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Surface response of exchange- and dipolar-coupled ferromagnets:
Application to light scattering from magnetic surfaces

R. E. Camley and D. L. Mills
Department of Physics, University of California, Irvine, California 92717

(Received 15 May 1978)

We present the theory of the surface response of a semi-infinite ferromagnet in the presence of both
exchange and dipolar coupling, within a continuum theory. The results are applied to a detailed study of the
spectral density of surface spin fluctuations. From this we analyze the influence of exchange coupling and
surface spin pinning on the frequency, linewidth, and line shape of the Damon-Eshbach surface spin wave,
for a number of propagation angles, and for wavelengths sufficiently short that the exchange contribution to
the energy of the wave is comparable to the Zeeman and dipolar energies. We also develop the theory of
Brillouin scattering from spin waves near magnetic surfaces, and calculate the spectum of scattered light for
experimentally interesting geometries, with recent light scattering studies of ferromagnetic surfaces in mind.

I. INTRODUCTORY REMARKS

The nature of magnetism at the surface of crys-
tals has been the topic of numerous theoretical
papers during the past few years. For a semi-in-
finite Heisenberg ferromagnet' or antiferromag-
net, ' the mean-spin deviation near the surface can
differ substantially from the bulk. In addition,
magnetic instabilities can occur at the surface
under a range of conditions' to influence a variety
of measurements. '

At this time, no systematic body of data exists
which can be brought to bear on these issues, al-
though a number of measurements' ' suggest
anomalous behavior at surfaces consistent with
the presence of magnetic instabilities, ' or spin
canting" induced by the combined action of an ex-
ternal Zeeman field and surface anisotropy. We
believe new experimental probes, such as the
study of Rayleigh-wave propagation on magnetic
crystals, "may prove a useful supplement to the
magnetic -resonance"' and light-scattering' '
studies which have provided information on mag-
netic surfaces.

The experimental methods just cited, while they
can probe features of the magnetic response sen-
sitive to the magnetic configuration of the outer-
most atomic layers, have the common property
that they excite spin motions that vary slowly in
space on the scale of the lattice constant. In the
microwave-resonance studies, it is the film thick-
ness that sets the length scale." In the light-scat-
tering experiment, the w'avelength of the light in
vacuum and the skin depth both enter as we shall
see here, and in Rayleigh-wave-propagation stud-
ies the wavelength of the Rayleigh wave sets the
length scale.

When spin waves in ferromagnets with wave-
length long compared to the lattice constant are

excited, then the magnetic dipole moments of the
spins set up macroscopic magnetic fields that can
influence the excitation energies of the spin waves
importantly. The analysis of the spin-wave spec-
trum in the bulk in the presence of both exchange
and dipolar interactions between the spins is a
textbook topic." Rather little attention has been
devoted to this topic, for spins near the surface
of a semi-infinite ferromagnet with both exchange
and magnetic dipole coupling present. " The pur-
pose of this paper is to provide a description of
the surface response in this regime of sufficient
generality for use in a variety of analyses, extract
information from it about the nature of surface
spin waves with both dipolar and exchange cou-
pling present, and then apply the formalism to an
analysis of light scattering from spin waves at the
surface of a ferromagnet. This application is
motivated by the very beautiful studies of spin
waves at ferromagnetic surfaces reported recently
by Metawe and Grunberg, ' and by Wettling and
Sandercock. ' We have here the first studies of
magnetic excitations near a surface in a system
that is an excellent approximation to a semi-infinite
geometry.

Before we proceed with the technical discussion,
a few introductory remarks may be a useful means
of orienting the reader.

At long wavelengths, exchange interactions play
a small role in spin-wave theory, and the excita-
tion energy of spin waves receives its dominant
contribution from the external Zeeman field, and
the demagnetizing fields set up by the spin motion.
The frequency As(k} of a bulk spin wave then de-
pends only on the angle between its wave vector
k, and the direction z of the magnetization M,.
The frequency is independent of the magnitude of
k, when its direction is fixed. The minimum bulk-
spin-wave frequency A„occurs for propagation
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parallel to z, and the maximum 0„for propagation
in the plane perpendicular to S. Ne have 0 = yH
and Q„=y(HB)'t', where H is the externally ap-
plied Zeeman field, B=H+4zM„and y is the gyro-
magnetic ratio. The frequency regime Q~ & 0 & 0„
is referred to as the bulk-spin-wave manifold.

Nith surface present, exchange still ignored,
and magnetization direction 2 parallel to the sur-
face, one finds a surface spin wave with frequency
Q,(k„) that also depends on the angle between the
wave vector k)) and rk of course kii is parallel to
the surface. This wave, called the Damon-Eshbach
(DE) mode in much of the literature, has two un-
usual properties. Firstly, its frequency lies above
the bulk-spin-wave manifold. Depending on the
direction of propagation, it lies between Q~ and
Qns= 2y(H+ B), a frequency larger than Q„. This
property contrasts sharply with other well-known
examples of surface waves. Secondly, the DE
surface spin wave exists only if k~) is directed into
a restricted range of angles. I et g and g be par-
allel to the surface, y normal to the surface, with
the crystal in the half space y &0. Then let 8 be
the angle between k„and ~. This geometry is il-
lustrated in Fig. 1. One finds the DE wave propa-
gates only in the angular range 8= wag„where the
critical angle g, is given by cos(g, ) =(H/B)'t'. The
dispersion relation is highly nonreciprocal, i.e. ,
Q~(k~~) 0 Q~( kp) Indeed, no surface wave propaga-
tion is possible for waves moving from left to
right (i.e. , from -x to+x) on the surface. In the
l.ight-scattering experiments mentioned above, 's'
one finds a most elegant demonstration of this non-
reciprocity. For fixed scattering angle, if the DE
wave appears in the Stokes spectrum, it fails to
appear on the anti-Stokes side and conversely.

The above discussion neglects the role of ex-
change. With exchange added, the frequency Qs(k)
of a bulk spin wave is upshifted by terms in Dk',
with D the exchange stiffness constant. For Djg'

»yH or yB; Qs(k) =—Dk'. In the presence of ex-
change, there are thus bulk spin waves degenerate
with the DE wave, by virtue of the exchange. As
first pointed out by Nolfram and de Names, '4 the
DE wave then becomes a "leaky surface wave. "

= MS, H

FIG. 1. Geometry and coordinate axes that «rm the
basis of the discussion in Secs. I and II.

If a surface disturbance in the form of a DE wave
is set up at time t= 0, then the energy density
stored near the surface decays to zero after a
characteristic time. The surface wave decays by
radiating its stored energy in the form of bulk spin
waves.

Nolfram and de Names' calculate the radiative
lifetime and the frequency shift from exchange for
the DE wave by a method that presumes the ex-
change is small. In essence, they proceed by set-
ting up a surface disturbance with (real) wave vec-
tor Kp then following its subsequent time depen-
dence. This is done only for one angle of propaga-
tion, 8=m, in our earlier notation.

%e proceed quite differently here, since the ap-
proach used in Ref. 14 seems somewhat artificial
to us. No experimental probe directly examines
the time profile of a surface disturbance with real
wave vector, for example.

By a method described below, we prefer to ana-
lyze the frequency spectrum of thermal spin fluc-
tuations near the surface. By the fluctuation-dis-
sipation theorem, this information also enables us
to construct the response of the surface region to
specific external probes. The light-scattering ex-
periments' ' provide examples of a powerful meth-
od of probing these fluctuations. Our analysis of
the spin-fluctuation spectrum leads us to a spec-
tral density function A(Q, ~, Q; y) with the following
physical interpretation. If one samples a slab of
material parallel to the surface, a distance y
from it and with thickness dy, then'(Q~~ Q p)dy
is a measure of the amplitude of the thermal spin
fluctuations in the slab with frequency 0 and wave
vector Q„. The DE wave shows as a prominent
5-function-like peak in the surface response func-
tion A(Q„, Q; y = 0) for Qp small enough that ex-
change effects are small. As the wavelength
shortens, the importance of exchange becomes
evident by a broadening of the surface mode peak
and a shift to higher frequency. From the position
and width of thy surface-wave feature, we have an
operational definition of the frequency, inverse
lifetime, and mean free path of the mode. By this
means, we have carried out an extensive study of
the influence of exchange and surface spin pinning
on the DE mode, for a wide range of propagation
angles and wave vectors. Ne do not need to as-
sume the exchange is a small perturbation, and
we are able to examine the nature of the spectral
density even when DQ,', is so large that the surface
mode is nearly critically damped by radiative pro-
cesses.

As the reader shall appreciate, we find that the
influence of exchange on the spectral density can-
not be described by simply assigning a lifetime
and frequency shift to the DE wave. As DQ,'„ the
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measure of the importance of exchange, increases
the surface-spin-wave feature in A(Qp Q p 0) not
only broadens but becomes distinctly asymmetric,
to develop a pronounced tail at high frequency. As
we move into the crystal and examine A(Qp Q y}
for y 0, the spectral density acquires rich struc-
ture with origin in interference beats between the
several waves that are superimposed to form the
DE leaky-surface wave in the presence of ex-
change. Finally, our method produces in addition
to the shape of the surface mode structure in

A(Q„, Q;y}, its integrated strength as well. The
variation of the integrated strength with angle and

DQ,', provides a measure of one's ability to excite
the wave with an external probe.

The method here is very similar in spirit to
recent Green's-function descriptions of light scat-
tering from polaritons in confined geometries. "
This method, and the closely related response-
function description developed by Nkoma and Lou-
don, "can be applied to a wide variety of problems
where one wishes to analyze the long-wavelength
response of a finite system. We call attention to
recent work with these methods on Brillouin scat-
tering by acoustical phonons near surfaces, "an
analysis of the scattering of Bayleigh acoustical
surface waves by roughness on the surface, "and
the mean-square atomic displacement in elastic
continua near surfaces. "

The outline of this paper is as follows. Section
II develops the general theory and Sec. III sum-
marizes our study of the DE feature in the spec-
tral density of the surface spins. Then in Sec. IV
we address the question of light scattering from a
ferromagnetic surface and in Sec. V we compare
our results to the recent experiments.

II. THEORY OF THE SURFACE RESPONSE OF A

SEMI-INFINITE FERROMAGNET

We consider a semi-infinite ferromagnet with
Zeeman field H applied parallel to the surface.
Thus, the magnetization M, lies parallel to the
surface. The coordinate axis z is aligned along
the magnetization, y is normal to the surface, and
consequently f lies parallel to the surface.

Suppose we probe the response of the system by
subjecting it to a time-dependent magnetic field
h(x, f) with jth Cartesian component h&(x, t}. If
S,(x, f) is the ith component of spin density, then
the expectation value (S,(x, f)) in the presence of
h(x, t) may be found once the susceptibility re-
sponse functions X&&(x,x'; t —f') are known. " We
have (with I= 1)

=gp~ dt' d g'
X)~ x, x', t —t' h~ x', t'

(2.1)

where p~ is the Bohr magneton, g is the Landd g
factor, and the integration ranges over the volume
of the semi-infinite sample. The response function
X„(x,x', f —t') is related to the spin densities
through the Kubo formula

S&&(x,x'; f —f') = (3 &(x, f)S&(x', f')) (2.3)

in our study of spin fluctuations net, r the surface.
We write

S,&(x, x'; f —f')

—S,&(x, x', Q)e '"" " (2.4)
2 gf

with X,&(x, x', Q) the Fourier transform of

X,&(x, x', f —f') defined in a similar fashion, and

X,&(x, x', z) the analytic continuation of X,&(x, x', Q)
into the complex frequency plane from the near
vicinity of the real axis.

By examining the structure of S,&(x, x', Q) and

X&&(x,x;z) by writing their form out explicitly,
one obtains a relation between the the two, with
n(Q) = [exp(Q/ks T) —1] ' the Bose-Einstein func-
tion:

S, (x, x'; Q) =i[1+n(Q)] [X, (x,x', Q+iq)

—Xqq(x, x iQ -i'0)] ~ (2.5)

Our procedure will be to construct X,&(x, x', Q a ir})
through an equation-of-motion technique, then use
Eq. (2.5) to obtain the spectral density that de-
scribes the frequency spectrum of spin fluctuations
in the sample.

Let x„be the projection of x onto a plane parallel
to the surface. Then in our semi-infinite geome-
try, S,&(x,x', Q) is a function of x„-x~~ only, but a
function of both y and y'. We exploit the former by
writing

S,q(x, x', Q)

The function A&(Q„, Q;y) = S«(y, y;Q„Q) (i=@ or y)
has the following physical interpretation. If one
examines spin fluctuations in a slab of thickness
dy with sides parallel to the surface, with the slab

X„(x,x', f —t')

=+ i&(f —f')([S)(x, f), S~(x', f')]}0, (2.2)

where S,(x, t) is the time-dependent spin-density
operator in the Heisenberg representation, [~,B]
is the commutator of the two operators A and B,
and Q), is the expectation value of A for a statis-
tical ensemble with h(r, f) = 0.

We shall wish to consider the spin correlation
functions
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= ti[S(x, t) x hr(x, t)], , (2.'t)

or for the x and y components explicitly

a distance y below the surface, then A,.(Q„,Q;y)
measures the square of the amplitude of the Fou-
rier component with wave vector Q„and frequency
Q of the thermal fluctuation in S,(x, t) within the
slab. It is this quantity we study below in our anal-
ysis of the frequency spectrum of the DE wave.

In the spin-wave regime, we have interest in only
the form functions y, &(x, x', t —t') with t and j equal
to x and y. While we can work directly with the
form in Eq. (2.2) and the equations of motion of
the appropriate Heisenberg operators, we choose
to proceed through resort to a classical method
that produces identical results, for excitations of
the spin system on a length scale long compared
to the lattice constant.

If our spin system is subjected to a magnetic
field hr(x, t) with origin to be specified below, the
Cartesian component of spin density S,(x, t) obeys
the equation of motion (we have h= 1)

"+—S„—p,(H —DV2)S„-M —= -M h

(2.10a)

-'-+ —S,+ li(H-DV')S„+M, —=M,h, , (2.10b)
Bg x

V y -4gp. -4pp. =0.2 Bg„ 93~
~X 9$

(2.10c)

These. equations, supplemented by boundary con-
ditions described below, will form the basis of the
present analysis. It is useful to rewrite these in
a more abstract but more compact notation. De-
fine new variables u, =3„, u, =S„, and u, = y. Then
let f, =+M,h, , f,= -M,h, , and f, = 0. Suppose we

give h, (x, t) the time variation exp(-iQt), with the

same time variation for S„(x,t) and S,(x, t). Final-
ly, we introduce the matrix of differential opera.-
tors L,z where, with Q=Q+t/r,

= t S„(x,t)h, (x, t) M,h, (x, t-), (2.sa)

= M,h (x, t) —ties„(x, t)h (x, t) . (2.&b)

+jA

—p.(H —DV')

p,(H-DV ) M-
S gy

8
+ iQ -M-

~ a~

Here in the spirit of spin-wave theory, we replace
S,(x, t) by the constant nS, with z the density of
spins and note p.nS=M, is the saturation magneti-
zation. We have set p, =gp. ~.

The magnetic field hr(x, t) is composed of a sum
of three contributions: (1}The Zeeman field H ap-
plied along g, and an exchange field of strength

DV', also -aligned along z. (ii) The demagnetiz-
ing field h~(x, t) set up by the spin motion. (iii) An
externally applied field h,(x, t) which varies in

space and time.
Upon noting that the components of h„are linear

in S„(x,t) and S„(x,t) and neglecting terms in the
equations of motion nonlinear in these components,
then adding a transverse relaxation time r, we
have

Q]~xu)x = )x (2.12)

The formal solution of these equations is
achieved by introducing an array of Green's func-
tions g.&(x, x', Q) that satisfy

Q L,,(x)g„(x,x', Q) = t)„6(x—x') .

(2.11)

Then with this convention, the information con-
tained in (2.10) may be expressed in the simple
form

eg„ 1"+—S,+M,h~ —ti(H DV')S„= —M,h-, , (2.9a)

88~'+ —S„M,h, + p(H DV'-)S„=+M,h, . —(2.9b)
X

One has

x,(x) = Q I d'x'X, ,(x, x', Q)f,(x'), (2.13)

The demagnetizing field h~(x, t) is given accurate-
ly by the magnetostatic approximation, since dis-
turbances in the spin system propagate slowly
compared to the velocity of light. Thus, V xh„=0
and we have h„= -Vp. In addition, we require
V'h„+4m', V'3=0. The last statements combined
with Eqs. (2.9) lead us to the set of three equations

g„„(x,x', Q}= -nSgi 2(x, x', Q),

)(„,(x, x', Q) =+ ~Sg»(x, x', Q),

(2.14a)

(2.14i )

where in Eq. (2.13) recall f,(x) = 0 by definition.
By comparing Eq. (2.13) with Eq. (2.1), the

Green's functions directly give X.&(x, x', Q), the
Fourier transform of y,&(x, x', t —t'). One readily
notes the identities
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y„„(x,x', Q)= -»Sg»(x, x', Q), (2.14c}

y.,„(x,x'; Q) =+kg»(x, x', Q) . (2.14d)

g3f +4gpg83 (2.15b}

The boundary condition on the magnetization
components S„and S, at the surface requires a
brief discussion. If one considers a semi-infinite
lattice of spins coupled by exchange interactions
of short range, then the boundary condition be-
comes~ n VS„=O and Pg V'3„=0 at the surface,
where pg is a unit vector normal to the surface. In
practice, this is an oversimplified description of
the boundary condition. Spins at the surface often
experience effective-pinning fields which inhibit
their motion. A diverse variety of extrinsic and
intrinsic mechanisms can give rise to effective-
pinning fields. With this in mind, we take the
boundary conditions on the transverse magnetiza-
tion at the surface to have the form

~gi2 ~g P

p
x=o+

(2.16b)

where X is a phenomenological parameter that
provides a measure of the strength of the surface
pinning field. If A. = 0, we recover the zero-slope
boundary condition appropriate to slowly varying
disturbances in the semi-infinite Heisenberg ferro-
magnet, while if we let X-, the boundary condi-
tion becomes 3„=3„=0at the surface. This cor-
responds to the limit of very strong surface pin-
ning, with motion of the surface spins fully in-
hibited by the surface pinning.

So far we have said little about the boundary con-
ditions for our problem. With x' fixed inside the
sample (or outside the sample), quite clearly from
Eq. (2.13) the elements g»(x, x', Q) of the Green's-
function array, considered as functions of x, obey
the same boundary conditions as the x component
of spin density S„(x,f). Similarly, when considered
as functions of x for fixed x', g»(x, x';Q) obeys
the same boundary conditions as S„(x) while

g»(x, x', Q) the same as y(x). Thus, continuity of
q&(x) across the surface (this ensures continuity of
tangential components of h) requires

g, ,(0+,x', Q) =g„(0—,x', Q), (2.15a)

while conservation of normal (y) components of h

+4v»p, s (normal b) gives

In contrast to the other parameters of our theory,
which may all be deduced from known bulk prop-
erties of a given material, X is sensitive to the
microscopic details of the surface geometry. To
illustrate this, consider a semi-infinite fcc lattice
of spine with a (100}surface and nearest-neighbor
exchange interactions J; Let the spins in the out-
ermost atomic layer experience an effective pin-
ning field of strength H, parallel to the external
Zeeman field. Then by taking the long-wavelength
limit of the appropriate equations of motion, one
finds A. = pH, a,!2D with a, the lattice constant and
D= a,'sZ the bulk-spin-wave exchange stiffness.
Thus, X is influenced by the environment of the
outermost atomic layer of spins. We note that it
has recently been proposed that magnetic recon-
struction acting in concert with surface-anisotropy
fields can produce pinning parameters X with a
strong dependence on both temperature and mag-
netic field. '

Our boundary condition in Eq. (2.16} is appro-
priate to the case where the Zeeman field is
aligned along a high-symmetry direction in the
surface layer. Then symmetry considera-
tions ensure the surface pinning field is either
parallel (X & 0) or possibly antiparallel (X &0) to
the Zeeman field. In general, this need not be so,
with the consequence that the spins near the sur-
face may cant relative to the Zeeman field. An
analysis of this surface spin canting, including
quantitative contact with the data of Wigen and his
co-workers, ' has been presented by Hirada,
Nagai, and Nagamiya, "and also by Stakelon. "

We are now in a position to find the explicit form
of the Green's functions g&&(x, x', Q). If the equa-
tions are written out explicitly, one obtains three
distinct sets, each of which couples three elements
of the Green's matrix together. We discuss ex-
plicitly the set that couples g„(x,x', Q),
g»(x, x', Q}, and g»(x, x', Q). We then simply quote
the results of the set g,,(x,x', Q) and we shall have
no interest here in the setg„(x, x', Q).

We begin by Fourier transforming out the depen-
dence on x„and x,', :

2

g„(, ', Q) =
(2 )". „(y,y', Q„} p[Q, '(, —,',}l.

(2.17)
In what follows, in the interest of compactness,
we surpress explicit reference to Qp and Q in

gQ(3 I y
The three functions g„(y, y', Q„,Q) satisfy the

equations, with h= H+ DQ,'„
82

'Qg. b ~'}+» -D
8$

8
+ p,M, —g»(y, y') = 5(y -y'), (2.18a)
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82
h D-, g„(y,y') + ing„(y, y')

8y2 ll

-ii1M Q„g31(y, y') = 0, (2.18b)

+4vi1iQ„g„(y, y')+4K p,
S g„(y, y')
8y

82+,', —,g„y, y' =0. 2.18c

A convenient way to proceed with the solution of
Eqs. (2.18} is to introduce an auxilliary function
A, (y, y') related to the three Green's functions in
the following manner:

A (y y') = A(")(y -y') = —e'"('~')A(")(K)
27k

where substitution into Eq. (2.20) gives

(2.23)

zero imaginary parts. We can always select three
roots z,. with positive imaginary parts as a con-
sequence.

We need to solve the inhomogeneous version of
Eq. (2.20). First suppose we consider an infinitely
extended medium, where A, (y, y') is necessarily a
function of y -y'. (Here and below we confine at-
tention to the case y'&0. ) We then write

( ) 1 1
D (K'-K')(K' K')(K' —K')

' (2.24)

8 8
iQ Q„— 2 + 4' i1M Q„—A, (y, y'),

(2.19a)

8 8
4vuMgQg+ u' I) D 2 Qfl S 2 1(yt y

The contour integral in Eq. (2.23) is then eval-
uated, with the requirement A,'"'- 0 as

~ y -y'
~

This gives
~ 3

A,'"'(y -y')=, Q a, exp(iK,. ~y -y'~), (2.25)

where

(2.19b) E1 = [K1(K1 —K2)(K1 —K3) ] (2.26)

and c2, c3 are formed by cyclic permutation of the
indices on the right-hand side of Eq. (2.26). It will
be useful to note the identities

8 8
4vQQ„-4v((1 I) -D, —A,(y, y') .

8y 8y

(2.19c)

One may verify that for any choice of A,(y, y'),
the two homogeneous members of Eqs. (2.18) are
satisfied automatically, while Eq. (2.18a) requires

g K,e,=0, . .

and also

Q K(((= 0.
j=l

(2.2'Ia)

(2.27b)

+ 4~~2~ I g7 2 P y yf

The homogeneous version of Eq. (2.20) is satis-
fied if the dependence of A, (y, y') on y assumes the
form exp(iKy), where K is any root of the equation

P, '(I1+DK') (Q~~+K ) 0 (Q[, +K )

+ 4mp M,(h+ DK') (Q„'+ K') = 0. (2.21)

Equation (2.21) is a cubic in K' which yields three
distinct solutions we write as z', , z=1, 2, or 3.
By K, we mean a root of Eq. (2.21) subject to the
constraint

Im(K,.) &0. (2.22)

In the presence of a nonzero relaxation time v',

for real Q„and 0, all roots of Eq. (2.21) have non-

The Green's functions generated by inserting Eq.
(2.25) into Eqs. (2.19}satisfy Eqs. (2.18), but they
fail to satisfy the boundary conditions at the sur-
face. This we handle by adding to A,'"'(y -y') solu-
tions to the homogeneous version of Eq. (2.20),
with coefficients to be adjusted to satisfy the
boundary conditions. Thus, we write, for y&0

~ 3 3

A (y y'}= W c e("&')' "') + W ~.e+("i)'l y 2D2 ~ g

g=l j~l

(2.28)

where we shall find the 0., to be functions of y'.
Outside the crystal, for y &0, g»(y, y') and

g»(y, y') necessarily vanish simply because there
is no magnetization there. This is not true of

g»(y, y') for y'&0, since the driven spins neces-
sarily set up a magnetic field outside the crystal.
The requirement that V K„=0 outside the crystal
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dictates that (for y'&0) g»(y, y') = eoexp(QKy).
Thus we have the four constants n, and Ql Q3 that
are uniquely determined from the boundary con-
ditions.

We shall not describe the details of the algebra,
but we simply present the results of our analysis.
We define the three quantities

y„(~)= —2, [Q(Q,', +»', ) +4~i p MQ„»,], (2.29a)

and

y„(+)= 2, [4' OQ„+4v» p(Ic+ D»',)],.
D

(2.29c)

and then set up the matrix M given by

y„=, [ic(Ic+D»',)(Q K+»,')+4'»gM, QK], (2.2 )

(i», —x)y„(+)

(i», —II.)y„

(i», -x)y„(+)

(i», - II.)y„
(i», -x)y„(+)

(i», -x)y„ . (2.30)

(i», —Q„)y.,(+) -4vy (i». Q„-)y..(+) 4'..-(i». Q„)y-..(+) -%ay.,

We also introduce

F„=(i», + ~)y„(-)e„
F2 ~ = (i » I + X)y2 chic,

F„=[(i», +Q„)y„.( )+ 4v. y-„]e,

(2.3la)

(2.Slb)

(2.31c)

3

g (y y')=g y (+)«""cI""'

3 3
+ P g y„(+)A,le+'KcKe'cKP'. (2.33c)

n, = g g M,F„e'"»',
kl 1

3
gKkg~

gk
0~1

(2.32a)

(2.32b)

where

3

M cjF~„.
j~l

(2.32c)

In terms of the quantities defined above,
3

(y yt) P y (+)~ e+C CI
-KIKK

3 3

Then we find the coefficients oI, in Eq. (2.28) may
be written The forms in Ecl. (2.34) are valid for both y&0

and y'&0. By the notation

yc,(+) exp{i», ~y —y' ~)

we mean yz, (+) exp[i», (y -y')] when y &y' and

y&;(-) exp[ i»,(y -y')] when y &y'. We remark that
it is the identities in Eels. (2.2V) which ensure
that no 6 functions appear in the Green's functions,
when the differentiations in Eels. (2.19) are car-
ried through.

By means of a similar procedure, one may ob-
tain expressions for g„(y,y'), g»(y, y'), and

g»(y, y'). As remarked earlier, in the interests
of brevity, we omit the details and give only the
final results.

Here we introduce

+ g Q y„(+)A,qe"KcKe'"P', .(2.33a)
f=l Jil

g (y yl) Q y Z e4' CKC IV 5I I

5„=—,[ic(Ic+D»', )(Q'„+»',)+ 4m pM, »2c],

62c(y) = —,[A(Q,', +, »', ) +4vi icMQ„]»,

(2.34a)

(2.34b)

3 3
+ g ~ y A e' 'KcKe' 'KP'

2f gg

g=l j~l
(2.33b)

5„(+)= p, ~ [Q„p,(h+D»c) +iA», ],
and the matrix

(2.34c)

(i», -x)5„
(i», -x)&„(+)

(i», -x)5„
(i», —x)&22(+)

(i», -x)5„
(i», -X)&„(+) (2.35)

(i», —Q, ,)5$$(+) 47c5»(+) (i», —Q„)5»(+) -4v5»(+) (i», —Q„)6»(+) -4&5»(+)
'I
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Also, let

A~)=(i»)+ x)5~)e),

a„=(i», + X)5„(-.)e, ,

b, , = [(i»,+.Q„)6„.(-)+4v5„.(-)]e, ,

and finally

(2.36a)

(2.36b)

(2.36c)

(2.N)

Then we have the results, for y & 0 and y' &0,
3

(y ys) g 5 e eis ly-y~ 'I

j-"1

3 3

el'�

)hie IKghl~
l~ (2.38a)

3

(+)e e+ l~~ly y'I-
$3a 1

3 3

j=l j3:1
(+)B elRPelk~hl~ (2.38b)

and

jI.,q(x, x', Q —iq) = [X~,(x', x; Q+ iq) ]~ . (2.39)

This identity will prove useful in Secs. III and IV.
For instance, from Eq. (2.5) with i= j, we can
now write

S&&(x,x', Q) = -2[1+ n(Q)] 1m[X, ,(x, x', Q+i@)],

(2.40)

so we need not explicitly take the discontinuity
across the real axis to calculate the diagonal ele-
ments of the spectral density of the spin fluctua-
tions.

The second point concerns the behavior of the
relaxation time 1/r introduced into the equations
of motion of the spin system. While the presence
of this quantity allows us to represent the effect

(y yl) Q 5 (g)g e+ fK)lst p~l

)N:1

3 3

+ g g 6,,(+)B,&e' '"&"e'"P'. (2.38c)
g=l )=l

This completes the construction of the response
functions that form the basis of the numerical cal-
culations reported in Secs. III and IV of the pres-
ent paper. We conclude with two important tech-
nical comments on the above material.

First of all, through direct examination of the
Fourier transform of the response function

X,.&(x, x', f —f') defined in Eq. (2.2), one may demon-
strate that

of dissipation in the spin system phenomenological-
ly, there is a subtle feature of introducing this
parameter which requi. res explicit comment.

In a proper microscopic theory of the spin re-
sponse, I/r will emerge as the imaginary part of
an appropriately defined proper self-energy. As
a consequence, it will be a function of frequency
(and wave vector also, but for our purposes the
wave vector may be set to.zero). As we move par-
allel to the real axis in the 0 plane, use of a prop-
er frequency variation of v will modify our nu-
merical results, but the consequences of neglect-
ing this are not serious for our purposes. It is,
however, quite crucial to realize that the proper
self-energy whose imaginary part yields r ' has a
branch cut along the real axis. As we cross the
real axis, the imaginary part of the proper self-
energy changes sign. The choice of sign chosen
for 7 here (r &0) corresponds to presuming Q lies
just above the real axis in the 0 plane. If we were
to move heloise the real axis, as when we apply
Eq. (2.5), it is necessary to note that r '(Q -ig)
= -r '(Q+irl) If t.his feature of 1/7'(Q) is not ac-
knowledged, then the Fourier transforms
X,&(x, x', Q) constructed from the Green's functions
above fail to satisfy the identity in Eq. (2.40). In
our numerical work, we have never had to be con-
cerned with this issue, since we always use Eq.
(2.40) to express all physical results in terms of

X,&(x, x', Q) evaluated above the real axis in the
complex Q plane. As far as we know, this may be
done for any physical process one wishes to study.
The properties of v

' in the complex 0 plane are
then of no concern.

III. NUMERICAL STUDIES OF THE RESPONSE OF THE

SPIN SYSTEM NEAR THE SURFACE

In, Sec. I, and also in Sec. II [just after Eq. (2.6)],
we introduced a spectral density function

A&(Q„, Q;y), where the subscript i refers to either
y (the direction normal to the surface), or x (par-
allel to the surface but perpendicular to the mag-
netization). The physical interpretation of

A)(Qg Q y) is also given after Eq. (2.6). In this
section, we present a summary of our numerical
studies of the spectral density function A„(Q„,Q; y)
that characterizes the spectral composition of spin
fluctuations parallel to the surface. As we shall
see, from this study, we can obtain a clear physi-
cal insight into a number of properties of the Da-
mon-Eshbach surface spin wave in the presence of
exchange, and on general aspects of the response
of the spin system near the crystal surface. We
present information only on A„(Q„,Q;y); a study
of A„(Q„,Q;y) yields virtually the same informa-
tion.
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FIG. 2. Spectral density function A„(Qii 0 g) at the
surface y =0 for cg„=0.01 and various propagation angles.
Here and in the subsequent figures, the units of A.„(Q„,
9; y) are arbitrary.

We present the results by introducing convenient
dimensionless variables. Distance from the sur-
face is measured in units of QI i.e. , a dimension-
less measure of distance from the surface is the
variable (= Q~,y. Frequency is measured in units
of pH. We do this by setting Q= pH& with (d di-
mensionless. The influence of exchange is mea-
sured by z„=DQ,',/p, H, and the parameter y
=(iJHv) ' governs the relaxation rate of the spin
system in dimensionless units. We have set y
= 0.01 for all calculations reported below, unless
noted otherwise. We are left only with 4'„and
we have set r= 4vM, /H='I. O in the calculations de-
scribed here. Also, in the figures displayed below,
the influence of the Bose-Einstein function [1"n(Q)]
has been ignored. We also set X=0, and ignore
surface spin pinning, save for calculations re-
ported near the end of the discussion.

In Fig. 2, for a variety. of propagation angles 8
in Fig. 1, we show the spectral density function
A (Q~~ 0 .y) at the surface, with y —= 0. In Fig. 2,
we have taken ~„=0.01. Each prominent peak in

Fig. 2 is the Damon-Eshbach mode. We see very
little other structure in the spectral density at the
surface, although one should note the background
upon which each DE peak s its. There is no struc-
ture at all in the frequency regime p.H ~ 0
~ p(HB)' ' where bulk spin waves occur, in the
absence of exchange. Thus, the long-wavelength
surface-spin response is controlled entirely by

the DE wave, when ~„ is small. The peak posi-
tions in Fig. 2 are given quite accurately by the
relation

flnm=-,'p iH/cose+Bcos8i, (3.1)

which applies in the limit of zero exchange.
As remarked in Sec. I, the critical angle beyond

which no surface-wave propagation occurs is 8,
=v +(„where g, = cos '[(H/B)'~']. That is, propa-
gation occurs only when 8 lies in the range from
v+ p, to v —g,. In the present instanoe g, = 0.38,
so 8,=0.62', 1.38' for our parameters. The curves
in Fig. 2 provide a vivid picture of how the DE
wave "disappears" as the critical propagation angle
is approached. First note that as 8, is approached
from within the allowed range of propagation an-
gles, the DE peak broadens. With the small
amount of exchange present, these waves are in
fact leaky-surface waves, with lifetime limited by
radiation of energy into the bulk in addition to the
damping described by v' '. For most of the angles
in Fig. 2, the width of the DE feature is controlled
by v'"' and the radiative leak is not of great quanti-
tative importance. But as 8, is approached, the
DE frequency sinks toward Q„= p(HB)'~' a, nd the
radiative leak increases, with the consequence
that the DE peak broadens as 8 approaches 8,
from within the range of allowed angles. In es-
sence, the surface wave anticipates its upcoming
merger with the bulk-spin-wave continuum ap-
propriate to zero exchange. When 8= 0.6g, a val-
ue beyond 8,= 0.62', we see a broad but nonethe-
less clear resonance at a frequency belozo 0„.
The surface mode has disappeared, but a reso-
nance level in the bulk continuum appears in the
spectral density. The integrated strength of the
Damon-Eshbach peak also decreases monotonically
as 8 approaches 8, from within the range of propa-
gation angles allowed for the surface waves.

From the angular variation of the linewidth, and
the integrated strength of the DE wave at the sur-
face, we obtain an intuitive feeling for the way in
which the mode gradually and continuously disap-
pears as 8 disappears as 8, is approached. As (d„
is decreased, so does the angular range over
which the wave "dissolves" into the bulk continuum
through radiation damping.

We next turn to a study of the variation of the
spectral function A„(Q„,0;y) with distance from
the surface. We do this for 8=0.7g, ~„=0.01, and
various values of g= Q„y. For g as small as 0.1
[Fig. 3(a)], there is considerable structure in the
spectral density not present at g -=0, although the
DE peak remains the dominant feature in the re-
sponse. At (=0.5 [Fig. 3(b)], dramatic oscilla-
tory structure appears, although A„(Qg Q;y) is al-
ways positive definite as required by general con-
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FIG. 3. Behavior of A (Q„,Q;y) with (=Q„y for the
propagation angle 8=0.7x and (a) /=0. 1 and (b) /=0. 5.
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siderations. The DE peak remains a strong fea-
ture in the spectral density, though it no longer
dominates its integrated strength.

The oscillatory structure in Fig. 3(b) has its
origin in the fact that in the presence of exchange,
any solution of the spin equations of motion is a
linear combination g&s,.exp(iK,.y), where the z,
are the roots of the secular equation (2.21). In the
frequency regime where the large oscillations are
evident in Fig. 3(b), at least one of the z,. has large
real part, and the x, depend on frequency. This
produces interference beats in the spectral den-
sity. As we penetrate more deeply, since y be-
comes larger, and the K,. vary with frequency, the
interference oscillations become very rapid as
one scans frequency. We illustrate this in Fig.
4(a), where we plot the spectral densith for 8= 0.Vv
and $= 5.0. The DE peak is missing by now, but
a very fine interference pattern remains.

Upon increasing y, these oscillations become
ever more rapid but decrease in amplitude until one

achieves the bulk spectral density A„(Q„,Q;y= )
displayed in Fig. 4(b). In this spectrum, one sees
a sharp peak just above the minimum bulk-spin-
wave frequency 0 allowed for this angle, and a
second structure just above the maximum bulk-
spin-wave frequency 0„. The shifts away from
0 and Q„and the prominent high-frequency tail
on the bulk spectral density both arise from the in-
fluence of exchange, which allows all frequencies
above 0„to be present in the spin fluctuations, and
not just those between 0 and Q„as one finds in
the absence of exchange. We shall hear more of
this high-frequency tail in Sec. V where we dis-
cuss Sandercock's light-scattering study of spin
excitations at the surface of an Fe film.

We return to a study of the spectral density at
the surface, to see the influence of increasing the
effect of exchange, through increasing the param-
eter s&„=DQ,',/pH.

In Fig. 5(a), we show the surface spectral den-
sity A„(Q„,A;0) for the same propagation angles
used in Fig. 2, but now with ~„=0.1 rather than
z„=0.01. The Damon-Eshbach peaks are very
much broader than in Fig. 2, illustrating that for
this value of ~„, radiation damping is the domi-
nant source of linewidth for gal angles of propa-
gation, not just those near the critical angle 8,.
We have tested this by runs for various values of
the dimensionless damping parameter y, to see
that the structures in Fig. 5(a) are indeed insen-
sitive to y, for y in the vicinity of 0.01. Note that
near H„even though ~„=0.1 is a small amount of
exchange energy in the wave, the DE peaks are
very broad, and the mode ill defined. We also
call attention to the absolute magnitude of
A„(Q„,0; 0). The peak in the spectral density is
broadened, and the peak value is lowered. Finally,
a measurement of the peak positions in Fig. 5(a)
shows them upshifted in frequency compared to
Fig. 2. From these shifts, we may plot the fre-
quency of the DE wave as a function of ~„. We pre-
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(a) (b)

sent this information below.
In Fig. 5(b), we give the DE response for ~„=1.0.

The peaks are now very broad and highly asym-
metric; the asymmetry in the DE peak is also
clearly evident in the curves calculated for smaller
values of &„, although here we see it easily. The
DE peaks are now sufficiently broad, with radiation
damping dominant, that their lifetime is only a few
oscillation periods.

Through analysis of a sequence of plots such as
those presented above, we have extracted the de-
pendence of the frequency and width of the DE sur-
face spin wave on wave vector, for various propa-
gation angles. For this purpose, we use as the
operational definition of the frequency of the mode
thegosition of the peak in the spectral density
A (Q~[ 0 0}, and we define the linewidth to be the
full width at half maximum. Because of the clear
asymmetry present in the DE peaks, it is an over-
simplification to condense the information con-
tained in the spectral density into two such param-
eters, although we can convey trends compactly by
this procedure. We note that the analysis through
use of the equation-of-motion method presented by
Wolfram and de Wames" contains the implicit as-
sumption that the DE feature in the spectral den-
sity is a fully symmetric Lorentzian.

In Fig. 6, for three angles of propagation we
show the frequency of the Damon-Eshbach wave
as a function of its wave vector for three angles
of propagation. The solid line represents our em-
pirical dispersion relation extracted from the
spectral density plots from the procedure outlined
above. The dimensionless units of wave vector
»e q= (D/pH)' Q„. In Fig. 6, the circlesrepre-

sent points on a parabolic dispersion relation
v(q) = ar(0)+D'q', with D' chosen to fit the empir-
ical dispersion relation at q= 0.25. For propaga-
tion perpendicular to the magnetization (e= m), our
dispersion relation is accurately fitted by the para-
bolic law with D'= 1.76, in good agreement with
Wolfram and de Wames' analytic result. " How-
ever, for 8=0.65' near the critical angle 8„ the
parabolic law provides a poor fit. Close inspection
of the numerical results shows &g(q} —+(0) varies
Hnearly with q at small q, with curvature at larger
values. For the intermediate angle 8= 0.75', we
find a reasonable fit with the parabolic law with
D'= 2.10; there is a small but nonetheless signifi-
cant discrepancy behveen the solid curve and the
parabolic law.

In Fig. 7, we show the variation of linewidth with
frequency of the surface wave, for the three propa-
gation angles in Fig. 6. We see the dramatic in-
crease in linewidth from radiative damping as the
critical angle is approached. We remind the read-
er that we have set the relaxation time v' intro-
duced in Sec. II so the parameter y = 1/pBHr as-
sumes the value 0.01. At q= 0, where e(q) = &o(0),
the lifetime of the DE wave is controlled by the
relaxation time, but radiation damping sets in
with increasing strength as q increases.

The information on the dispersion relation and
the width of the Damon-Eshbach peak summarized
in Figs. 6 and 7 was obtained by fixing the value of

Q~~ then scanning the frequency Q. One can equal-
ly well define an effecti.ve dispersion relation by
fixing the frequency 0, then scanning the wave
vector Q,~. Such a procedure is relevant to the fol-
lowing experiment. Imagine driving the surface
spins by placing a line source of magnetic field
parallel to the surface, and close to it. If the mag-
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FIG. 6. Frequency of the Damon-Eshbach wave (re-
duced units) as a function of its wave vector {reduced
units). The dimensionless wave vector is q= (D/p~) QI, .
We show three propagation directions: (a) 8=1.0x,
(b) 8= 0.75m, and (c) 8= 0.65m. The circles describe
points on a parabola fitted to the calculated dispersion
relation (solid line) at q =0.25.
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FIG. 7. For the three angles examined in Fig. 6, we
give the width of the Damon-Eshbach wave as a function
of frequency. The spin-damping parameter y has been
chosen equal to 0.01.
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netic field oscillates in time with frequency 0,
then the response of the spin system measured
"downstream" from the line source is found by
convoluting the spectral densities A,(Q~t, 0;0)
exp(i@~~ x~, ) with coupling constants that are func-
tions of Q~~ Here Q„ is directed normal to the line
source of field. Viewed from an equation-of-mo-
tion approach analogous to that used by Wolfram
and de Wames, '4 the experiment discussed above
would probe the real and imaginary par ts of Q~~

that emerge from an equation-of-motion analysis
with 0 real. The imaginary part of Q„gives the
attenuation length of a disturbance set up by an os-
cillating line source of magnetic field near the sur-
face. The real part of Q, ~

controls the period of
the spatial oscillations that are functions of Q„.

We have constructed the real and imaginary parts
of Q„ for several propagation angles, by scanning

A„(Q„,0; 0) with 0 fixed, and the magnitude of Q,
scanned through the Damon-Eshbach peak. The
peak is again asymmetric, as before, so this may
be done meaningfully only for modest values of &
—&g(0). We find the effective dispersion relation
obtained in this way quantitatively very close to
those in Fig. 6, save for 6) = 0.65m where signifi-
cant quantitative differences are evident. Near
the critical angle, the features in the spectral den-
sity are skewed sufficiently that a unique disper-
sion relation cannot be defined. We note that
Im(Q~~) obtained from the width of the peak in the
spectral density, is of the same order as Re(Q„)
so that the wave is severely attenuated. This is
true even when ~„ is small, and this occurs be-
cause in the absence of exchange, the frequency of
the wave is independent of the magnitude of Q„.
With a small bit of exchange added, for fixed real
0, an equation-of-motion approach (explored ex-
plicitly by us) shows Re(Q, ~) and Im(Q„) the same
order of magnitude even for small (d„.

The calculations discussed in the present section
have presumed the pinning parameter X =—0, so the
"zero-slope" boundary condition is imposed on
both components of the transverse magnetization.
In Fig. 8, we show the effect of spin pinning on the
spectral density, for two values of +„and a se-
quence of pinning parameters X. This is done here
for only one propagat;ion angle, 8=0.7r, but the
results displayed are typical of those obtained for
other angles. For X&0, as explained earlier, the
surface-anisotropy field acts to "pin" the surface
spins and inhibit their response. For X&0, con-
sidered also in Fig. 8, the effective-surface-an-
isotropy field is antiparallel to the Zeeman field,
so spins in the surface see a smaller total effec-
tive field- than spins in the bulk.

Prom Fig. 8, we see that as X is increased in
the positive sense, the Damon-Eshbach peaked is
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FIG. 8. For 0= 0.7x and the two values of z„ indi-
cated, we show the effect of spin pinning on z„. The
dimensionless parameter p = & (D/@pe)'

shifted up in frequency, and its amplitude dimin-
ished, as expected on physical grounds. It is also
broadened substantially, with the broadening
eventually severe enough to cause the surface spin
spectral density to become rather featureless.

The physical origin of the broadening is clear.
If the parameter ~„ is small, then one of the de-
cay constants K,. lies close to the value i ~Q„~ ex-
pected in the presence of only dipolar coupling.
The remaining two roots are large in absolute
magnitude, and necessarily move off to infinity in
the limit ~„-0. For 8=m, this is evident from
the analytic results displayed by Wolfram and de
Wames, and it remains true for other angles as
well. If the surface-spin pinning is increased and
the amplitude of the transverse magnetization in
the DE wave driven to zero at the surface, a value
far from that expected from the solution with only
dipolar coupling present, one must mix in the two
"exchange-wave" solutions with large z, to make
the magnetization vanish. One of these waves is
responsible for the radiation leak to the interior,
so as forcing the magnetization to zero increases
its amplitude, the radiative leak to the interior in-
creases.

For A. &0, the DE wave softens as expected.
The peak initially narrows as ~X increases, to
eventually broaden until the DE feature in the
spectral density is washed out, very much as in
the case of A, &0.

This concludes our discussion of the basic prop-
erties of the response of the spin system in the
near vicinity of the crystal surface. While the
spectral-density functions displayed here provides
a vivid picture of the response in the surface re-
gion, unfortunately they cannot be probed directly.
Sections IV and V are devoted to light scattering
from magnetic surfaces, with emphasis on the re-
cent very beautiful experimental studies.
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IV. SCATTERING OF LIGHT BY SPIN WAVES ON

FERROMAGNETIC SURFACES

In this section, we develop the theory of the in-
elastic scattering of light by spin waves at the sur-
face of a semi-infinite crystal. We shall then apply
the theory to scattering from the surface of EuO
and Fe, to make contact with the results reported
by Griinberg and Metawe' (EuO) and by Wettiing
and Sandercock' (Fe). The theory presented here
gives a good account of the angle variation of the
intensity of light scattered by the Damon-Eshbach
wave, and also of other features of the data. Be-
fore we enter the theoretical discussion, a few
general remarks are in order.

In the experiments, as in numerous light-scat-
tering studies of surfaces, the frequency of the
laser light lies in an absorption band. In the case
of EuO, the laser frequency l.ies beyond the ab-
sorption edge, in a frequency region where we es-
timate the skin depth to be 1500 A. In Fe, under
the laser excitation used by Wettling and Sander-
cock, the skin depth is around 150 A. Thus, one
observes light backscattered from the surface, as
illustrated in Fig. 9. Since the scattering volume
is small, scattering from bulk excitations is
small, and features specific to the surface appear
in the spectrum. The surface waves appear on
equal footing with bulk waves, for example. In
the present section, we are concerned with scat-
tering by spin waves that have frequencies in the
range of a few cm ', which is the frequency regime
appropriate to Brillouin spectroscopy.

We believe the light-scattering method offers a

FIG. 9. Experimental geometry. Light is incident at
an angle 8I with the normal. The scattered light col-
lected is that backscattered in the direction of the inci-
dent beam. The magnitude of the transfer wave vector
parallel to the surface, (Qp ( ~ equals ((Kz(+ )K, ()sin81.
Experimentally only y= 0 or q =180 have been studied.

potentially powerful and flexible probe of magnetic
surfaces, under conditions where direct contact is
possible with theories of magnetic surface re.-
sponse, as we shall see from the analysis below.
We compare briefly the light-scattering method
with the more traditional ferromagnetic -resonance
studies of thin films or spheroidal samples.

In ferromagnetic-resonance studies, the wave-
length of the incident microwave radiation is usual-
ly larger than typical sample dimensions. Thus,
one always excites modes that are geometrical
resonances of the whole sample, ", rather than modes
appropriate to the conceptually much simpler
semi-infinite geometry. From resonance studies,
it is thus difficult to obtain information specific
to a particular surface orientation, without resort
to a carefully. prepared sample of planar geometry.
Unfortunately, while the films used in standing-
spin-wave studies in ferromagnetic resonance have
this planar geometry, they are usually polycrys-
talline and complicated by the presence of a non-
magnetic substrate. The mode structure is thus
equally influenced by the nature of the film-sub-
strate interface as it is by the film-vacuum inter-
face. Finally, the microwave cavities used in res-
onance studies operate typically at one, or at best,
a small number of frequencies. Data taken with
only a single frequency is often hard to interpret
in an unambiguous manner. '

The light-scattering method uses a probe with
wavelength small compared to sample sizes. The
method can in principal. probe the carefully pre-
pared single-crystal surfaces through use of ra-
diation with wavelength very short compared to
sample size. Thus, one has a tool. that can ex-
amine a crystalline surface, under conditions that
closely approximate the semi-infinite geometry.
One can also vary the externally applied magnetic
field continuously, and follow its influence on the
modes without being restricted to one or a dis-
crete number of frequencies. In both experiments
cited above, the Damon-Eshbach and bulk-spin-
wave features in the spectrum have been followed
over a wide range of magnetic fields.

We now turn to the light-scattering theory we
have developed, based on the correlation functions
derived and studied in Secs. II and IG. Before we
do, a comment on the choice of coordinate axes
may avoid confusion. In Sec. II, where the theory
of the surface response of the spin system was
developed, the z axis was directed along the mag-
netization (paraiiei to the surface), whiLe the y
axis was directed normal to the surface. This
was done since in the magnetism literature, the
z axis is conventionally aligned along the mag-
netization. Here we wish to discuss light scatter-
ing from the surface, with help from the Green's-
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function apparatus erected for earlier theories of
light scattering from surfaces and films. ' To use
the Green's functions described in these papers
directly, it is useful to orient the z axis normal to
the crystal, with crystal in the upper half space,
as shown in Fig. 9. Thus the present section uses
the axes displayed in Fig. 9, with magnetization
directed along y. Some care must be exercised
when using the specific forms in Sec. II in the
formulas here, as noted explicitly below.

The light couples to spin w'aves in the material
because modulation of the spin density S(x, t) by
thermal fluctuations leads to modulation of the
dielectric tensor c„„by terms first order in

S„(x,t). In addition, the fluctuating magnetic field
h~(x, t) associated with the thermal motion of the
spins also modulates the dielectric tensor. To
first order in these quantities, we write the fluc-
tuating part 5&„,(x, t) of the dielectric tensor in the
form

5&„„(x,t) =QK„„„S„(x,t)+Q P„„„h,,(x, t), (4.1)

where K„„~is the change in E„„caused by reorien-
tation of the magnetization, with zero magnetic
fiel.d, and P„„~the change in E„„by application of
a magnetic field, with magnetization held fixed.
The time and spatial variations of S(x, t) and

h„(x, t) are sufficiently slow that K„„~and P„„„are
well approximated by the form appropriate to
static, spatially uniform changes in S and h„. How-
ever, both are functions of the incident-light fre-
quency, and for our purposes the difference in
frequency between the incident and scattered light
is small.

In the treatment below, we ignore P„„~by setting
it to zero, since we expect it to be small compared
to K„„„.This may be justified by a simple physi-
cal argument, "and our confidence in this assump-
tion is bolstered further by the good agreement we
find for the angular variation of the ratio of the
cross section for scattering from the Damon-Esh-
bach wave, and for scattering from bulk spin
waves.

The nonzero elements of the tensor K„„„may be
obtained from symmetry arguments, "noting the
transformation properties of S„(x,t) under time re-
versal and spatial rotations are identical to a mag-
netic field. For a cubic material we have

(4.2)

where c„„~is the Levi-Civita tensor, and the pre-
factor K becomes purely imaginary for a trans-
parent material, but is in general compl. ex.

The comments above confine attention to terms
linear in the spin density S„(x,t). It has been
pointed out that below T, terms quadratic in the

spin density also contribute to the one-spin-wave
scattering. The influence of these terms is ig-
nored for the moment in the interest of simplicity.
We comment again on them at the end of the sec-
tion, where the modifications of the formulas de-
rived from Eq. (4.2) produced by the quadratic
terms will be given. '

With the above introductory remarks in hand, the
theory of light scattering from the surface pro-
ceeds along the lines outlined in Ref. 15. In the
interest of brevity, we do not repeat the full def-
initions of all quantities that enter the analysis,
but instead we refer the reader to Ref. . 15.

The scattered field below )he material may be
written in terms of the Green's functions
D ~(x, x', t —t') of the Maxwell equations. In Ref.
15, the explicit forms of the Green's functions
are given for a three-layer geometry. We quote
below the special limiting form of these functions
appropriate to the present problem. If E"'(x, t)
is the jzth Cartesian coordinate of the scattered
electric field, E(0'(x, t) that of the incident field
inside the medium, and , the frequency of the in-
coming light, we have"

7r

x 5eq„(x', t')E„"'(x', t'),
(4.3)

where here we write the incident field in the medi-
um in the form

E"'(x' t')= ~ T E"'exp(ik"'x
Tfj II II

+ ih,'&'a -i&0,t) . (4.4)

In Eq. (4.4), E„"' is the amplitude of the pth
Cartesian component of the incident electric field
outside the crystal, and T „ is a matrix of trans-
mission coefficients with „T„P(o' the yth
Cartesian component of incident electric just in-
side the crystal at z = 0+. The wave vector k,'," is
the projection of the wave vector of the incident
light on a plane parallel to the surface. The mag-
nitude of k(',

" is (v,/c) sin&&, with 8z the incident
angle illustrated in Fig. 9. Finally k~& is the com-
plex wave vector of the incident light in the crys-
tal. If E is its complex dielectric constant, and
c the velocity of light in vacuum,

(4 5)

Through use of the procedures in Ref. 15, one
many form an expression for the Brillouin-scat-
tering efficiency per unit solid angle, per unit
frequency interval. We write E„' '= E' n„with n„
a unit vector, and recall the definition of
e ~(k„, (d ~a) to obtain the differential scattering ef-
ficiency d'S/d&o, dA(h, ) in the form
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d S cos~q (d() A AP P g P T„„T„*,„,n„n„,X),„,Ze„,
dQ) e dQ(ke) n eye eey~ot

8m' c

x d~' dz" ~., k,', &, ~, ~' ~*., W,~",~, ~"
0 0

x exp(ik,'&'z' -ik,'&'*z")

d'r„dtexp j Qt — „'r„go, r„,g";v S6 O, z', 0

(4.6)

k ' = (ohio/c)(« —sin'8 )'~' Im(k"') &0, (4.6)

and again me ignore the difference between the fre-
quency of the incident and scattered light. The
tensor 1 e(k, ',",&o) is readily expressed in terms
of two quantities y,(8,) and ye(8,). Let

In Eq. (4.6), Q= wo —(o, is the change in frequency
of the light upon scattering, and Q=k, ',

"-k, ',
"is the

projection of the change in wave vector of the light
onto the plane parallel to the surface. Note that

Q„ is necessarily real.
We turn to the form of «e(ko (o ~z) In Ref. 15,

these functions mere constructed for a substrate
that occupied the balf space z &0, a film in the re-
gion 0&z&d, and vacuum in the region d&z. We
obtain the form of these functions in the form ap-
propriate to the present geometry by letting d-,
replacing the dielectric constant of the substrate
by unity, and that of the fiim by the (complex)
quantity z. We write for z'&0

«e(k,"', (g, ~z')

= (c/i&go}1 e(k,',",(co) exp(ik,'&"z') (4.'I)

and

be the magnitude of the normal component of the
wave vector of the scattered radiation below the
crystal" and define

y,(8) = ((oo/c)(k(e'+ k"') ' (4.10a)

ye(8) = (c/(oo)k"'k"'(k"'+ «k"') ' (4.10b)

1"„„(k„"',(o,) = cos'(o, ye(8,)+ sin'y, y,(8,), (4.1la)

= sing, cosy, [ye(8,) -y,(8,)],

I y~(k(I, (oe) = sin (g ye(8 ) + cos (o y (8 ),

(4.11b)

(4.llc)

(4.11(i)

(4.lie)

(4.llf)

(4.11g)

(4.11h)

Then if k"'= k"'coscp, and k" = k"'sing, defines
the azimuthal angle y„we have~

k ' = —cos8lg (4.9}
Then we introduce

F, (k, k, ;Q) = d' „dtd 'd " p(i&k '-ibk, ") p['(Qt-Q„' „)](6,,( „, ', t)S,(0, ', 0))
v

(4.12)

with

4k =k +k'i. Lp Jp

to mrite the Brillouin scattering efficiency in the form
2 4$ cos ~g Q() n (s)g g g p T„„T„,„,n„n„,&e~,e&e eI e( e (oo} I" e(ki &oo)Fe e(ko k iQ).

dQ(k, ) d&o,

(4.13)

(4.14)

The expression in Eq. (4.14) provides a general expression for the Brillouin efficiency. We reduce it
down to a simpler form, with the experimental geometry of Hefs. 8 and 9 in mind. In the scheme of Fig.
9, we presume s-polarized incident radiation, with the g-z plane the plane of incidence, and the incident
electric field parallel to the magnetization along y. Furthermore, for Ze„e we take the form in Eq. (4.2)
appropriate to a cubic crystal. Then with T, the transmission coefficient of the s-polarized light through
the surface, the scattering efficiency becomes
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I
l2 y(s) s

dQ(y ) d& 8(T c . cos es I)

(4.15)

P, e()z, )z„ ie,)= ([)re(())] fd'rdz'dz exP(idxz'-izxz") e xP(- (()'r)[ Xr(ez , z"; 0„z';. ()+i P)

(,), (hip E„,+I)ip E,„) I

J.& i

The contribution in Eq. (4.15) from s po-larized scattered radiation is proportional to Iy, I, while that
from p-polarized radiation in the final state is proportional to ly&l .

The functions Ess, defined in E(I. (4.12) are related to the response functions X,&(x, x', Q+i(7) of Sec. II
through the identity

Through use of the identity in E(I. (2.39), and the definitions

r, ,=
I y, I

' sin'y, +
I y& I

'(cos'p, /c os'e, ),
((i,(s)) ly I

/l][)(s)
I

cos e

r„,= )t"' cosy, y~ I'/I)"'* cos'e„
we can write

=' ', '
I
—')

]
p, [']x['[)+ (())]

dQ k, d(d,

-X,,,(r„,z";O, z', Q -f)})] . (4.18)

(4.17a)

(4.17b)

(4.17c)

xIm dz' dz~expi4k~z'-i4k~z" rg gx ~~
0+i/ 8 8 fbi gx i}

0+
0 0

(4.18)

y„(Sec. IV) -=X„„(Sec.II),

X„„(Sec.IV) —=X„„(Sec.II),

X,„(Sec. IV) =- -X„„(Sec.II),

y„,(Sec. IV) == y„,(Sec. II).

(4.19a)

(4.19b) .

(4.19c)
' (4.19d)

We conclude with remarks on the modification of
E(I. (4.18) by the terms (Iuadratic in the spin den-
sity. Following Wettling ep p$. ,

4 one introduces

When the form of the correlation functions in

Sec. II are inserted into E(l. (4.18), the integral
on z" and z' is elementary. We thus obtain a rath-
er complicated, but nonetheless closed analytic
expression for the light-scattering cross section.
Upon feeding in the complex dielectric constant of
the substrate, along with information on the scat-
tering geometry and magnetic parameters of the
substrate, we are able to sweep out the Brillouin
spectrum, and examine it for evidence of the phe-
nomena described in Sec. III. The result in Eq.
(4.18) forms the basis for the numerical calcula-
tions reported below. We remind the reader of
the difference between coordinate system used in
the present section, and in Sec. II. One translates
between the two by noting, that the coordinate axis
normal to the surface is y in Sec. II while here it
is g. Then we have the following table:

quadratic t;erms in the fluctuating part of the di-
electric tensor. Thus, E(I. (4.1) is supplemented
by adding in

«~('„)(x, t}= g G„„„,g„(x, t}8,(x, t) . (4.20)

lz I'r„,- Iz-I'r„, z*-gr„„+g-'zr, ,

lzl'r, „--lzl'r, -„zg*r„„+-z*gr,,
+ lgl'r() '

In these equations g= 2nSG44.

(4.2lc)

(4.21d)

These terms contribute to the one-spin-wave cross
section by virtue of terms with either X or 5 equal
to z, and 8,(x, t) replaced simply by ))S. If we in-
troduce these terms into the present discussion,
the only terms which enter involve the elements
G„„„„andpermutations. Upon calling these G44,
then the influence of the quadratic terms is intro-
duced by the following replacements in Eq. (4.18):

lzl'r. ..- lzl'r. ..+ 2Re(z*«*..}+
I g I'r .

(4.21a)

lzl'r„„ lzl ~r . —2Re(z*gr . }+ Igl'r. ..
(4.21b)
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V. RESULTS OF NUMERICAL STUDIES OF LIGHT
SCATTERING FOR MAGNETIC SURFACES

In this section, we present our theoretical re-
sults for light scattering from the two materials
EuO and Fe, both of which were the topic of the
recent experimental studies. "' As we shall see,
the basic parameters that characterize these two
systems are dramatically different, and thus pro-
vide illustratioris of the extremes one may reason-
ably expect.

The experimental geometry is illustrated in Fig.
9. The light strikes the surface at an angle j9~

with the normal, and plane of incidence is the x-y
plane, for the data reported so far. The scattered
light collected is that backscattered in the direc-
tion of the incident beam. Thus, the magnitude of

Q4 is 2~, sin8z/c, where &g, is the incident fre
quency. We confine our attention to this geometry
here, save for calculations presented near the end
of the section which explore the nature of the spec-
trum when Q„deviates from the direction perpen-
dicular to the magnetization. In the theoretical
calculations, we always assume the incident field
polarized parallel to the magnetization.

Before we present our results, we comment on
trends present in the data common to both sys-
tems. These features emerge from our theoretical
analysis, as we shall see.

In the light-scattering spectra, the bulk spin
waves give rise to a feature that appears on both
the Stokes and the anti-Stokes side of the line. The
surface spin wave appears on only 0&e side, de-
pending on the orientation of the Zeeman field rel-
ative to Q~~ If the surface wave appears on the
anti-Stokes side, reversal of the field direction
moves it to the Stokes side. The same happens if
Q

~~
is changed in s ign by rotating the direction of

the incident field about the surface by 180'.
The fact that the surface wave appears on only

one side of the line is an elegant demonstration of
the nonreciprocity of the dispersion relation. The
detailed balancing arguments that assign exp(+PtA/
ksT) as the Stokes to anti-Stokes ratio relate one
scattering event to the other by a time-reversal
argument. Thus, the Stokes side of the line as-
sociated with wave-vector transfer Q;, should be
compared with the anti-Stokes side of the spectrum
'a't

Q~~ The Stokes and anti -Stokes port ion of the
spectrum associated with a gfuez wave vector Q~~

are related by the detailed balancing argument only
if +Q~f and Qg are equivalent.

Another feature common to the two sets of data
is a strong dependence on incident angle 8~ of the
ratio of the integrated intensity of the DE wave to
that of the bulk waves. As the angle of incidence
increases, the surface-wave feature becomes much
more intense, relative to the scattering from the

bulk waves. This result emerges naturally from
our calculation.

Before we turn to the detailed results, we point
out the difference between EuO and Fe. First of
all, the optical skin depths differ by nearly an or-
der of magnitude. In EuO, we estimate the skin
depth to be about 1500 A, for the incident frequency
used by Grunberg and Metawe. For Fe illuminated
by the same frequency, the skin depth is only 150
A. The wave vector of the DE wave created is
2z, sin8z/c in magnitude independent of the skin
depth. However, one may expect the bulk waves
to have wave vectors normal to the surface as
large as "5 '. Thus, in Fe the bulk wave created
in the experiment will be influenced much more
importantly by exchange than they are in EuO, all
other factors presumed identical. Also, since we
saw in Sec. III that the spectral density at the sur-
face receives its dominant contributign from the
DE wave, the small skin depth of Fe renders scat-
tering from the DE wave much stronger relative
to scattering from bulk waves when Fe and EuO
are compared.

In fact, Fe has a Curie temperature of =1050 K
compared with the Curie temperature of =70 K for
EuO. The value of the exchange stiffness constant
D for Fe is thus very much larger than in EuO. .

This en', nces the influence of exchange on the
bulk waves over that expected from the small skin
depth, when Fe and EuO are compared. Indeed,
the exchange constant of Fe is sufficiently large
that we predict observable consequences of ex-
change on the DE wave, in addition to exchange
effects in the bulk-spin-wave portion of the spec-
trum. Thus, EuO offers us an example of a spec-
trum where the influence of exchange is small,
and in Fe it plays an important role in the data
already available, and we predict additional ef-
fects discussed below.

Of course, Fe is also a metal, and differs fund-
amentally from EuO in this sense. The long-wave-
length spin waves in a ferromagnet are described
by the present formalism, with its description of
exchange for metals as well as insulators. " How-
ever, a complete account of the spin response
would include eddy-current damping of the spin
motion. Our formalism is easily extended to do
this, but here we presume the influence of eddy-
current damping may be incorporated into our phe-
nomenological relaxation time v.

We now turn to a more detailed discussion of
light scattering from these two materials.

(i) EuO: In Fig. 10, we summarize the results
of our theoretical spectra for EuO. We estimate
from the literature that at the laser frequency used
in the experiment, 5145 g, we have ~ =—0.25 and

z =—1.6, to produce a skin depth of roughly 1500 A.
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FIG. 10. Theoretical spectra for KuO for a back-
scatter measurement. Note that reversing the direction
of Q„reverses the side on which the surface wave peak
appears.

In the calculations reported here, we have set the
parameter g in Eqs. (4.20) equal to zero.

In each of the figures, we see a feature on baQ
the Stokes and anti-Stokes side of the laser line
associated with scattering from bulk spin waves.
A third feature, present on one side but not the
other, comes from the Damon-Eshbach wave.
Figures 10(a) and 10(b) compare two spectra cal-
culated for identical parameters save for the sign
of the wave vector transfer Q„, which differs in
the two cases as indicated. In Fig. 10(a), the DE
wave appears on the Stokes side, and in Fig. 10(b)
it appears on the anti-Stokes side. In both Figs.
10(a) and 10(b), we have 8,= 0.1v. In Fig. 10(c),
we show a spectrum calculated for 8,= 0.3p. The
intensity of the surface spin wave relative to the
bulk wave is much stronger in Fig. 10(c) than in
the two preceding ones. This angular variation
in the relative intensities is consistent with the
results of Grunberg and Metawe.

There is one point where our calculations dis-
agree with the data. We find the Stokes to anti-
Stokes ratio of the bulk spin wave to be unity, in
Fig. 10. The experiments show a substantial as--
ymmetry, with the bulk-wave Stokes to anti-Stokes
ratio unaffected by reversal of magnetic field.

However, Grunberg and Metawe find this ratio al-
tered if the polarization of the incoming radiation
is changed. From the discussion in Ref. 24, it is
evident that the terms quadratic in the spin density
neglected here lead to a modification in the Stokes
to anti-Stokes ratio of the kind evident in the data.

We have run a few spectra with the parameter
g in Eq. (4.20) nonzero, to verify that the Stokes
to anti-Stokes ratio of the bulk wave differs from
unity when ge0, while the angular variation of
the total bulk-spin-wave to surface-spin-wave
scattering ratio is not changed greatly. We shall
report on the effect of the quadratic terms in de-
tail in a separate publication.

For EuO, the exchange interactions in the spin
system play a minor role. The surface-wave peak
is centered quite close to the frequency in Eq. (3.1)
appropriate to the limit of zero exchange, although
there is a small exchange-induced upshift. The
same is true for the bulk-spin-wave feature, with
the bulk wave very near the frequency p, (HB)' '
appropriate to propagation normal to the magneti-
zation. In the calculations, we have set y=(pHv') '
= 0.01, and find no evidence of radiation broaden-
ing in the Damon-Eshbach peak. We.shall see
that in Fe, for the reasons outlined above, the ex-
change effects are substantial.

Grunberg and Metawe also find that both the
bulk-spin-wave peak and the DE peak lie substan-
tially below the value calculated by inserting the
bulk magnetization into the standard formulas.
We comment further on this below.

(ii) Fe: In Fig. 11 we present our theoretical re-
sults for the spectra of Fe. We have again used
8I= 0.1&. At the frequency of the laser light we
have g=2.86, ~=2.9l. to give a skin depth of about
150 A. As a result of this small skin depth, the
interactions with the surface spin waves play a
larger role in Fe than in EuO. Since there is little
asymmetry evident in the Stokes to anti-Stokes ra-
tio of the bulk spin waves, we have set G44= 0 in
the calculations for Fe. In Fig. 11 we see that,
even at 8I= 0.1m, the surface peak dominates the
bulk peaks. This contrasts with EuO where in Fig.
10(a) we see the bulk peak has a larger integrated
intensity.

As we have mentioned, the exchange constant is
much larger in Fe than in EuO. This is reflected
in a comparison of the line shapes of the spectra
for the two substances. In Fig. 10(b) for EuO we
see on the anti-Stokes side two sharp symmetrical
peaks, one at the bulk-spin-wave frequency and
one at the surface-spin-wave frequency. In Fig. 11
for Fe on the anti-Stokes side we still see these
two peaks. However we also see a tail extending
from the bulk peak under the surface peak and be-
yond. This tail is a result of the exchange interac-
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TABLE II. Width of the DE peak, for two values of the
azimuthal angle y in Fig. 9. For y = 0, Q

~i

is perpendicular to
the magnetization, and y = 0.3m corresponds to 0 = 0.7m in

Fig. l. Again w and m, are the incident and scattered
frequencies.

(a) 8$ = O. l 7T
0.1n

0.25m

0.4n'

Width for y =0
units of pHO

0.021
0.037
0.059

Width for y = 0.3m

units of pHO

0.034
0.115
0.202
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FIG. 11. Theoretical spectra for Fe for a backscatter
measurement.

TABLE I. Position of the bulk and surface peak as a function

on incident angle. m and u, are the incident and scattered

frequencies. In the absence of exchange the bulk peak should

appear at 3.19 and the surface peak at 5.59 and these positions
would be independent of ei.

Bulk peak

(ceo —w, )/WHO

Surface peak

(uo —w, )/p, HO

0.1m

0.25m'

0.4m

3.25
3.44
3.60

5.60
5.65
5.71

tion extending the bulk-spin-wave band to higher
frequencies, as we saw in Fig. 4(b). Thus the
frequency region where light scattering occurs
also increases. This tail is not seen in the ex-
perimental results on EuO since there the effect
of exchange is small. However in the experimental
work of Sandercock and Wettling on Fe this high-
frequency tail is prominent.

We also find from our theoretical study of Fe
that the position of both the bulk- and surface-spin-
wave peaks are shifted to higher frequencies rela-
tive to their values in the limit of no exchange.
This shift is consistent with our results in Sec.
IV where we saw the position of the DE peak in the
spectral density shifted to higher frequencies when

exchange energy became important. We find for
the parameters used here that the shift in the po-
sition of the bulk peak is larger than that for the
surface peak. This can be seen in Table I.

In Sec. III we saw that width of the DE peak was
determined by two factors: the transverse-spin-
relaxation time, and the exchange-controlled loss
of energy from surface spin waves to bulk spin
waves. If the relaxation time r is long enough,
as the angle of incidence e~ is increased one
should be able to observe radiative broadening of
the DE peak in the light-scattering spectrum,
This broadening is a consequence of Q„ increasing
as HI increases since ig„i =2~, siner/c. As Q„
increases, DQ'„/p, H also increases and the ex-
change contribution to the width of the DE peak be-
comes larger as seen in Fig. 7 of Sec. III. We
present our results for the width, of the DE peak
in the light-scattering Spectrum of Fe as a func-
tion of OI in Table II. In producing this table we
have taken 1/ pIIv'= 0.01, a value quite reasonable
for a well-prepared sample. We note that the
broadening should be observable for propagation
perpendicular to the magnetic field, but that it is
larger for angles close to the critical angle; for
y= 0.3g the width increases by about a factor of 7
in changing 8I from 0.1g to 0.4m. This result is to
be expected since, as we saw in Sec. III, the width
of the DE peak in the spectral density increases
as we approach the critical angle.

In Fig. 12 we display our results for the light-
scattering spectrum near the critical angle. In
Fig. 12(a) we examine the spectrum for propaga-
tion with y= O.Vm. On the anti-Stokes side we see
both the bulk and surface peaks and on the Stokes
side just the bulk peak. As we move closer to the
critical angle of y, = 0.601m we see in Fig. 12(b)
that the bulk and surface peak occur at the same
frequency. Just past the critical angle at p= 0.6z
we see in Fig. 12(c) that the spectrum on the anti-
Stokes side has lost most of its sharp surface-
spin-wave peak and the anti-Stokes side begins to
look like the Stokes side. It will be intriguing to
see experimental spectra with Q„swung away from
normal to the magnetization, to explore the DE
wave near the critical angle.

In their paper, Wettling and Sandercock compare
the position they find for the Damon-Eshbach and
the peak in the asymmetric bulk-wave portion of
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of propagation near the critical angle, for the para-
meters used here y, =0.601m. Thus in (c) we are look-
ing just outside the region where surface spin waves
propagate.

the spectrum with values calculated from the form-
. ulas which ignore the influence of exchange. They
find the peak in the spectrum is quite close to
p(HB)'~', with B calculated from the bulk mag-
netization of Fe. The DE wave appears to be low-
er than predicted from Eg. (3.1), and to account
for this, they argue that the surface wave saraples
a region where the magnetization is lower than the
bulk magnetization by possibly 15'. We believe
that the incoming light samples thermal fluctua-
tions only in the skin depth, and these exist in a
region with a unicluely characterized (possibly
spatially nonuniform) magnetization profile, i.e. ,
the surface and bulk waves seen by the light see
the same magnetization; other effects such a pin-
ning may shift the surface wave relative to the
bulk, however.

In our calculations of the Fe spectra, as re-
marked above, we find an exchange shift of the
bulk spin wave that is appreciable, and substan-
tially larger than the surface-wave shift. By
choosing a single value of M, some 15' lower than
bulk Fe, we lower the frequency of the DE wave,
but the upward exchange shift of the bulk wave

comes close to canceling the downshift from the
lowered magnetization. Our calculations are sum-
marized in Fig. 13. The two solid lines show the
bulk- and surface-mode positions as a function of
magnetic field from the relevant formulas which
ignore exchange. The dashed curve shows the DE
mode calculated with no exchange, and a 15% re-
duction in I,. Finally, the dots show the positions
of both the surface- and bulk-spin-wave features
in our calculated spectra with the full effect of ex-
change, and also a 15' reduction in M,. For the
bulk wave the dots lie very close to the solid line,
and for the surface wave very close to the dashed
line. Thus, a single value of M, accounts for the
position of both peaks. We have used y= (pHr) '
= 0.05, and the bulk-wave peak position is affected
somewhat by the choice of y, so the value of M,
we assign to the surface region is somewhat un-
certain, though not greatly different than 15/& be-
low the bulk value.

In EuO, both the bulk-spin-wave peak and the
DE peak lie below the values expected predicted
from the bulk magnetization. The upward exchange
shift is missing from the bulk wave, for reasons
discussed above. %e have not attempted a fit to
this data.

There are tantalizing features of the data on both
materials that prove most intriguing. If the re-
duced values of M, are of intrinsic origin, further
study of these spectra may provide fundamental
new information about. magnetism at surfaces. It
is also striking that Grunberg and Metawe find a
very strong temperature dependence for the fre-
quency of the DE wave. This may have its origin
in the magnetic surface reconstruction conjectured
to occur on surfaces of Eu chalcogenides, ' ' but
any conclusions at this time seem premature.
Certainly detailed data on the temperature varia-
tion of the DE wave, particularly at lower temper-
atures, will be of great importance.



18 SURFACE RESPONSE OF EXCHANGE- AND DIPOLAR-COUPLED. . . 484l

We wish to thank Dr. J. Sandercock for a most
stimulating discussion, and for a copy of his paper

with Wettling in advance of publication. This re-
search was supported by U. S. Army Research Of-
fice, Durham, under ARO No. DAA 29-77-6-0101.

'See, D. L. Mills and A. A. Maradudin, J. Phys. Chem.
Solids 28, 1855 (1967); D. L. Mills, Phys. Bev. B 1,
264 (1970); D. L. Mills, Comments Solid State Phys.
IV, 28, 95 (1972); and the more recent very complete
numerical analysis by K. Binder and P. C. Hohenberg
[Phys. Bev. B 9, 2194 (1974)].

2W. Saslow and D. L. Mills, Phys. .Rev. 171, 488 (1968).
See D. L. Mills, Phys. Rev. Lett. 20, 18 (1968); and
also F. Keffer and H. C. Chow, ibid. 31, 1061 (1973).

4S. E. Trullinger and D. L. Mills, Solid State Commun.
12, 819 (1973); C. Demangeat and D. L. Mills, Phys.
Rev. B 14, 4997 (1976); C. Demangeat, D. L. Mills,
and S. E. Trullinger, ibid. 16, 52 (1977); D. Castiel,
Surf. Sci. 60, 24 (1976).

C. Demangeat and D. L. Mills, Solid State Commun.
20, 535 {1976);Phys. Rev. B 16, 2321 (1977).

6P. K. Schwob, M. Tachiki, and G. E. Everett, Phys.
Rev. B 10, 165 (1974).

~J. T. Yu, B. A. Turk, and P. E. Wigen, Phys. Rev.
B 11, 420 (1975).
P. Grunberg and F. Metawe, Phys. Rev. Lett. 39,
1561 (1977).

W. Wettling and J. Sandercook, Arn. Phys. Soo. 23,
388 (1978); and W. Wettling and J. Sandercock (un-
published).
I. Hirada, O. Nagai, and T. Nagamiya, Phys. Rev.
B 16, 4882 (1977); T. Stakelon, J. Appl. Phys. 49,
1592 (3.978).

~~R. Q. Scott and D. L. Mills, I-hys. Rev. 8 15, 3545
(1977)~ R. E. Camley and R. Q. Scott, Phys. Bev. B
(unpublished).

2The films may have thicknesses that range from 200
or 300 A (see Bef. 6) to a 1 pm {see Bef. 7).
See the material in C, Kittel, Quantum Theory of
Solids (Wiley, New York, 1963), Chap. 4.

4Wolfram and DeWames have analzed the influence of
exchange on the width of the Damon-Eshbach surface
spin wave, for one propagation direction and in the
limit where the influence of exchange is small. See
T. Wolfram and B. E. DeWames, Phys. Bev. B 1,
4358 (1970). These authors and their colleagues also
completed experimental studies of modes in YIG films,
under conditions where the role of exchange coupling
is important. These data and their related theoretical
work is summarized in T. Wolfram and B. E. DeWames,
Prog. Surf. Sci. 2, 233 (1972).

~D. L.Mills, Y. J. Chen, and E. Burstein, Phys. Rev.
B 13, 4419 (1976); and K. R. Subbaswamy and D. L.
Mills (unpublished) .

'6J. S. Nkoma and B. Loudon, J. Phys. C 8, 1950
(1975); J. S. Nkoma, ibid. 8, 3919 (1975).

YR. Loudon, Phys. Bev. Lett. 40, 581 (1978); K. R.
Subbaswamy and A. A. Maradudin (unpublished);
¹ Rowell and G. Stegeman (unpublished).
A. A. Maradudin and D.L. Mills, Ann. Phys. (N. Y.)
100, 262 (1976).
R, F. Wallis, A. A. Maradudin, and L. Dobrzynski,
Phys. Bev. B 15, 5681 (1977).
If i=g, we should relate the change in (3 g, t)) to
h(x, t). Here we are exclusively concerned with the
spin-wave regime, so we shall examine only the
transverse response (i=x or y).
C. Kittel, Phys. Rev. 110, 1295 (1968).
In magnetically ordered insulators, externally applied
fields typically have strengths small compared to the
internal exchange fields. Thus, if a low-frequency mag-
netic field is applied in a direction noncollinear with
the magnetization, the dielectric tensor is altered not
by the field itself, but rather the dominant contribu-
tion comes from the modulation of the exchange fields
which result from the reorientation of the magnetiza-
tion. A brief review of Faraday rotation in materials
of interest to the present study is given by J. F. Dillon
.[J.Appl. Phys. 39, 922 (1968)J, See also the data on
TbIG reported by B. W. Cooper et al. [J. Appl. Phys.
39, 565 (1968)I. This data shows a weak-magnetic-field
dependence of the Faraday rotation tensor, for fields
larger than those required to saturate the magnetiza-
tion.

23A very clear discussion of the effect of a magnetic field
on the dielectric tensor may be found in L. D. Landau
and E. M. Lifshitz, Electrodynamics of Continuous
Media (Pergamon, Oxford, 1960), p. 331.
W. Wettling, M. G. CottaIn, and J. R. Sandercock,
J. Phys. C 8, 211 {1975).
In Ref. 15, the analogous quantities were written in
terms of two complex wave vectors k~ and k2, both
chosen with Im(ki) &0 and Im (k2) &0. Note that kJ
has a positive imaginary part, while kj Q defined in
Eq. (4.9) has the opposite sign to its counterpart in Ref.
15.
C. Herring and C. Kittel, Phys. Rev. 81, 869 {1951).


