ 2201/ 2+ (14 22)/2
< ) ( )

Xg— %, Xy =%
X exp{—m,[(1+x2)1/2+ (1+ 22) /2] —m [ (1 + 22) 2 + (1 + 22)*/2)

iy (5, = X) =i my(x, — %)} . ' (2.3b)

Considerfirst Z,. The n; integrals are easily done to give 6 functions. Then the x, and x, integrals are
carried out and we find

o o o 1/2 2)L/2\ 2
Zl=%(27r)'2f dmlf dmzf dx, dxg (1+x2)3/2 (14 x2)23/2 5, x, <(1+x§) + (14 x5) >
o my -co

Xy —= Xy + 1€
x exp[—m, 2(1+22)/2 ~ (my —m)2(1+ 22)H/2]. (2.4)

Then using the variable m,, =m, —m, instead of m, the integrals over m, and m,, are done and we
obtain

12 [ . . 14+ 22)1/24 (1422722
2= [ a0y s (AT e

We treat Z, in a similar manner. First carry out the »; integrations and then do the x, and x,
integrals to obtain

o m w ® 1/ /2 \2
Zz=-§(21r)‘2/ dmzf 2dml f dx, f dxg (1+23)%/2(1+ 22)3/2 x %, (Qfxf) -1+ a)) 2)
] 0 .00 -c0

X = Xg
x exp[-2m, (1+23)1/2 = 2m,(1+3)/2]. (2.6)

The integrand is symmetric in x, and x; so the m, integrand may be extended from 0—-m, to 0~
if we divide by 2. Therefore,

i 2)1/2 _ 2)1/2 \2 .

22,2 bt [y dny(1s 20 (1) 5z, (G222 () ). 2.7)
-c0 1= 73
We may now add (2.5) and (2.7) to obtain
Z,+2Z,=35(2m)2 f dx, dxy (1+22)37/2 (14 22)1 2 x5, (x, — %5 +i€)72. (2.8)
If we now write

(x, — %+ i€)2=1% 22 Ny —myr i) 2.9)

1 3 2 axs axl 1 3 .

and integrate by parts we find

2,+22,=2@m® [ do iy (L4 22572 (L4 20372 [3343 = (14 42) (1+ 22)]

- 3n [ ( _[:dx(1+x2)"3/2>2 -3 [T an@eatys [ ane)s o3 (f_: arteysrs ) .

(2.10)
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These integrals are readily evaluated as beta
functions” and we obtain

2,+22,= o { )2 - 3FC) @)+ 3T <-z~r2}

(2.11)

— 1
==

(a)

D)D)
¥ ¥
SRS
ER
D o X

+

(b)

Ww -~ +

y|2 = +

s
-y
e

+1/2

Yoi Yoz ©

FIG. 2. Thirty-one unlabeled connected graphs of four,
five, and six lines which contribute to f; in the region
mi<mg<mg<my. There are two generic types of graphs
for =6 which we call z and y. The first index in the
subscript indicates half of the number of effective i€
terms in the six-line graphs. The graphs are grouped
into sets which are combined using various signs of i€
in the six line graph.

BARRY M. McCOY AND TAI TSUN WU 18

Substituting (2.11) in (2.2) we obtain (1.36).

II. COMBINATION OF FOUR-POINT GRAPHS

There are 31 different connected unlabeled
graphs of 4,5, and 6 lines that contribute to f,
when the vertical coordinates are ordered

my<m,<my<my. (3.1)
These are shown in Fig. 2. To interpret this fig-
ure, several remarks are needed: () There are
two generic six-line diagrams which we call z and
y as indicated on the figure. (i) By the symbol on
the left of each set of diagrams we mean the sum
of all labeled diagrams represented by the unla-
beled graphs shown. (7i7) The first subscript in-
dicates half the number of poles where the ie
prescription is needed in the six-line graphs.

(#v) Along with the six-line graphs which have
poles, we group the related four- and five-line
graphs which are related by changing the sign of
some of the i€. (v) The relation between labeled
and unlabeled graphs is illustrated in Fig. 3.

PERMUTATIONS

+5 CYCLIC
PERMUTATIONS

5
6\4{13
+ + 5 CYCLIC
PERMUTATIONS
|
2

FIG. 3. Relation between labeled and unlabeled six-
line graphs.
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The combination of terms referredto in point 4 has been previously discussed® for the Z diagrams.
~ From that discussion we have the following

2,=3 (25,25 , '3.2)
where
.61 = 8
2y =1°3 (21) f H dx, (1+x3)1/2
- =1
% <(1+xf)1/2+ (1+x§)1/2> ((1+x§)”2+(1+x§)1/2) ((1+x§)”2—(1+x§)”2>
X, — X, + 1€ Xy — X3+ 1€, Xy — X,
y (-(1 +x§)1/2_(1+x§)1/2) <_(1+x§)1/2_(1+x§)1/2> (-(1+xg)1/2+(1+x';’)1/2>
Xy — X5 — 1€ X5 — Xg— 1€ Xg— X,
X expl{—m,, [(1+ 2212+ (1 4+ 22) /2] = mg, [ (14 22) 2+ (1 + 22)1/2]
= myg[(1+22) 724 (1 4+ 22)H 2] =iy, (%, = %) = g (X — %5) = G154 (%5 — X,)}, (3.3)

\

© 6 - 2\1/2 2\1/2 2\1/2 2\1/2 2\1/2 2\1/2
11:1-6%(2”)-61 de' (L+R2)02 ( (1+x2)1 2+ (1+42) ) ((1+x2) +(1:+x3) )((1+x3) - (1+43) )
- g Xy — X, Xy — X3+ 1€ Xg = X,

« ( -1 +x§)1/2_(1+x§)1/2) ( —(1+x§)1/2+(1+x§)1/2) ((1+xg)1/2_(1+x§)1/2>

Xy — X5 — 1€ X5 = Xg Xg— %X,
X exp{—mg, [(1+23)"/2+ (1+ 22)' /2] = g (1 + 23 /24 (14 2)H/ 2] =y [(1 4 23) 2+ (14 69)* /%]
= i1y5(%, = X5) = i, (%5 — X,) = i35 (%6 = %)}, (3.4a)

(3.4b)
(3.4c)

Z12=21; Irz"’rs

213=zul72"7’47 V3=V V4~7¥3

2.4, 215, and z,; are obtained from z,,, z,,, and z,;, respectively, by up-down reversal, and lastly

—-(1+43)24 (1 +x§)1/2> ((1+x§)”2-—(1+x§)1/2> (—(1+x§)1/2+ (1 +x2)' 2\
/

X1 =%y Xg = X3 X3 = Xy

© 6
2o =30 [ ] dx ()2 (
=00 l= 1

x ((1+xi)”2—(1+x§)“2> ( -1+ + (1 +x§)1/2) ((1 +a2)M2 - (1 +x§)1/2)

X, — X X5 —Xg Xg — X1

X exp{=m, [(1+x2) 2+ (1+ 221 /2] = m g [ (1 + 22) /2 + (1 +42)1/2]

= [+ 224 (L 2B 2] = gy (30, = 25) = g (%, = %) = iy(%6 = 2,)} (3.52)
r
20, =2 l1’2~'r3 , (3.5b) time we will make this manifest by explicitly aver-
_ aging over both signs.
700 =20t |71 Vs Y271 V3=V 4= Ts, (3.5¢) A similar method exists to combine the diagrams
20a =20, | Vo= Tyy Vo7 Vy=¥s, (3.5d) in v,, (and y,,). The four terms which contribute to

Zos= 20y 71 =75y Vo= Vg, V3 =7, (3.5¢€) ¥, are [see Fig. 2(b)]

- 1
1t is useful to note that the forms (3.2) and (3.4) Y11= V1,0% Va2 # Yia, s 2V0,4 (3.6)

are independent of the sign of €. From time to where
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yua=ten [ 1] ax,<1+xz;)-1/2(-‘1+xf>””+<1+x§>"?)(<1+x§>”2+<1+x:>”2)<<1+x§>”2— (1+ﬁ)"2>

Xy ~ %, Xy =X+ 1€ Xg— Xy

Bhadl 231

y (—(1+x';’)"2+ (1+x§)‘/2> ((1 +x2)t/2 (1+x§)”2><—(1+x§)”2- (1+xf)1/2)

Xg=— Xg XK= Xg X=Xy +1I€

X (exp{-my [(1+x3)Y 2+ (14 22)"/2] = mgy[(1 4 23)* 24 (14 23)1/2]

=gy [(L+ XM 24 (L4 22 2] — gy (3, = X,) — iy g (g = %) —impg(Xg — X))+ 73— 74)

(3.7a)
o 5 1/2 2v1/2 2y1/2 1/2
= 5(9)5 212 [ (1 00) 2+ (1+ %)) )((1*""2) - (1423 )
Vi1, =4 (27) f., IhI1 dx(1+x) ( Xy — Xy + 1€ Xy — Xy .
(=1 +x§)‘/2+(1+x§)”2>((1+ x2)1/2 (1+x§)"2) (—(1+x§)"2+ (1 +xf)”2>
Xg— Xy Xy— Xg Xy - %,
X exp{—myy (1422 2 = mgy [(1+ 22 24+ (14 22 2] = mgp(L+ 8)Y 2= gy (14 22)1/2
— iM%y — Il (X — Xg) = BMggXy — ingX,}, ' (3.7b)
o 5 2\1/2 1/2 2\1/2 2y1/2
_ 5 -5 2y-1/2 [ (L +7) +(1+x§) )((1+x§) - (1+x3) >
V1,9 =1°(2T) f-., dex(1+x1) ( P , o
N —(1+x§)"/2+ (1+x‘2‘)1/2)((1+xﬁ)1/2 _ (1+x"5’)"2>(—(1+x§)"’+ (14_’#';)1/2)
Xy — X, Xy— %y X~ %
X exp{-mu(1+xf)”2- ML+ 2D 24 (L4 22)Y 2] = mgy (L + 422 Mgy (1+ 2212
=5y — Ty (X, = Xg) = gy, — ing Xk, (38.7c)
and
== 1) [T ey (02D o) (s e )
"= a1 Xy = Xy Xg— X3
x ((1 +x2)t/2_ (1+xﬁ)"2>(-(1+xﬁ)”2+ (1+xf)"/2)
Xg=Xy Xy =X,
X exp[—~ gy (1+25) % = mgy (14 222 — m (14 2212 - m gy (14 222
Ny oKy — TgyXy — THpyXy — iM%, ], (3.7d)

We combine these diagrams together in terms of the function

o= 0 [ Ta(t sy oS L) (o % e

—o T Xy =X Xp—Xg+1€

y ((1+x§)1/2_ (1+x:)1/2><_(1+xi)1/2+ (1+‘x§)1,2)

Ky— Xy Ky—Xg

» ((1 +xP)M2_ (1+x§)”2>(—(1+x§)’/2— (1+xf)"’>
X5 —Xg Xg— X, +1€,
X (exp{-ny, [(1 + 7)Y 24 (14 22 2] - m g, [(L+ 22 24 (14 £2)1/2]
- m,z[(l +x:)1/z +(1+ xz)n./z] ~iy (%) = Xp) = Iy (X~ X ) — inyg(x,s — xe)}"‘ T3—7,).

(3.8)



Thus, using

—Z—_I-E=E—+ll-,z+ 2mid(z), ‘ (3.9)
we have

Vit ++= V11,1 (3.10a)

Yig, o= V1,1t Vi, 2% Vg, 35 (3.10b)

Vit -+= V1,1t Yu,2+ Vi1, 35 (3.10c)

Vi1, --=Vi,1% 2V11,2+ 291y, 5+ 4V11,0 (3.10d)
Hence, we obtain the desired combination

Yu= 3( Vit, sat V11, 4+ 3V1y, -t 3’11,--) . (3.11)

We may now examine the question of global ro-
tational invariances as we did in a previous pub-
lication* for three-point graphs. We may show
that the sum of all the z and y graphs is globally
rotationally invariant, but that either the z or the
vy graphs taken separately have discontinuities.

IV. EVALUATION OF I-(%)

We evaluate I; ‘® by integrating the z and y
graphs separately over T,, T;, and ¥,. In Sec. III,
we have given the explicit expression for the terms
of z and y in the region (3.1). The integrals over
the other 4!-1 regions will be equal by symmetry.
We treat the z and y graphs in separate subsec-
tions.

A. Evaluation of z integrals
To integrate the z graphs we proceed in several
stages. First consider the region (3.1).

Z,= fdzrz Ay APV 25V, Vay Vay V4) (4.1)

where z, is given by (3.2). The n,,, 1,3, ns, inte-
grals are done to give § functions. Moreover, the
integral over the vertical coordinates in the region
(3.1) is just the integral over the region

Moy >Mgp >0, my>0, (4.2)

Since z, depends only on m,,, Mgy, My, the m;
integrals are also easily done and we obtain

Z,= 2‘62 (2m)-3 f dx, dx, dx,

€€

X (1+x2) 2(1+x2)"3/2(1+x2)"2x,x,

o <(1+xf)1/2+ (1+x";)”2>2
Xy — X+ i€

y ((1+x§)1/2+ (L+x2)t/2

Xp = X3+ i€,

)2 (4.3)
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when we have taken advantage of the remark after
(3.5) to average over the sign of ¢.
Secondly, define for the region (3.1)

Z,= fdzrz Prydryz,,+ 215+ 215) (4.4)

we can carry out this integral by directly substi-
tuting (3.4) for the threetermsand keeping the re-
striction (3.1). However, it is far more conven-
ient to consider z,,, z,,, or z,, as functions of
Mgy, My, and m,, where

2130 Myz>0, mg, >m, >0, (4.52)
210t Maz>0, my >my >0, my <mg +my,,  (4.5b)
23t Myz>0, Mgy >0, myy >mg +my, . (4.5¢)

Here (4.5a) is the same as (3.1), (4.5b) is the
same as m, <m, <m, <m, and (4.5¢c) is the same as
m, <mg<my<m,. The sum of all three regions in
(4.5) is the single region

My>0, mg >0, my>0. (4.6)
Thus the m; integrals are easily done and we find

Z,=-2"%2m)"3 f dxy dx, dxg(1+ x3)"2(1+ x3)73/2

X (1+x2)2x,x,

(et =y
Xy = X

o ((1+x§)1/2+(1+9c§)”2>2
Xy — X3+ i€

(4.7)

By up-down symmetry, the contribution from
the graphs z,,, 2,5, and z,4 is also Z; which is
best expressed in the equivalent form

2,=-27@n)* [ dwmdr,dx(l+ 2D (1 xD)0

X (14 x2) %%, 4,

x <(1+xf)”2+(1+x§)‘/2)2

X, — Xyt i€

2y1/2 _ 2\1/2\2
><<(1+x2) (1+x2) ) (4.72)

Xp = X3

Finally, we consider under the restriction (3.1)

Zy= j A7y @387 y(201 + 2oz + Zos + Zoat 205)  (4.8)

with z,; given by (3.5). We now consider (4.8) with
the integrands all given by (3.5a) which is a func-
tion of the variable m,,, m,;, and m, with the
restriction equivalent to (3.1) that

Mgy >0, my; >0, and my, >0 (4.9)
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in all regions and
Zort Mgy Maz+ My s (4.10a)

Zopt Mg+ Moy > My, My >Myg, My > My,

(4.10b)
Bog: Mgz My, Mg >My, (4.10c¢)
Zogt Mg > My >Myg, (4.10d)
Zost My3>Myy > Mg o (4.10e)

The sum of these five regions is just the single
region (4.9). Therefore, the n; and m ; integrals
are easily done and we find

Zy=2-4(2m)" f dx, dx, drg(1+ x2)"2(1+ x2)=3/2

. 2\1/2 2\1/2\2
><(1+x§)'2x1x3<(1+x1) - (1+x3) >
Xy = X
2\1/2 2\1/2\2
x <(1+"2) = (1 +x3) ) . (411)
Xa = X3

Accordingly, if we call Z the contribution to
I;® from the z graphs satisfying (3.1), we use
(4.3), (4.7) and (4.11) and obtain

Z=Z,+2Z,+Z,

42(270 3[ dx, dox, dxg(1+x2)-3/2

€, €1
X (L+x3) 21+ x5)/2
X 2, %5(%) — %o+ €)%y — 2y +i€,) 2
(4.12)

We now proceed to evaluate the triple integral.
First use the changé of variable

x=3(8;- £1). (4.13)
To find

zZ=(2m)"? f:df[w(&)F, (4.14)
where
w(&)=w(x)

=é Z j. dxrxl(1+x12)-3/2(x_x'_*_ii)-z.

(4.15)

If we integrate this by parts the boundary terms
vanish and we find

(g):é Z JQ dx’(1+x'2)'1/2i-’(x—x'+i€)'2

~£;§Zf dx(1+x%) "M 3(x — x" +4€)™".
(4.16)
Using (4.13) we thus find
w(£)=2(1+ £72)° 1;’ 21+ z(s) (4.17)
where
(5= . (4.18)

~ £g R I Jak e

The integrand may be factorized and decomposed
by partial fractions to give

d
1= Zfo £<g T e
(4.19)
Therefore,
1(8)=(4Ing)/(£+ £7Y) (4.20)

and hence from (4.17)

53
2 =16
w(£) T2 o7

[3(1 ~ &%)+ 2(&* — 4£%+ 1)Ing].
(4.21)

Thus, substituting in (4.14) and using the variable

t= £, (4.22)
we are left with
Z=(21r);327 f:dttz(nt)'m
X [3(1 - %)+ (£ - 4¢+ 1)Int]2.
(4.23)

To proceed further we expand the square and
write

Z=271"%9A+6B+C), (4.24)
where
A=f at(1+ ) %21 - 17, (4.252)
(]
B=f dt(L+#)"°2(1 = t) (£ = 4t+1)Int, (4.25b)
(o}
and
s
C=J dt (L+¢) " 2(£% - 4¢+ 1)%In’t . (4.25¢)
0

The first integral is easily expressed in terms
of beta functions” as
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A=2[B(3,5) - B(4,4)]

= [[(8)] ~*2[T'(3)I(5) — T*(4)]

=23%x3 i . ) (4.26)
!

Secondly we write B as

5 e
B=__J dt (1+8)" %21 = £)(£* = 46+ 1) | 400
9¢ “o
a -]
=-—f dt(L+8)"°2" (£ = 582+ 5t - 1) | .
9¢ Yo

)
=-— [B(6+€,3—¢€)-5B(5+€,4~¢)+5B(4+¢,5—-€)=B(3+¢€, 6-¢€)]| cm
€

= slv ai’;_[r(eﬁu OT(3-€) - 5T(5+€)T(4—€) +5T(4+€)T(5 - €) =T (3 + )T (6 - €)]| ozp - (4.27)

Thus, using the recursion relation for I'(z)
B=$; 2 [(5+€)(d+e)3+€) =54+ )3+ )3 - €)+5(3+ )3 - )4 —€) - (3 -€)(4-€)5-€)]TB-eT(B+¢)| 0

! d¢

19
== 2 4T103-
8!Be4€ (3 -€)T(3+€)|ccp

.2
- (4.28)

Thirdly, we write

2 ©
C=:—5 f dt(1+1£)"102*¢ (t* — 82+ 18£2 — 8¢+ 1) | . (4.29)
€ Jo

which is expressed in terms of T functions as

1 ¥ [T(T+e)T(3 - €) - 8T(6+¢)T'(4 - €) + 18T(5+ )T (5 —€) - 8T (4+ €)T(6 - €) + T'(3+€)T(T=€)]|ex0-

9! 8¢z
(4.30)

Thus, using the recurrence relation for I' we have

C= 51.7 ;;5 [(6+€)(5+e)(4+e)(B+€) —8(5+€)(4+e)(9-€)+18(16 - °)(9 - €?)

—8(9-€)(4-€)5-€)+(6-€)5-€)(4=-€)B-€)] T(B+€)T(3 - €)|c.0

i
|°°

Sl =
[~

:2 [4(12 - 2)T(38+ €)T(3 - €)]] ¢

2

z<4(12 - €%)(4 - 5¢%) .67’ ) le=0
sinne

Io:

S =
[
m

| -

!8(-8+ 7). , (4.31)

-3

Thus, collecting terms we obtain from (4.24)
Z=64(T17%)"}(272+ 35). (4.32)
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B. Evaluation of y integrals where

The y graphs are shown in Fig. 2, In terms of Y,= f &r, dPryd®v,y,, (4.34a)
these we need to calculate, under the restriction
(3.1), the integral :
Y,= f @y dPry 0P, - (4.34b)
Y= f @7 v (Y1 + Y12+ Yor + Voo)

=2(Y,+Y,), (4.33) We first study Y,. The integrand is

(1+x2) /2 —(1+x§)1/2) <—(1+x§)1/2+(1+x§)1/2 >

Xy = Xp

© 6
you=i%3@m® [~ TT ax(teat)
o ]

Xg = X3

x<(1+x§)1/2._ (1+xi)1/2) (—(1+x§)”2+(1+x§)1/2>

X3 = X4 Xq = X5
x((1+x§)”2— (1+x§)”2> <_(1+x§)‘/2+(1+xi)”2)
X5 = Xg Xg = X

X (expl—m gy [(1+ 222+ (1+ 222 = my, [(1+ 222+ (1+ x2)1/2]

g [(L+ 22 24 (L4 22 2] = iy (2 = 25) = 7019(%g = Kg) = iy5(005 — %)} + 7o 75) -

(4.35)

To integrate this over the restricted region (3.1) it is useful to rewrite y,, as

1+xf)1/2-(1+x§)‘/2> <.(1+x;)1/2+(1+x§)1/2)
X=Xz Xp— X3

Vo =10 H2m)S J‘wﬁ dx (1 +x2)7/2 ((

-7

Co (2P (122 —(1+x2) 24 (L+x2)1/2
K ) )

Xy =%, Xy =%

» ((1 +x2)/2_ (1 +x§)1’2> (~(1+x2) 2+ (1 +x12)‘/2)
xs—xs \ xs_xl

X (exp{-m, [(1+x2) 24 (L +x2)12] g [(1+22)* 2+ (1 ,22) /2] = my [(1 +x2) 24 (1+ 421/ 2]
=0y, (%, = X,) = i1y (X, = %) = i, (0, ~ )} + ... ), (4.36)

where the dots stand for the five permutations of 2, 3, and 4. The integral of (4.36) over the region (3.1)
is the same as the integral of the first term in (4.36) over the region
my >0, my>0, my >0, (4.37)

Therefore,

Y, =(3)2-4(2m)3 f dox, dxydx (1+x7) %1 +x2)"3(1 + x2) 2, xx,

% ((1 +x7) - (1 +x§)1/2) ((1 +x2M /2 (1 +x;)‘/2) ((1 +x2)t2- (1 +x12)1/2) (4.38)
Xy = %3 X3 = X5 X=X, ) )

Next, we study ¥, where y,, is given by (3.11) and y,,,, e, Y (3.8). The integral of (3.8) over the region
(3.1) is the same as the integral of the first term of (3.85 over the region

My >0, m,,>0, my,>0, (4.39)
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Therefore,

Y, =2-%2m)"? Jm dox, dg d (1+x2)"2(1 +x2) (1 +x2) 2, 20,% [(1+x2)H 24+ (14 x3) /2]

N +x2)1/2- (1 +x§)1/2[
Xy — Xy

1‘:( ; >< 1 > ( 1 )( ; )
X= - — ) +3 - -
8 X, — X, +1€ [ \xg— X, +1€ X, =Xy — 1€ | \ X — X, +1€

() i)+ () i) .40
Xy — Xy +1€) \X5 — X, — 1€ Xy =X, — 1€/ \ x5~ %, — €

Now we may add Y, and Y, and obtain

(L x2P/ 24 (1) 2]

1 - o
¥ =3 2°(2n)"* f i, docy dcg(1+x2)2(1 +22)%(1 + x3)2

X 20,2037 [4(1 + 22 (%2 = x2) = 2(1 + 22 H(x2 — x2) = 2(1 +x2)H (w2 - x2)]

1 1[( 1 )( 1 ) ( ; )( ; )
X — X = - ~ |+3 - -
X, — %+ 1€ 8 Xy = X5+ 1€ )\ X5 — X, +1€ Xy — Xy — 1€ ]\ X5~ X, +1i€
+3( - )( : )+( ! )( —%) ] @
X, =X, +1€/ \xs—x, — i€ Xy =Xy —1€) \X5~ X, — i€

If in the 2nd term in the first bracket we let 3—1-5 and in the 3rd term 5-1-3 we obtain

1 o
Y=—z 2-4(2n)"® f_ dx, dx, dx(1+x3)3/2(1 +x2)"2(1 +x2)"2 x,%,%0,(X; + %)

[l (= - (=) =)
X, =Xy +1€/ \ X, —x, +1€)  \x, ~x,— i€/ \x, — x, + 1€

. <x - X lE)("" X |l€> (x -X —l() (x - X, —1€ 1 42
1 3 X 5 1 2 1 3 2 5 1 .)]' ( . )

1/(z +i€) =P(1/z) ¥ 1id(z) (4.43)
to find

Y =(3)27%2n)3 f dx, dxgdx (1 +x2)2/%(1+x3)2 (1+ x2) 725, %%, (%5 + %)

(. P P
X (mxl_xz 8(x, —x,) +mx5—x1 B(x, = x,5) +m0(x5 - x,)d(x, —x3)> . (4.44)

After performing the x, integral using the 6 func- Y=(3X5x7x9m)". (4.46)
tion the imaginary part vanishes because of anti- -
symmetry under 3+ 5 exchange. Therefore,

C. Final result

11 (= ~
Y='§ " ' J: dx,xj(L+x) /2, (4.45) We may now combine (4.32) and (4.46) and obtain
© the final result
This last integral is a beta function. Thus, we 1

obtain i@ =5 T (4.47)
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APPENDIX

In this Appendix, we evaluate
;o= [ drre,. (A1)
From (1.16) we find

f;z)(O, ) =':«!z‘(27"2)-2'f dx, dx,dy, dy,

1 1 )
X (1 +§f+yf) <1 +X2+932

H1tYs ¥t
Xy =Xy Xy= X,

X elm(m-vz)-v in(x-x2) s (A2)

which is more symmetrically written by letting
Xp~—%,and y,~ -y, as

F0,7) =-3(2n%)2 f dx, dx,dy, dy,

1 1
X (1 +xf+37f)<l+x§+y§>

2
X <2.!L3.)_2 e~-im(y 4y2)-in(x +%3),
X+ X,

(A3)

For the moment consider » >0 and do the y inte-
grals by closing on the poles y, =— (1 +x3)*/2,
Then

T30, 7)=5(2m)"2 f dx, dx(1+x2)/ 2(1 +x2)t/2

« ((1 +x2)H 2 (1 +x§)1/2) 2
%+ %,

x exp{-m[(1+x2)/ 24 (1 +x2)1/2]
-— in(xl +x2)} b (A4)
and, if we use

x;=sinh; » (A5)

we obtain

- 4 _ ot
70, =40 [ agde, (S5 )
X exp[-m(coshé, + coshé,)
- in(sinh, + sinht,)].

(A6)
Now shift the contour &; to £/=&,+i0, where

m cosh; +in sinh& = cosh&! (A7)
with 7 =(m?+n%'/2, to obtain

£§0,7) =%(21r)‘2 [ : dg;de} (——eq - eé) )

et + et
X exp[-7(cosh&/ +cosh&))].

(A8)

This is explicitly rotationally invariant and the re-
striction » >0 may be removed.
To now evaluate C;® let

er=(1/7)s;. (A9)

Then,

*ds, ds,[s, - s,\?
(2) ~1 -2 1 2( 21 2
FE7(0,7)=5(2m) 0 S1 S, <31+sz)

X exp[-3(s, +s,)]

x exp[-3r¥ (st +s;h)].

(A10)
We integrate over » to obtain
I;""’=21rf rdrf{3(0,7)
0
=4(2m)" f”ds ds (sl =5\’
2 (o] ! 2 sl + SZ
e-(s1482)/2
5re, (A1)
1 2
Then let
S, =Aay, S,=a, (A12a)
with "
a, +a,=1 (A12b)

and do the A integral to obtain the final result
1
C;® = (2m)™ f da,da,b(1 - a, - a,)(a, - a,)?
0

=1/6m. (A13)
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