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We study random magnetic systems emphasizing the concept of gauge invariance and gauge-invariant
disorder (frustration) introduced by Toulouse and Anderson. We formulate our models in a gauge-invariant
manner and introduce gauge-invariant correlation functions to isolate the effects of gauge-invariant disorder.
Specifically, we study the Ising and X-Y models in two and three dimensions in a frozen distribution of
frustrations. Using duality transformations, we obtain expressions for the energetics of frustrations and their
effect on correlations. We study simple configurations of frustrations quantitatively. In addition we
reformulate the quenching procedure in terms of frustrations.

I. INTRODUCTION

Consider a system of spins interacting with each
other through random ferromagnetic and antifer-
romagnetic bonds. One might think naively that
all the possible bond configurations are important
in determining its thermodynamic properties.
However, it is well known that there is a class of
configurations (known as Mattis models?!) for which
the randomness is trivial since it can be eliminat-
ed by a suitable redefinition of the spin variables.
This situation led Anderson and Toulouse to the
idea of relevant and irrelevant disorder. Ander-
son? advanced the concept of frustration as a mea-
sure of relevant disorder and Toulouse® realized
the existence of a local (gauge) symmetry of ran-
dom magnetic systems at the microscopic level.*

Once the existence of a local symmetry is recog-
nized it becomes apparent that there are certain
configurations of bonds which cannot be trans-
formed into that of a pure system by any redefini-
tion of the spin and bond variables (gauge trans-
formation). We say these configurations have
frustration.

The idea of frustration is that competing inter-
actions in a random system can lead to configura-
tions where not all the bond interactions can be
simultaneously satisfied. In this situation, the
ground-state energy is always larger than in the
“pure” system and the state is highly degenerate.

The purpose of this paper is to present a sys-
tematic study of gauge symmetries in random
magnetic systems and its consequences. Using
duality transformations we obtain expressions for
the energetics of frustrations and their effect on
correlations. In order to filter out relevant from
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irrelevant disorder, we make extensive use of the
concept of gauge invariance. In fact, many of our
ideas have been borrowed from lattice-gauge-theo-
ry studies.®

In Sec. II, we show that the partition function of
a magnet in a frozen configuration of bonds is
gauge invariant. Then we conclude that only frus-
trations can change the nature of the phase transi-
tions allowed for the system. In addition, we con-
struct gauge-invariant spin-spin correlation func-
tions which provide a measure of the effect of the
relevant disorder. These correlation functions
are defined along a path connecting the correlated
spins and are path dependent. In fact, gauge-in-
variant correlation functions along two different
paths differ by the total amount of frustrations
they encircle.® This path dependence is also
closely related with the “fermionic” character of
order and disorder variables, as discussed by
Kadanoff and Ceva.” At the end of Sec. I, we dis-
cuss the problem of quenching the frustrations,
i.e., the averaging of the thermodynamic quantities
over different configurations of bonds according
with some probability weighting factors. It turns
out that, when averaging gauge-invariant quanti-
ties, frustrations behave as if they were an inter-
acting system in thermal equilibrium with each
other at an effective temperature. The classical
interaction Hamiltonian can be calculated and
turns out to be temperature dependent. The rest
of the paper is devoted to the analysis of both the
frustration network and the nature of their inter-
action in two and three dimensions. It should be
mentioned that we make no attempt to study the
possibility of a spin-glass phase in any of the sys-
tems discussed below.
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Section III deals with the random two-dimension-
al Ising model. By performing duality transforma-
tions, we derive a relationship between the energy
associated with a frozen distribution of N frustra-
tions and the N-point correlation function of the
spins in the dual lattice. This result is analogous
to results of Ref. 7. We then use this relation to
calculate explicitly the temperature dependence of
the energy associated with having a single frustra-
tion and a pair of frustrated plaquettes in a sea of
unfrustrated plaquettes. It turns out that single
frustrations cannot exist at low temperatutes but
it is easy to create them in the paramagnetic re-
gime. For the case of a frustration pair, we show
that at low temperature their energy increases
linearly with their separation, with a temperature-
dependent coefficient that measures the line ten-
sion associated with the string that joins them.
This confinement picture is lost at the critical
temperature, where “melting” of the string leads
to a finite energy for single frustrations. Above
T., we show that this interaction is effectively
screened by the rapid fluctuations of the spins of
the lattice. Using again duality transformations,"
we compute the decrease in the effective magneti-
zation of a trivially disordered Ising system
brought about by the presence of frustrations.

In Sec. IV, we study the three-dimensional Ising
model in a frozen configuration of bonds. Here
frustrations are never alone but instead they ar-
range themselves into networks.® Using duality
transformations, we then calculate the energy as-
sociated with a closed tube of frustrations and
show that, at low temperatures, it is proportional
to the area spanned by the tube, whereas in the
paramagnetic phase, it becomes proportional to
the length of such a tube. For interacting tubes,
at low temperatures the tubes interact with each
other through a linear potential at short distances
which saturates at large separations.

Sections V and VI deal with the X-Y model in
two and three dimensions, respectively. In the
two-dimensional case, frustrations turn out to be
equivalent to fractional impurities (vortices) in the
two-dimensional Coulomb gas. The particular
case of half charges has been studied in detail by
Villain.? As in the Ising case, we study the ener-

FIG. 1. Location of the
degrees of freedom of the
spin-glass system. Here the
dark dots represent the spin
(site) variables ¢, and the
X crosses represent the link
(gauge) variables A.
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getics of frustrations and the gauge invariant cor-
relation function in both dimensionalities.

A collection of appendices provide most of the
technical manipulations we have used to derive
duality transformations of gauge-invariant correla-
tion functions.

II. LOCAL SYMMETRIES AND DISORDER
A. Disordered magnets and gauge symmetries

Let us consider the problem of describing the
behavior of a magnet in an arbitrary configuration
of bonds. At first we will discuss frozen distri-
butions of them, i.e., the bond distribution is held
fixed and not allowed to fluctuate. The problem of
quenching (i.e., the averaging of thermodynamic
magnitudes over different distribution of bonds)
will be discussed at the end of this section.

To be more explicit, consider the case of a dis-
ordered Ising magnet in d dimensions.® This sys-
tem consists of interacting Ising spin variables o,
(0;,=%1) residing at the sites {i} of the lattice. The
classical Hamiltonian is

—BH:K,Z giA”O‘j, (2.1)
¢is)

where K is the coupling (K =8|/ |) and the summa-
tion runs over nearest-neighbor sites. The vari-
ables A;; specify the distribution of bonds and re-
side at the links {ij} of the lattice (Fig. 1). In gen-
eral, the bond variables {A,,;} may be arbitrary.
However, we will only consider the case in which
A,;;=%1. Thus the kind of disorder which may
take place will grow from the competition between
random ferromagnetic and antiferromagnetic in-
teractions.

We may ask how the thermodynamic quantities
differ from one configuration of bonds to another.

Consider the Hamiltonian (2.1) and single out a
site 7 and all the links emerging from this site.
Let us perform the local transformation®

0;~—0;, Ay—~-4y, (2.2)

where {i,j} is the above-mentioned set of links
(Fig. 2).

I !
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FIG. 2. Gauge transformation. Dark circles are spins
pointing up and white circles are spins down. The signs
on the links denote the values of the link variables A.



The Hamiltonian (2.1) is invariant under this
transformation. Moreover, it is also invariant
under the most general local transformation of
this type G({7;}) which can be constructed by an
arbitrary combination of site transformations like
(2.2). G{r;}) acts on the spins and bond variables
as

GArPHob {A J =[{mi0h {m 4471, (2.3)

where 7;=+1.1 The local symmetry we have just
discussed is called a gauge symmetry, the trans-
formations G{7;}) are gauge transformations and
the A variables are gauge variables. We shall see
how this symmetry can be used to get information
about order parameters, correlations, etc.

As an example, consider how the gauge symmetry
works in an annealed spin-glass. By an annealed
spin-glass we mean a system where the o’s and
A’s are statistical variables to be averaged over
at the same time. However, as is well known, this
is an uninteresting system. In our “gauge lan-
guage” this fact can be expressed as follows: the
partition function of the annealed spin-glass is
given by

Z annealed = Z exP<K1 Z O'gA”0'1> . (2.4)

(oi}{4} o

Suppose for the moment that we fix all the o’s
to be 1. It is easy to see that there is no loss of
generality involved in such a choice. In fact, for
an arbitrary configuration of 0’s and A’s
[{o};{A4:;}], we can always find a gauge transfor-
mation which maps this configuration to one anoth-
er for which all o;=1. In particular, if we choose
for the gauge transformation defined in (2.3) 7;=0;,
we get

G{r=0P{o; ;{4 ij}]
=[{1};{0; 4,01 =[{11{A}; }]. (2.5)

Since the Hamiltonian (2.1) is gauge invariant,
both configurations have the same energy and
therefore give the same contribution to Z. Thus

> > exp (K,Z “:'Aij"f>
{o;} {445}

(i

2r 3 exp(K,Z A,.,), (2.6)

{435} &GN

where N is the number of sites and 2¥ is the num-
ber of independent gauge transformations. How-
ever, (2.6) is just the partition function of a sys-
tem of independent spins on the links interacting
with an external uniform field K, which has a triv-
ial solution.

A more interesting system is the frozen spin
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glass. In this case we will no longer consider the
gauge variables on the same footing with the spin
variables but we will first take the thermal aver-
age over o, compute all interesting magnitudes
(free energy, correlation functions, magnetization,
etc.) in a given field of A’s, i.e., in a given distri-
bution of flipped bonds. Later on we will average
over distributions of gauge degrees of freedom ac-
cording to some prescription. At first sight, it
appears that the partition function in a given con-
figuration of A’s, i.e.,

Z{A}=) exp<K, > ofA,.,oj) 2.7

{og} (ii)

depends on all the details of the configuration of
the gauge fields. However, consider two configur-
ations {A} and {A’}, which are related through a
gauge transformation,

Z{A1}= exp(K > ciAgjor,)

{o;} {iJ)

= Z exp(K, Z oiT,A”T‘.o,>

{o;) <id)

=Y exp K,y 0jA,0=2{A}, (2.8)
{03} (iJ)

where 0} =0,7;.

Thus, Z{A} is invariant under gauge transforma-
tions and hence Z{A} is not a functional of the con-
figuration {A} itself but rather on those features
of that configuration which do not change with a
gauge transformation.

B. Frustrations

We now turn to the problem of describing the
gauge-invariant properties of a configuration de-
grees of freedom. For the time being, we shall
restrict ourselves to systems with Ising degrees
of freedom (A, 0=%1). Such variables are elements
of the Z, group. Later on, we shall discuss cor-
responding generalizations to more complex sys-
tems like the X-Y spin-glass [a model with U(1)
symmetry ].

To begin with, note that the product of A vari-
ables around’a closed loop of links on the lattice
is invariant under a gauge transformation. In fact,
this is the most general gauge invariant quantity
that can be constructed from the A’s alone. In
particular, consider the smallest possible loop,
i.e., the loop made of four links surrounding an
elementary square (“plaquette”) of the lattice.
Since the value of the product of the A’s around
each plaquette of the lattice is a characteristic of
the configuration of A’s, which is invariant under
gauge transformations, it is natural to define a
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plaquette variable ®,;,, such that
Pimi=AiA pAr A, (2.9)

where ¢, j, &, and I label the corners of the pla-
quette ijkl. We say that there is a frustration lo-
cated ata plaquette if ®=-1 at this plaquette.
Since A%2=1, the product of the A’s around an ar-
bitrary loop of the lattice is equal to the product
of the ®’s for each plaquette enclosed by the loop.
Therefore, the value of all gauge-invariant quan-
tities are specified by the values of the plaquette
variables ®.

The plaquette variable @ is the analog in Z,
gauge systems of the field strength or gauge cur-
vature of conventional gauge theories. When @
=-1 at a plaquette, we say, interchangeably, that
there is a frustration, curvature, or dislocation
there. For our purpose, this means that it is im-
possible to arrange the spins so as to satisfy all
bond interactions around this plaquette (Fig. 3).

The partition function (2.7) is gauge invariant.
‘'Thus, it is only a function of the value of the ¢
variables. This means that the partition function
(and the free energy) do not depend on the detailed
distribution of flipped bonds but only on the dis-
tribution of frustrations. Therefore, the partition
function has the property

Z{A}=z{A"}=z{a} it {A}~{A"}. (2.10)

Since Z{®} is the partition function in a fixed dis-
tribution of frustrations {®;}, we define the free
energy in such distribution to be

K F{®}=-1nz{®}. (2.11)

In this language, we can understand the Mattis®
model (A;;=€,€;,€;=+1) as a gauge transformation
of the pure Ising model (A;;=1). Thus the Mattis
model is a random Ising model without frustrations
(in fact the most general one) and it has the same
(zero external field) free energy as the pure Ising
model.

As we have shown frustrations are the only type
of disorder that can modify the nature of the phase
transitions of the system. Let us give some sim-
ple examples of frustrated two-dimensional Ising
models. Consider first the case with only one
flipped bond [Fig. 4(a)]. According with definition
(2.9), the two plaquettes adjacent to the flipped

FIG. 3. Frustrated plaquette.

bond are frustrated. Suppose now that we want to
separate the frustrations. One possible way is to
put a dual string of flipped bonds between them,

as shown in Fig. 4(b). However, there are several
configurations with the same frustration content.
One of them is shown in Fig. 4(c). Both configura-
tions differ by a gauge transformation. A closed
dual string of flipped bonds [e.g., Fig. 4(d)] has no
frustrations. A gauge transformation performed
at all sites enclosed by the string transforms this
configuration into all A =1. Note that the lowest-
energy configuration for Fig. 4(d) is just an island
of flipped spins whose boundary is the dual string.
Analogously an infinite domain wall [ Fig. 4(e)] has
no frustrations. In this case the ground state has
the spins on each side of the wall pointing in op-
posite directions.

Constructing a frustration at a single plaquette
[Fig. 4(f)] cannot be accomplished by flipping a
finite number of bonds near that plaquette. In fact,
it is necessary to make a dual string of flipped
bonds running from the frustration to the boundary
of the lattice.

In contrast to frustration-free configurations
[Figs. 4(d)-4(e)], where a ground state with all
bonds satisfied is possible, configurations with
frustrations always have unsatisfied bonds and
hence have higher energy. For instance, in Fig.
4(b), the lowest-energy configuration has all its
spins parallel. The difference in energy between
that state and the unfrustrated situation is propor-
tional to the length of the string. Thus, a single
frustration will have an infinite energy.

The case shown in Fig. 4(g) has some interesting
features. Even with the boundary condition that all
spins point up at infinity, there are two degenerate
ground states: the central spin up or down. This
illustrates the fact that frustrations tend to create
additional degeneracies in the ground state since
not all bonds can be satisfied simultaneously.!

C. Correlation functions

We have just discussed the meaning of the free
energy in a fixed distribution of frustrations. It
is thus natural to ask the same kind of questions
about the correlation functions. We should point
an important difference between both quantities.
Suppose we are to compute the correlation function
between spins 0 at sites 7 and j. In a fixed dis-
tribution of A’s, we write

(0:9;)14) =z{A}"! Z 0;0; €xp (Kl Z 0, A lko'k) .
{0z} (1r)y
(2.12)

This correlation function is not gauge invariant
since a local gauge transformation at site ¢ (or j)
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FIG. 4. (a) One flipped
bond creates two frustra-

tions. The thick lines de-
(c) note flipped bonds. (b) and
(¢) Two separated frustra-
tions are created by a dual
string of flipped bonds be-

tween them. The broken

line is the dual string.
The strings shown in (b)

and (c) are equivalent.
(d) A closed dual string

of flipped bonds is a closed
domain wall. It does not

create frustrations. (e)
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changes the sign of this function.

We have argued that only gauge-invariant dis-
order (frustrations) can change the nature of the
phase transition, and thus we need a gauge-invar-

- iant correlation function to probe this transition.
We may define a gauge-invariant analog of (0,0 ;).
by inserting a “string of A’s” between 0; and o;.
Then the gauge-invariant correlation function is
given by

¢:(I1,47)

=z{A}' Y o, (H A,,,)cr, exp(K, > o,A,kok> ,

o} \rd, » 373

(2.13)

where I'(¢,7) is a path connecting sites ¢ and j and
IIA means the product of all the A variables along
the links of the path (Fig. 5).!2 Clearly this cor-
relation function is gauge invariant. It depends
both on the position of the correlated spins and on
the path I itself.

An infinite domain wall is

a dual string running from
f) one side of the boundary

to one another. (f) A sin-
gle frustration has an infi-
nite string of flipped bonds.
(g) Four frustrations creat-
ed by two flipped bonds. The
orientation of the central spin
(dark dot) is the degeneracy
of the ground state.

Consider two different paths T',(i,j) and T,(i,5)
(Fig. 6) and the corresponding correlation func-
tions (03, 0; )y and (0;,0;)r, . Let us define the
closed loop I'as I'=T", +T',. Then

<oio,>rl=<o,c,>r2(IIIA) ~one,(I19)
(2.14)

where S is the region enclosed by T'.
Thus, the two correlation functions differ by a

FIG. 5. Gauge-invariant
correlation function is de-
fined for two lattice sites
(¢ and j) and the path T;
I of links joining both sites.
There is a ¢ variable at
each end and an A vari-
able at each link of the
path Fij'
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% i

FIG. 6. Two different paths between sites 7 and j. The
correlation function for both paths differ in a factor
(- 1), where N is the number of frustrations within the
dashed area.

factor of (-~1) raised to the number of frustrations
enclosed by the loop. Therefore, the difference of
the gauge-invariant correlation function along dif-
ferent path with same end point provides a mea-
sure of the frustration content within the loop.
Consider now an arbitrary configuration of bonds
free of frustrations (pure gauge disorder). Such
a configuration is gauge related with the config-
uration A;;=1 for all links. Then all these config-
urations of bonds will have the same gauge invari-
ant correlation function. Certainly, gauge-nonin-
variant correlation functions will be different for
different configurations. However, those differ-
ences are not related with any change in the phase
transitions of the system. We know that both the
pure ferromagnetic (A;;=1) and antiferromagnetic
(A;;=-1) Ising models are frustration free. In
the ferromagnetic case, the gauge-invariant cor-
relation function reduces to the ordinary spin-spin
correlation function. In the antiferromagnetic
case, it reduces to the staggered correlation func-
tion.

D. Spin glass as a system of frustrations

Up to this point, we have only dealt with a frozen
distribution of frustrations. Now we wish to make
some comments about the spin-glass problem,
i.e., the averaging of quantities over different dis-
tributions of bonds (quenching).

We will use the usual bond probability weighting
factor P(A)

p ifA=1
1-p ifA=-1,

P(A) = { (2.15)

and assume that the total probability distribution
P{A} for configurations of bonds factorizes, i.e.,

P{A}:H P(A). (2.16)
links

Consider now the average of a gauge-invaviant
quantity, for instance, the free energy F{®,}. As

we have already shown, it is gauge invariant and
depends only on the distribution of frustrations.
The object we want to compute is <F>K;,m where
K, is the inverse spin temperature and p the prob-
ability given in (2.14). Clearly,

(Frepp= X PLALF(S, ) /S PLAL. (21D

(A} (A}

Since F{®,;} =F{A} for all the configurations of
bonds (link variables), which have the same dis-
tribution of frustration {®;}, Eq. (2.17) splits into
sums over distributions of frustrations, i.e.,

> Plarie = Y (Y PlAY) Fle, ),
{4} {oz} Al
(2.18)

where the sum 2,’P{A} runs over all the config-
urations of bonds with the same distribution of
frustrations and therefore it weights distributions
of frustrations. Let us now define 8; and @ to be
two parameters such that

P(A)=3ae's4) (2.19)
Equations (2.15) and (2.19) then give the result

za=p(1-p),

Br=In(p/1-p)/2.

This change of parameters allows us then to
write for the frustration-distribution probability
weighting factor

2_'P{A}= (;) ' {Z’exp (B, ZA.-,) . (@.21)

{a} A} (ii)

(2.20)

We can now easily recognize the right-hand side
of (2.21) to be (a/2)" times the partition function
(2.7) written in the gauge 0; =1 for all sites.

From Egs. (2.11), (2.18), and (2.21), we get

(P 1o = {@Z, exp - (B;F{®,, B, })F{®,, %}
- ,

X[Z exp(- BfF{q);,Bf}Sj-l . (2.22)

{o;}

This equation is valid not only for the free ener-
gy but for all the gauge invarviant quantities.

Therefore, when averaging thermodynamic quan-
tities frustrations behave as if they were in ther-
mal equilibrium with each other and interacting
through a classical Hamiltonian (configurational
energy) given by F{®,, B,}. The temperature of
the system of frustrations is given by 1/8;. The
Hamiltonian F{®,, 8} can be derived from the cor-
relation functions of the dual system. We will il-
lustrate this procedure in the following sections.
We should note, however, that the Hamiltonian



will not be, in general, a simple sum of pairwise
terms. In fact, it is a complicated configurational
energy and it will depend on the temperature of the
frustrations. Note that the quantity being aver-
aged in (2.22) is the same Hamiltonian F{®,, 8;}
evaluated at the spin-glass temperature 1/K;.
Furthermore, the normalization factor can be
easily shown to be equal to the partition function
of the annealed system.

In the spin-glass literature it is usual to find the
phase diagram represented by a plot of K (spin
temperature) versus p probability).”® We can now
understand these diagrams in terms of frustration
temperature. Atp=3%, the frustrations are at in-
finite temperature (8,=0). In this situation, the
density of frustrations is extremely high. As p
increases, the temperature of frustrations de-
creases and at p =1 the frustrations are at zero
temperature. This state is the pure ferromagnet
(p=1) and there are no frustrations here. All the
models which are connected through gauge trans-
formations with the pure ferromagnet are also at
zero-frustration temperature. The situation is
symmetric around the point p=3.

III. TWO-DIMENSIONAL ISING SPIN GLASS

A. Model

We shall first discuss the two-dimensional (2-D)
Ising model in an arbitrary configuration of bonds.
The partition function is given by Eq. (2.7)

Z{A=2Y Z exp (K Z a,.A”o,> . @

{oz) T

In Eq. (2.8) we showed that Z{A} is gauge invar-
iant, i.e., if {A}and {A'} are two bond configura-
tions related through a gauge transformation, then
the partition function is the same for both config-
urations and so is only dependent on the distribu-
tion of frustrations {®#}. Consider now the sum
2'Z{A} restricted to all configurations which have
the same distribution of frustrations. From
(2.8)- (2.10) we can write

> 1z{A}=2"z{s}, (8.1)

{4}

where 2V is the total number of gauge transforma-
tions (volume of the gauge group).
Therefore, the partition function can be written!*

z{e =2 37 (H O(AyA;pAnALS; - 1))

(A4} i
x 3 exp (K 3 c,-A“c,) , (3.2
{o;} (ij)

where iis the dualsite at the center of the plaquette
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ijkl. The Kronecker 8 replace. the constraint in
Eq. (3.1). Up to an (infinite) constant Eq. (3.2)
takes now the form

z{@d}=2""1im D ) exp (KL > c‘AHoj)
an

Kp*2{Azrto;l}
X exp (Kp Z &i)«{A”A,kAk,A”) .
i

(3.3)

This partition function describes an Ising model
with a frozen distribution of frustrations. In order
to simplify matters we choose the gauge 0=1 (all
sites) and, in that gauge, the partition function
then reads

AL =}iﬂ Z)exp (KL > Ay

{A; (ig)
+K, Z ‘I’;AuAnAkxAu) .
i

(3.4)
In what follows we shall always write the partition
function in this form.

B. Duality

The duality properties of models like Eq. (3.4)
with ® =1 (unfrustrated case) have been extensive-
ly discussed by Wegner!* and Balian ef al.’® In
this section, we will show how to extend those
methods to the frustrated case, i.e., ®;=-1. We
will follow Balian quite closely. Let us apply the
duality transformation to the model described by
the partition function (3.4) in the case ®;=1 (all 7).
The dual partition function (for K, finite% is given
by

Z = (3 coshK, cosh’K ;)"

XZ exp(z Bf(s;sj.—l)+2 ?H*(si—l)) s

{si} I
(3.5)

where N is the total number of lattice sites. The
dual coupling Bf and dual external magnetic field
H* are related to the original link and plaquette
couplings through the relations

™87 =tanhK,, e = tanhK, . (3.6)

The dual model is defined on the dual of the
square lattice and at each dual site 1 there is a
dual spin s; Equation (3.5) is just the partition of
a 2-D Ising model in an external uniform mag-
netic field.

If we now let K, ~, the external field H* van-
ishes. Thus, the system becomes the well-known
2-D Ising model in zero field. Notice that Eq.
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(3.6) implies that low temperatures and high tem-
peratures are exchanged through a duality trans-
formation.

In the previous discussion the system was uni-
form (i.e., all the bonds were the same). How-
ever, the duality transformation holds even in the

" case that the couplings K, K,, vary throughout the
lattice. In this case Eq. (3.6) becomes a local re-
lationship between dual couplings. Since in two
dimensions links are dual to links and plaquettes
are dual to sites, the coupling at each link trans-
forms into the coupling on its dual link and the
plaquette coupling transforms into a local external
field.

We now turn our attention to the case ® =-1 at
some plaquette which means to flip the sign of the
coupling K, at that plaquette. Thus a system with
some ®i=-1 is just a system with some K, nega-
tive.

From Eq. (3.6) we get the equivalency

]

zZ{®;} E{s;,(n ;Si‘““’i"/z)exp(zq oBEs S +E;H*s-[)

K,~K,=Hx=~H*,3im. (3.7)
So that, in general, the following identity is true
e'[2H*+i(r/2)(1-¢'{)]=tanh(qu>I) . (3.8)

To flip the sign of a coupling is equivalent to
shift the dual coupling by 3im. This trick has been
exploited by Kadanoff and Ceva in their discussion
of disorder variables in the 2-D Ising model. The
identity

exp[zim(l-s)]=s, s='tl, (3.9)

combined with Eq. (3.8) leads us to the conclusion
that when we flip a plaquette coupling in the orig-
inal model we are bringing down a dual spin vari-
able (at the site dual to that plaquette) in the dual

system. Thus, for arbitrary ®;, the normalized

function (3.4) (for finite K,) after a duality trans-

formation (3.6)-(3.8) becomes

Zi@ =1}

where the average is taken in the dual system. In
order to fix a distribution of frustrations we now
let K, ~. Then from Eq. (3.10) the normalized
partition function (3.4) in a specified distribution
of frustrations turns out to be equal to the N-point
correlation function of the dual zero-field Ising
model at the temperature given by 8#. Note that
the limit K, ~« is essential not only to specify the
distribution of frustrations but also to avoid the
destruction of the phase transition of the 2-D Ising
~model. In summary

ZK;{(Pi} (
s/ 2 3.11)
z,(,{q?-_ 1} =Lt z* (
Since ZK1{<1> J=ekLFeil (F g the free energy),
then (3.11) gives the change in the free energy due
to the effect of the frustrations as

exp(- K;AF{®.}) = <Hs;"°§”2 ot - (3.12)

C. Energetics of frustrations

Let us now discuss some specific examples. Un-
fortunately little is known about the behavior of
this general N-point correlation function. Never-
theless, some of the known general features are
important for us. In the unmagnetized phase of
the dual Ising model (i.e., high temperatures in
the dual Ising are low temperatures in the spin-
glass), the N-point correlation function vanishes

Zitp) expQics Bsy; +2gH*s:)

= <“TS':'1-°I) /2>5?‘H*’ (3.10)

-

identically if N is odd. Thus’, frustrations come
in even numbers (neutral configurations) in the
low spin-glass temperature phase.

We now take full advantage of all the available
information about the magnetization and the two-
point correlation function of the 2-D Ising model
in zero external field in order to study the ener-
getics of frustration systems.!¢

The change in the free energy of the system due
to the presence a single frustration is given by

AFsingle = "(1/K1)10g<s>ﬁf = —(I/KL)logM(ﬁ;k) ’
(3.13)

where M(8}) is the magnetization. Since the latter
is exactly known we obtain

S ~(1/8K , - log(1 ~sinh?*2K; ), K, <K,

AF (high spin-glass temp.)

single
2 o  K,>K, (low spin-glass temp.)
(3.14)

where sinh2K_ =1 is the critical point of the 2-D
Ising model.

In fact, at low temperatures (spin-glass), a sin-
gle frustration is strictly forbidden since the ex-
cess free energy is infinite. At high temperatures
of the spin-glass system a single frustration costs
a finite amount of free energy (it has a finite
“mass”). The fluctuating Ising spins screen the
frustration at high temperatures.
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Let us now study the interaction energy for a
pair of frustrations in an unfrustrated sea of spins.
The change in the free energy due to two frustra-
tions can be obtained from the two-point correla-
tion function of the dual Ising model. There are
two regimes. At low spin-glass temperatures
(K,>K,) the dual system is in its disordered phase
(high temperature implies B¥<K_). The correla-
tion function decays exponentially at large dis-
tances with a correlation length £ given by

£(By) = (2v2 | log sinh2B%| ) = (2V2 |log sinh2K ; |)"!.

(3.15)

Thus the excess free energy associated with a
frustration pair separated by a distance R along
the diagonal becomes (note that for T# T, the spin-
spin correlation function is not rotationally invar-
iant)'®

AF(R)=-(1/K;)log(s,Sp) ~(R/K£) +O(logR).

(3.16)

As Eq. (3.16) shows, the excess free energy
grows linearly with R and therefore the energy
necessary to separate two frustrations by an in-
finite distance is divergent. Thus, in the low
(spin-glass) temperature phase frustrations are
“confined.” One can picture the two frustrations
as held together by a “string” whose tension 7 is
given by the coefficient of the linear term in (3.16),
i.e.,

T=1/K £ =(V2/K)|logsinh2K, | . (3.17)

At the critical point the correlation length di-

verges and the string tension goes to zero like

‘K, —K,l. In other words, “melting” of the string
holding the frustrations together leads to a change
in the force law.

In the high (spin-glass) temperature phase “con-
finement” is lost. Here the dual system is in its
ordered phase and hence the dual spin-correlation
function approaches a constant value at infinite
distance

(SoSp) ~MZBH)[1+(V,/R?) exp(~R/2E) 4+~ -],
(3.18a)

J

E(Aillz(oi)oi(nr(i, j)A Ik)oj EXp(K,Z( i j')ci'A i ge (Tj: +K;Z)i,AA AA ‘I)-i:)

where M(B#) is the magnetization which is given by
M@y =(1- Sil’lh'42[3;k)1/3 =(1- Sinh42K,)‘/8 ,
(3.18b)

£ is the correlation length (3.15), and V, is the
constant

V, = (sinh®2K, /47 (1 - sinh*2K,)2. (3.18¢)

Therefore, the excess free energy at high (spin-
glass) temperatures is given by

AF(R)=2AF g0 ~(Vo/R?) exp(-R/E).  (3.19)

This means that at high temperatures frustra-
tions are “free” and they interact through an at-
tractive short-ranged screened potential. The
range of the potential is just the correlation length
£. Note that this range is strongly temperature
dependent.

D. Correlation functions of the Ising model with frustrations

We now wish to study the effect of frustrations
on the two-point correlation function of spins on
the original spin glass. Since we are not interest-
ed in the effect of nonserious disorder (i.e., the
disorder which is not associated with frustra-
tions), we have to study the behavior of the gauge-
invariant correlation function in the presence of
frustrations.

The gauge-~invariant correlation function is given

by
Cru.n{q’i}=<°‘( 1I A,,))a, {@}.

Tz

(3.20)

The average is taken as explained in Eq. (2.12).
Cryg, I){Q,} is a gauge-invariant quantity. Thus all
the arguments made for the partition function (2.7)
which lead to the form given in (3.5) are valid in
this case.

Cr ,,{‘1’;} as given by (3.20) can be rewritten

(3.21)

Cr, (@)= lim

Kp-uo E(Ai])z(ui) eXp(KIZ)( i'l j')c.i'A HEL O‘j: +KPEI'AAAA¢T')

where AAAA means the product of all the link
variables around the plaquette i’.

These gauge-invariant two-point correlation
function obey a duality transformation. Through
this transformation the two-point (gauge-invariant)
correlation function in the presence of a distribu-
tion of N frustrations maps into the N-point gauge-

3

—
invariant correlation function of the dual system
in the presence of two frustrations, where the po-
sitions of frustrations and correlated spins are
interchanged. Note that the gauge-invariant dual
N-point correlation function has strings of dual
link variables a joining the dual spins pairwise.
The relation is given by
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(0',-( I T (i, i)A)Uj )Kz{q)'{} = (_ 1) <H zi 2[s‘fa( n$a qa' 3u)a)sia]>5*{é"}

(3.22)

<Ui—( Hl"(i,])A)Uj >’(1{¢';= 1} =

with a pictorial description given by Fig. 7 and (a)
®, is the frustration field of the dual system, and
. -1 ifé'=i,j

Qi' = .
1 otherwise.

(b) T',(i,,],) is a path of dual links which goes

X 1
i 7,
L..-_I;V !—--——-—X j
iy t
i ! 1
1 ® o =
. i 's;ci‘“z____
|
L), 1 :
x'1 |- I, i)
LixT,
(a)
"
T
r, |l
~ ~ T ~
o ¥ 73 i ,
H ]
L - !
~ H T
[ I
T2
(b)

FIG. 7. (a) Gauge-invariant spin-spin correlation func-
tion. The correlated spins reside at sites ¢ and j, and
T'(;;) is the path of the string of gauge variables A. The
frustrations, here denoted by crosses, are linked to-
gether by strings with paths I'. (b) The dual transformed
of the situation described in Fig. 7(a). Correlated spins
and frustrations exchange their roles. The string T in-
tersects the paths T three times: the correlation func-
tion picks up a minus sign [Eq.(3.22)].

?
(L3, (g, 709085, D erl®e = 1}

f

from dualsite, to :i-a . Theparameter a labels the
different paths. In the case when N is odd, one of
these paths runs to the boundary; (c) Again re-
member that e"2* =tanhK,,. (d) In the factor (-1)",
n is the total number of intersections between the
path T'(; ;, and all the dual paths I'(i,,]j,). The
derivation of Eq. (3.22) is given in Appendix A.

Let us now discuss the influence of frustrations
on the asymptotic behavior of the gauge-invariant
correlation function. We shall restrict ourselves
to the case of two frustrations.

1. High-temperature behavior

The behavior at high (spin-glass) temperatures
can be most easily studied directly by means of
the high-temperature expansion.

In Eq. (3.14) we showed that one free frustration
can exist at temperatures higher than the transi-
tion temperature. Let us study the effect of one
single frustration on the behavior of the gauge-
invariant two-point correlation function. Consider
the simple case of a frustration in between the
correlated spins. The string of link variables is a
straight line of links joining the spins with the
frustration adjacent to the string. To make an ex-
plicit high-temperature calculation we choose the
special flipped-bonds representation of the frus-
tration shown in Fig. 8. To the first nontrivial

——R LINKS —#

d LINKS

¢ -

FIG. 8. Frustration lying between two correlated spins.
The dark links represent the flipped bonds we choose as
a representation of the frustration (cross). The broken
line is the path T of link variables.
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FIG. 9. Two nearest-neighbor frustrations pierced by
the string of link variables.

power in x=tanhK,, we get

<"€< l;I A) °!>x L{‘I’ f} / (0:9k

=1-2d(R-d+1)x?, (3.23)

where |i-j| =R and |l -i| =d measures the dis-
tance of the frustration to one of the spins. Of
course, this formula is only valid when Rx < 1.
As expected, the correlation function decreases
in the presence of the frustration.

An analogous computation for two nearest-neigh-
bor frustrations lying between the two spins (Fig.
9) gives the result

<‘71( IrI A) °/>x,{‘1’;}/ (0:0)k, »

=1-4d(R -d+1)x2, (3.24)
x=tanhK;.

2. Low temperatures

At temperatures lower than T,, there is long-
range order and the random system is “magne-
tized.” It is interesting to see how the magnetiza-
tion is affected by the frustrations.

Consider two frustrations a distance R apart and
let us compute the (gauge-invariant) magnetization
at a point between them at a distance d from one
of the frustrations (Fig. 10). This situation is the
dual of that shown in Fig. 8 for which we obtained
the high-temperature result above.

The duality relation (3.22), together with (3.23),
allows us to write

<0‘ H A>K1{d>}/<0{),(l

T'(iy =)
=(-1)[1-2d(R -d +1)(x*)?], (3.25)

x*=tanh B¥ =e 21

Once again Eq. (3.25) gives the answer to first
nontrivial order. The magnetization is locally de-
creased and the effect is nonuniform. In fact, this

FIG. 10. Magnetization of a region between two frustra-
tions. The situation is the dual of that depicted in Fig. 9.

decrease is largest midway between the two frus-
tration. The minus sign of Eq. (3.25) arises from
the fact that the string of A’s (Fig. 10) we have
chosen crosses the string of a’s in the dual case
(Fig. 8). ‘

E. Flipped bonds, frustrations, and disorder parameters

The results we have obtained in Sec. IIIC can al-
so be understood in terms of an Ising model with
flipped bonds.

One possible alternative realization of an Ising
model with two frustrations is an Ising model with
a dual string of flipped bonds connecting the two
frustrated plaquettes along some path I' [Fig. 4(d)].
Any path is equally good; models with different
paths differ only by a gauge transformation. Such
a configuration of flipped bonds is actually an in-
terface or domain wall, as discussed by Fisher
and Ferdinand.!” Our string tension is nothing .
more than the interfacial tension of the domain
wall that appears in their work.

Kadanoff and Ceva have shown that there is a
duality transformation connecting the normalized
partition function in the presence of a dual string
of flipped bonds and the correlation function in the
dual system. This quantity, which for us is the
partition function in the presence of frustrations,
in their language is the correlation function of the
disorder variables. Thus, frustrations have a
close connection with disorder variables.”!® In
fact, the “fermionic” character of the order and
disorder variables [i.e., the fact that one picks up
a factor of (-~1) by moving disorder variables
strings through spin variables] is just the path
dependence of the gauge-invariant correlation
function, as discussed in Sec. II
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IV. THREE-DIMENSIONAL ISING SPIN GLASS
A. Frustrations in three dimensions

We want to discuss now frustrations in the three-
dimensional Ising model. Frustrations will also
be introduced here in the same way as in the 2-D
case. There is an A variable at each link and a
frustration variable at each plaquette defined by

@i01=A 1A A AL (4.1)

where i,7,k,1 are sites in the three-dimensional
cubic lattice which define the plaquette. Unlike
the situation in two dimensions where the pla-
quettes are associated to dual sites, in three di-
mensions plaquettes are associated with dual links
(see Fig. 10). So the frustration in three dimen-
sion, has a vector character. From its definition,
it is clear that the ® variables obey the constraint

II¢-=1, (4.2)

faces
where the product is taken over all faces compos-
ing a closed surface on the lattice. [Consider, for
instance, an elementary cube of the lattice (Fig.
11). If we consider the product (4.2) on that sur-
face, it is clear the A variable at each link of that
cube occurs twice in the product. Since A%=1, Eq.
(4.2) is an identity.]

Z{‘buk 1} = lim

20141085000 iK1 A 1y + 20131y A 154 1A 1 Ane® i 0) .

<

FIG. 11. Cube and the six links dual to its faces.

From the viewpoint of the dual lattice (not the
dual model), this constraint says that there should
be an even number of dual frustrated links asso-
ciated entering each dual site. Thus, the only
allowed configurations of frustrations correspond
to closed loops of dual links on the dual lattice; a
result already pointed out by Toulouse.?

B. Duality

We start with a 3-D Ising model with a fixed dis-
tribution of frustrations. In analogy with Eq. (3.4),
we write for the partition function?®

Z{®=1] kp-=

(4.3)

Z(A,k)exP(E( i K1A +Z>(ijk1)KpA A pAnA)

We define the excess free energy of the frustrated system in analogy with the 2-D case. It is known'¥®
that the partition function (4.3), for K, finite, and &;,,,=1 at all plaquettes, is self-dual. Link interactions
transform into plaquette interactions, and vice versa, through the duality relationship

e"?¥=tanhK,, e ®{=tanhkK,.

(4.4)

Let a.~ to be the gauge variable associated with the dual link ij (i and j are two neighboring sites in the
dual la.ttlce) The normalized partition function (4.3) (finite Kp) takes the form

z{®;3} Z{a,}}(nun"u #1972 expk; 120¢3,5A15 +K3 E(

Z{_"}r

which is equal to the correlation function

I'Iau-cp-'-)/z) ,'K:' (4.6)

(13>

_z{e1g
Z{®; ;= 1}

The proof of (4.5) is entirely analogous to the
proof of the 2-D case. Again we are interested in
the constrained situation K, — and (4.4) implies
that Ky~ 0. Thus the averages (4.6) are taken in
the pure gauge system described by the partition
function

Z)(,,”,,exp(KEﬁ BR300

s (4.5)

Zea.use = Z exp (K: Z - a;; afkaklali) . (47)

{ai 7} Li, D

The Hamiltonian of (4.7) is gauge invariant [i.e.,
it is invariant under the transformations (2.2) and
(2.3)]. Elitzur'® has shown that such local sym-
metries are never broken, i.e., the expectation
value of any gauge-noninvariant quantity 6 is iden-
tically zero for all values of the coupling constant,
i.e.,

(0)=0 (allKy). (4.8)
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Therefore, one may ask in which case is the
quantity in (4.6) gauge invariant. As we have al- -
ready discussed in Sec. IIB only the product of a
variables around any closed loop of links is gauge
invariant. This is the way in which the constraint
discussed in (4.2) is realized in the dual system.
Note that in contrast to the 2-D situation the par-
tition function for one frustrated plaquette is zero
for all temperatures.

C. Energetics of frustrations

As discussed above, the simplest configuration
of frustrations is a closed tube of frustvated
plaquettes (Fig. 11).

The normalized parition function of this tube is
equal to the expectation value of the product of the
a variables along the loop I' of dual links threading
the frustration tube. This expectation value is
the Wilson loop integral.®

The excess free energy for this tube is given by

AF(K,)=-(1/K Nog(]] @)y - (4.9)
r

From high- and low-temperature expansions (in
the dual model), it is known that the loop integral
has the asymptotic behavior® 14,18

-aA % %
(IT a>x;f~{e e (4.10)
r

-8B L * *
e" ", Ky>K7,

where A is the minimal area spanned by the loop
T and L is the perimeter of that loop. K is the
critical coupling of the dual model and is the dual
of the critical coupling K, of the 3-D Ising model.
The coefficients @ and 8 are temperature depen-
dent. In the original Ising model, this implies
that the excess free energy of a closed tube of
frustrations behaves like

(a/K)A, K, >K, (low spin-glass temperatures),

AFK,)=

(4.11)

(B/K,)L, K,<K, (high spin-glass temperatures).

Let us now look at the interaction between two
tubes of frustrations in various relative orienta-
tions.

Consider first two face-to-face tubes (Fig. 12).
In order to compute the excess free energy of that
configuration of frustrations at low temperatures,
it is useful to go to the dual system and consider
there the expectation value of the two dual loops
of a variables at high temperature. The leading
diagram in the high-temperature expansion of the
dual system is that one which covers the minimal
area surface spanned by the loops. This is the

FIG. 12. Closed tube of frustrated plaquettes. The bro-
ken line represents the loop of dual links involved in the
loop integral (3.10).

r

just dual analog of the statement made by Toulouse®
and Kirkpatrick'! that the ground-state configura-
tions correspond to covering surfaces of minimum
area. For one loop, we then obtain

(tanh K})4= e-2K14 (4.12)

which is the area law quoted above.

For two loops, the character of the minimal
surface changes with the distance R between them.
The two situations are shown in Fig. 13(b) and
13(c). If d is the linear dimension of the loop, we
get, to leading order,

AFy;(R,d)=8dR, R<d,
AK,;(R,d)=4d?, R>d,

(4.13a)
(4.13b)

at low spin-glass temperatures (K,>K_). At high
spin-glass temperatures, the excess free energy
can be evaluated directly through the high-temp-
erature expansion in the Ising spin-glass model.
The result is to (leading order)

AFKI(Rld) =8d, K;<K,. (4.14)

Equation (4.13a) shows that at low temperatures,
R<d, there is a linear potential between the loops
whose strength is proportional to the perimeter

d of the loops, a result suggested by the 2-D re-
sults. In contrast with the 2.D case, though,

this potential saturates at a distance R ~d and,
R>>d, has only a weak R dependence. Thus, loops
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|
d ' J
i
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(a)"li ’
)0 0=

FIG. 13. (a) Two face-to-face tubes frustrated plaquet-
tes here represented by the closed loop of dual-link vari-
ables threading the plaquettes together. (b) When R <d
the minimal surface spanned by the loops is the lateral
surface (shaded in the figure). (c) When R >>d the mini-
mal surface is the surface spanned by each loop inde-
pendently. (d) The minimal surface spanned by two ortho-
gonal loops.

of frustrations tend to bind but they are not con-
fined. There is also an orientation effect in the
interaction between tubes. For two loops oriented
as in Fig. 13(d), the minimal surface does not
change character so there is no strong distance
dependence. In-analogy with the 2-D case, at high
(spin-glass) temperatures, the R dependence is
weak for all distances.

In the 3-D case, it is also possible to compute
gauge-invariant correlation functions using duality
transformations, as we did in the 2-D case. The
proof and results are given in Appendix A.

V. 2-D X-Y SPIN GLASS

A. Gauge symmetries in random X-Y models

Up to now, we have discussed random Ising
spin systems. We can extend our treatment to
X-Y systems for which the degrees of freedom
are fixed-length two-dimensional planar rotors
S=(cosd sinp) sitting at the sites of the lattice.

The standard nearest-neighbor ferromagnetic
coupling is usually written

K8,,8)=KS88,;=K,cos(6;,-6,), (5.1)

where ij are nearest-neighbor lattice sites and K,
is the coupling constant for this link. This inter-

action favors configurations with neighboring spin
parallel to each other.

We can introduce disorder in the system by ad-
justing the interaction to favor configurations with
neighboring spins tilted by an angle y;; at each
link (ij). The form of the interaction is now

K,cos(6;,-6,-1;,). (5.2)

In particular 3;;= 7 corresponds to flipping the
sign of the interaction.

Define a link-gauge degree of freedom U;; such
that®

U,;=exp(iy;,) . (5.3)
Then Eq. (5.2) can be rewritten®
3K (S;U¥S¥+H.c.), (5.4)

with S;= e¥1,
The partition function in a fixed configuration of
gauge degrees of freedom {Ui} is given by

Z{U“}=f exp(.K_’ > (S,.U’}‘jS;HH.c.)), (5.5)
{s;} 2 Cify
where f (s, means a normalized integration over
all the angies between ~ 7 to 7.

Define a local gauge transformation G{Vi}, with
V,;=exp(ix;), such that the spin and link degrees
of freedom transform under G{V} like

S;~ViSi, Uy—=VU,VE. (5.6)

ij
In compact notation

GV1{S, Ut={VS,, V.U ,;V} (5.7

ijrile

Hence, each spin rotated by x; and each link
angle by the difference x; - x,;. Again the key point
is that the interaction (5.3) is invariant under the
gauge transformation (5.6).

‘With the above definitions all the remarks al-
ready made in Sec. II apply to X-Y systems with
almost trivial modifications. In particular, the
partition function (5.8) is gauge invariant and we
only need the gauge-invariant features of the gauge
configuration.

Let us define a frustration angle 27 ®,,,; at
plaquette ijk! such that

e ®im=U, U, U,U,,, (5.8)

around that plaquette.
Thus, from Eq. (5.3), the frustration angle may
be written

279 = i ljpt Yt ¥;{mod 27). (5.9)

From the periodicity of the interaction (5.2) we
arrive at the conclusion that only fractional values
of & are meaningful. Note that to reverse the sign
at the link ij (i.e., ¥;;= 7,9, =0 otherwise), is
equivalent to setting ®,,,,=7 + (integer) for all
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the plaquettes which contain the reversed link as
shown by Villain,®

Thus, the random X-Y model is a frozen con-
figuration of frustrations &,,,, derived from the
angles @;;, has a Hamiltonian given by

H=K, ZCos(ei—GJ—zp”). (5.10)
Cig)

Instead of writing Eq. (5.10) as a constrained
Hamiltonian, as we did in the Ising case, it will
prove to be more convenient to deal with a Hamil-
tonian depending explicitly on the angles y,,.

B. 2-D X-Y spin glass

It is convenient to change our notation. A link
whose ends are the sites i and j can be equivalently

described by one of the sites (i) and a direction (u).

Thus we write?!22

by =0,0). (5.11)

A plaquette is defined by a corner (7) and two
directions u and v, i.e., (i, 42). In particular, the
frustration field can be written

27®,,3(0) =0 ,3,0) - 4,9,6), (5.12)
where A, is the finite-difference operator
A,x(@)=x6) - X - e,) (5.13)

where e » is the unit vector pointing in the u direc-
tion. In two dimensions a plaquette (i, uv) is
uniquely associated to the dual site 1 at its center
and we often consider the scalar frustration & (3)
residing there

B(1) = 3€,,®,,01) ,

where ¢, is the 2-D Levi-Civita tensor.

In this notation, the resemblance between the
frustration field &,,(i) and the electromagnetic
field tensor is evident [Eq. (5.12)].

Consider the partition function of the two-dimen-
sional random X-Y model in an arbitrary field of
frustrations (Eq. 5.10)

z{a(i)}= f D 6 exp ( Z K, cos[A ,6(;) - zp“(i))

Ci, »)

(5.14)

(5.15)

Following Ref. 23, we consider the Villain ap-
proximation of (5.15), i.e.,

efesf = o8 B exp[-(B/2)(6-271F].  (5.16)

Performing a Fourier expansion at each link,
we obtain a system of integer-valued variables
1,(i) residing on links. The partition function now
reads

z{a(}= 3 exp(—(K,/Z) 3 li(i)>

(1,0} {4, 1}
><exz>< i3 uld) u(i))fHIG(Au 1,.G)).
e i (5.17)
By solving the constraint
1,()=e€,An(i), (5.18)

we can map the (normalized) partition function
(5.17) into a correlation function of the surface-
roughening model®* whose partition function is
given by

zZ,.= Z (exp -(K,/2) Z An(i)] > (5.19)

{n, (D)}
Thus, we obtain the result

A2} _ (I eml-2rint Da(0)]),.. (520
z{a(1)=0} 1

If we perform a global shift by m of all the #»(z)
variables the partition function (5.19) is left un-
changed, but the expectation value (5.20) picks up
a phase exp(2mmZ®(i)]. Hence, for arbitrary
boundary conditions, the expectation value (5.20)
vanishes identically unless the frustration system
is “neutral,” i.e.,

Z <I>(I)= 0 (mod integer).
i
This result is analogous to the vanishing of (o)
in the Ising model due to the global symmetry
g—-0. In both models fixing boundary conditions
at infinity allows symmetry breaking quantities
such as Eq. (5.20) to develop nonvanishing expec-
tation values.
By using the Poisson summation formula;* we
can write in terms of the Coulomb gas picture

z{a(i)}= Z f+ :D(pexp<27mz [&(1)+m( )]cp(l))

{m} " =%

X exp (_2LK ) [Auqo(i)]2> .

l(‘:,u)

(5.21)

(5.22)

The evaluation of the Gauss1an path integral then
gives the result

Z{a(D)}= Z"Z exp( 7K, Z [m(1)+ 3(1)]

(m(l))
x DI = T)fm(})+ @(f)]) |
(5.23.a)

where Z_, is a spin-wave partition function and the
summation is restricted to strictly neutral con-
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figurations, i.e., where Er(;, j» means the summation of the p vari-
: ) ables along all links on the path I'(jj) between
Z [m(@)+®()]=0. (5.23.b) sites 7 and j.
1 . Just as in the Ising model, this correlation
The propagator D(i - j) is the lattice Coulomb function is path dependent. Consider two different
Green’s function and in two dimensions it has the paths T',(¢j) and T',(ij) such that inside the area
asymptotic behavior enclosed between them there are frustrations of
DG -7) ~log| 1-3 |+47, (5.24) total strength 27Q. Then
where £ 7 provides an effective chemical potential Z p= Z P+ 27Q. (5.27)
for the vortices m(1). TG, i roG, i)
Therefore frustrations in the X-Y model map
into fractionally charged impurities in the Coulomb Thus, the phase of the cosine in (5.26) is shifted
gas. by 27Q. When @ =3, this result gives the usual

(-1) factor that we obtained in the 2-D Ising model.
For the pure X-Y system, at low temperatures,

C. Energetics of frustrations there is strong evidence that the two-point corre-

- lation function falls off with a power law.?® In
order to evaluate the effect of frustrations on the
correlation function, we go to the Coulomb gas
picture which gives (see Appendix B).

Consider two frustrations (charges) located at
dual sites i and j with strength &;=¢ and &;=—q.
At low temperatures, the 2-D Coulomb gas is a
dielectric®® (a dilute gas of dipoles). Thus, the -
two frustrations interact with their original log- (cos(6;~-6; -Er(i,;)d)m))x,{q’(i )}
arithmic Coulomb interaction renormalized by di- _
electric constant given by*® {cos(s GJ»K’

) (cos(Zym(3)[6( -4) - 6(f - J')]r(i,;)»{q’ﬁ),}c.g.
(cos@sm(D[6GF =) = 6G =) e..

e=1+(87/K,)exp(-2K ,u), K,>1. (5.25)

For the single frustration, the excess of free

energy is logarithmically divergent and excludes (5.28)
its existence at low temperatures.

On the other hand, at high temperatures, the where the left-hand side averages are taken in the
2-D Coulomb gas is a plasma and we expect X-Y model and the right-hand side in Coulomb gas.
Debye screening to take place. Therefore, the The angle 6(f —j) is the polar angle of the vector
impurities interact via a short-range screened j —j, where j and j are the positions of the cor-
Yukawa potential and the excess free energy of an related spin and the frustration and [G(i -i)
isolated frustration is now finite. The excess - 19(]7 - j)]r is the angular parallax of the frustration
free energy of a single frustration at high temper- (or vortex) as seen from the ends of the path I'.2%27
atures is easily computable in the low-temperature The rules for computing these parallaxes are given
expansion of the dual (surface-roughening) model. in Appendix B. The fact that the gauge-invariant

correlation function is path dependent resides
D. Gauge-invariant correlation functions entirely in the way the parallaxes are computed.

For instance, if a frustration @ lies to the right
of a path and to the left of one another, the argu-
ment of Eq. (5.28) differs by 27Q between both
paths. The reason is that the parallax is spanned
counterclockwise in the first case and clockwise
in the second (see Fig. 14).

For instance, let us compute the spin correlation

As in the Ising model, the spin-spin correlation
function is distorted by the presence of frustra-
tions. We define the gauge-invariant correlation
function for this model (S,S,)T;; as

<§i ’ §j>r,-,- =(S; H U)S¥+c.c.)

function in the presence of two frustrations ¢ and
= < cos (0,- -6;~- Z 1/ ) >, (5.26) - g (Fig. 14). At very low temperatures, the
T, i) leading term (all m =0) gives the result

(cos(8 g — 6y = 2ir(g,00¢ 1)k 1 B(L/2) = q, B(~L/2) = —q}
(cos(6 z~ 6o)),

= cos(4qu) . (5.29)
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fa— R

FIG. 14. Gauge-invariant spin-spin correlation func-
tion in the presence of two frustrations (impurities) of
strength ¢ and —g. The parallax is 2w. The dark line
represents the string of gauge variables ¥.

Thus, the correlation function has the asymptotic
behavior (R large)
(cos(6 -6, - Er(n;o)lpnz»lﬁ{q, -q)
{cos(6 - 90)),(1

const  os(dqw). (5.30)

R(21K1)-1
For R >d, we can approximate w=~%r —d/R.
If we confine ourselves to the case g=3% (flipped
bonds) then Eq. (5.29) becomes

(c0s(6z = 6o~ T &, ¥k, 14, -4}
=(-1)const.[1 - $(4g d/R?/R®"2™" | (5.31)

Again, as in the Ising case, we pick up a (-1)
in front of the gauge-invariant correlation function
signaling the existence of frustrations in the
system.

Finally, it is interesting to see what the X-Y
model with all plaquettes frustrated looks like. In
the Coulomb gas representation, this means study-
ing system with charged impurities at every site.
One system with well behaved energetics is a
“salt crystal” with an impurity charge ¢ on one
sublattice and —q one the other (Fig. 15). The
ground-state (zero-temperature) configuration
has no vortices present (all # =0). When g=3%,
though, there is another state degenerate with
this one: m =1 at all dual sites for which g=—3
and m = -1 when ¢g=3. This has the effect of
shifting one sublattice into the other. Villain has

+ =+ | =]+
—_ + - + —_
N LT FIG. 15. “Salt crystal.”

- Each plaquette is frustrated.
sl =1+ = The strength is ¢. This is

Villain’s “odd model.”

+ =+ | = |+
e = 4+]=

studied this model with g=% (the “odd model”) and
has also found this double degeneracy.?

VI. 3-D X-Y SPIN GLASS
A. Frustrations in the 3-D X-Y model

The definition of the three-D X-Y spin-glass
follows naturally from its definition in two-D. The
different dimensionality, however, changes the
structure of the frustrations as well as the proper-
ties of the dual models.

To begin with, let us consider the frustration net-
work for this model. As in the 3-D Ising model,
frustrations arrange themselves into spatial net-
works. The reason is that the frustration field in
three dimensions is a pseudovector, as follows
from the definition (5.12) ’

2m®,,(0)=A,9,0) -A0,0). (5.12)

This relationship also shows that the frustration
field obeys a constraint, which is analogous to the
one we discussed in Sec. IV. Equation (5.12)
makes &, ,(¢) the circulation of 3, around the pla-
quette. In three dimension, we can describe this
circulation as a pseudovector, i.e., the flux of the
field strength of the gauge variable i, through the
plaquette. Therefore, we can define a pseudovec-
tor y,, which lives on the dual link piercing the
plaquette, and describes the direction of the frus-
tration flux across the plaquette, as

qou(‘i.) =%€auu¢uy(i) ’ ’ (6‘1)
where (i,a)is the link dual to the plaquette (i, v).?"
From Eq. (5.12) we see that ¢ (i) is just the curl
of ¥, (%)

210, (1) = €4 2,0, (4) - (6.2)
This expression has the same form as the magnet-

ic field of electrodynamics. Note that since (pu(i)
is a curl it is divergence free

A,9,()=0 (mod integer), (6.3)

at each dual site . This is the analog of the con-
straint we found in the 3-D Ising model. If we now
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interpret the 3-D X-Y model as a lattice version
of the Ginzburg-Landau theory for a superconduc-
tor, we can regard these structures as tubes of
frozen fractional magnetic flux.

Because of the continuous nature of the degrees
of freedom of the X-Y model, many other types of
configurations are also possible. In particular,
since the frustration flux &, is a continuous vari-
able, the flux can spread out with the result that
any configuration of magnetostatic fields is possi-
ble for the frustrations themselves. For instance,
we can construct configurations for which ®,~1/7%
which is analogous to a magnetic monopole and its
associated strings. ,

Let us now perform the duality transformations
to partition function of the random 3-D X-Y model,
which is given by

2r
z{p, ()} = f D6 exp(K, D" cos[4,6() —zpu(i)]).
° Gy )
(6.4)
The procedure is essentially analogous to that we
already employed in the 2-D X-Y case.

The first step is again a Fourier expansion of
(6.4) per link. After integrating out the angular de-
grees of freedom 6(¢) we are left with the con-/
strained system

L MOIED exx)(-ziKl. > l,f(z‘)>

{140} (i, )

X exp (—z‘ Z lu(i)wu(i))

(i,u)
X H 8(A,L,(0), (6.5)

which is the same as (5.17). The differences, how-
ever, become apparent as soon as one solves the
constraint condition. In this case, we obtain

lu(i)=€uv)\Aun>\(I) ) (66)

where the integer-valued variables nl(i) reside on
the links of the dual lattice. Therefore, after sol-
ving the constraint of Eq. (6.6), the normalized

partition function (6.5) can be written as an expec-
tation value of the dual system, which is a gauge
theory with integer-valued degrees of freedom
n,(1). Its partition function is given by

Zoe™ ) ©XD (— GK) Y [Amv(i')]"‘) . (6.7

tnu (D)} (1, uv)
Then?®
Howlb _ e (oms . o
Zp, -0 (exp (m ;L;)nuﬁ)ﬁo u(l)))mge ,  (6.8)

where the relationship between ¢ u(i) is given by

(6.1). We should note that the partition function

(6.7) is invariant under the local gauge transfor-
mation

n, (0 —n, 1)+ 4,50) (6.9)

Thus, Eq. (6.9) picks up a phase factor
exp(-2mi2;5(1)4,9, (1)) under the transformation
(6.9), and therefore it is not a gauge-invariant
quantity.

Hence, we can write

(exp (211 T 1,00, 0) dses=0 (6.10)
(1, ») :

unless the frustration field obeys the constraint
(6.3). We should also note there is a fundamental
difference between the constraint (6.3) and the
“neutrality” condition that we discussed in the sec-
tion dealing with the 2-D X-Y model. While the
global symmetry involved in (5.20) can be broken
by specifying suitable boundary conditions, the lo-
cal symmetry (6.9) can never be broken. Thus Eq.
(6.10) is an identity which is valid for all values of
the coupling K, regardless of boundary conditions.

The partition function (6.8) can also be written in
terms of the topological excitations of the 3-D X-Y
model (quantized vortex strings) interacting via
Coulomb interactions. Applying the Poisson sum-
mation formula to (6.8) we obtain

Aoui=%  [Toien (- ¥ .00 -80,07)

{m (1) i, um

x exp( 3 260, @m0 +0,0)]

, »)

) , | (6.11)

where gauge invariance once again demands that (6.11) vanish unless the following constraint is satisfied:

a,le,@+n,G)]=0.

Performing the integrals in Eq. (6.11), we obtain?®

(6.12)
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2o, =Z4 3 " exp (— = Tl (i)+mu<f)]u<i-i)[m(inm,,(i)]),
i,1]

{myu D}

where Z_, is a spin-wave partition function and the
summation is restricted to those configurations
which satisfy (6.12), and in three dimensions the
Coulomb lattice propagator D(i —]) has the asym-
ptotic form . :

D(-j)~=-(1/]1-j|)+const. (6.14)

In the absence of frustrations, the constraint
(6.12) requires the topological excitations of the
3-D X-Y model to form closed loops. When frus-
trations are present and A ,¢ u(i') =integer, at a
point one can have a monopole at that point and a
vortex string that can begin (or terminate) there.
This situation has already been discussed by Ein-
horn and Savit.*

B. Energetics of frustrations
1. Low temperatures

Consider first the excess free energy associated
with a closed tube of frustration flux, analogous to
the configuration we have already discussed in the
3-D Ising model.

At low temperatures, the representation (6.11)

J

. 1 . . .
Z{p, ()} E{ru(m exp (—E(i,u)wu(i)lu(i))exp (‘ﬁlz(i,u)lzu(’)) IT, G(Aulu(z».

(6.13)

is most convenient. Thg leading contribution to
the free energy [all m,{i)=0] is given by Egs.
(6.13) and (6.14) as
Tl T T 1 e
ar{p,(=-5 20 Ao 615
{1,7,2} -]
For a tube of linear dimension R, a simple elec-
trostaticlike calculation that gives

AF =(const)@Q®R logR +O(R), (6.16)

where @ is the frustration flux in the tube.

The result (6.16) has a weaker dependence in R
than the area law we found in the 3-D Ising model.
The R log R behavior arises from the fact that
X-Y rotators can always relax continuously around
a frustration tube.

2. High temperatures

A convenient representation to calculate the high-
temperature properties of the X-Y model is the
constrained system described by the partition
function

(6.17)

Z{y,(@)=0f

The integer-valued variable 7, (¢) lives on the
(¢,1) link of the original lattice and ;bu(z') is the
gauge field angle. Therefore, to study the high-
temperature (K, small) behavior of the X-Y Vil-
lain model in the presence of frustrations is equiv-
alent to studying the constrained model (6.17) at
low temperature (1/K, large).

The lowest-energy excitations of this model are
elementary plaquettes with [, =1 or -1 around the
plaquette. The leading term in the low-tempera-
ture expansion of (6.15) gives

Z{p.}

7{?17?6][:1 -2exp <—%) 3 { 1-cos[218,,(d)]},

(1, uv)
(6.18)

where ®,,(¢) is defined in Eq. (5.12). Let us look
at the configurations of frustrations we examined
at low temperatures. Consider a closed tube of

T 1,000 XD (—E%Z(i,“)lim) I, 54,2, ()

—

frustration flux of strength @ and perimeter length
L. For this case (6.18) gives an excess free ener-

gy

AF = (2/K,)(1 - cos2mQ)L exp(-2/K,) , (6.19)
if Le?/K1« 1,

As in the 3-D Ising model, we get a perimeter
law.

VII. CONCLUDING REMARKS

Let us summarize the results of the above sec-
tions.

In two dimensions, at low temperatures, Ising
frustrations have a linear interaction energy;
X-Y frustrations, logarithmic. At high tempera-
tures large spin fluctuations “screen” the frustra-
tions and we have exponentially damped interac-
tions. In both models frustrations decrease the
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magnitude of the spin-spin correlations, as ex-
pected.

In three dimensions the constraints require the
frustrations to form divergenceless configurations:
closed tubes in the Ising model and more general
spread flux configurations in the X-Y model. At
low temperatures we have an area law (L?) for an
Ising tube, L logL for the X-Y tube. At high tem-
peratures fluctuations give a perimeter law (L) for
both cases.

We would like to stress once again the impor-
tance of studying gauge-invariant quantities. In
particular, the gauge-invariant correlation func-
tion emerges naturally as the correlation function
to be studied when relevant disorder is present in
the system.

Finally we observe that frustrations can be re-
garded as fractional topological excitations or
merons of each model. In two dimensions a sin-
gle frustration is a disorder variable in the sense
that it breaks the symmetry of the dual model.

- In three dimensions the situation is somewhat
different due to the existence of constraints on the
possible configurations of frustrations. In any
case, it is always possible to construct a frustra-

J

tion network which behaves as a disorder variable
in the sense that it has a nonvanishing expectation
value in the disordered phase.
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APPENDIX A: DUALITY RELATIONS FOR THE
GAUGE-INVARIANT SPIN-SPIN CORRELATION
FUNCTIONS IN THE PRESENCE OF
FRUSTRATIONS: ISING MODEL (d=2,3)

The gauge-invariant spin-spin correlation func-
tion (o;(I;(4, ; A)o;), in the 0=1 gauge, can be
written

QO" H A 0,> = lim

rii, ;)

z {4} (Hr( i, 1) A) exp(K lzlinksA + KD iplaquettes AAAADY
Kp= E(A) exp(Klzlinks A+ szplaquenes AAAA Q); )

(A1)

We want to derive a duality relation for (3.21)-(4.9). The first step is to bring all the A variables into the
exponentials. The following identity is useful for that purpose:

AesA=ie(a-iwlz)A .

Let us define a shifted link coupling K ,(T') along the path I':

K leTy
K(T;,) 5{ " H
Kt-ifr/2 ) & Fij

K,(d>;) =K ,®7.

(A2)

(A3)

Define R to be the distance (number of links) between sites i and j: R=|i—j|. With the definitions given
above, the gauge-invariant correlation function reads (for finite K,):

- z 1 ¥ eXP(Z)unks Ky(Ty;)A +2plaquetles K, (97)AAAA)

(o (IT o)

which turns out to be equal to

; (A4)

2 {al} exp(KlElink: A +Z\lplaquettes K’(II){ )AAAA)

<(,i H A)oj> — R 20 4y T jinies coshi () [1+ tanhK (T)A )T L queres COShK, (D) [1+ AAAA tanhK ,($)]) ‘
r

(A5)
2y (I, coshi (1 + tanhk , A)) (I, coshk () [1 + AAAA tanhK ,(&)])
A. Two dimensions
In two dimensions the duality relation takes the form [see Egs. (3.5)-(3.10)]
, (A6)

<Gi( 0 A) °1> _i*(I1, coshk (1)) (1, coshK (7)) Ly expQuzyy K7 (D) (s7sq — 1) + 207 H* () (s7 - 1))
r

(X, coshk ) (II, coshk (9) o1y exp @iy Kf (s157 = 1)+ 20, H¥(97) (s7- 1)

where {S 7} are Ising spins residing at the sites i of the dual square lattice. K*(I') and H*(®;) are defined
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K¥(T)=-3IntanhK(T), H*(®)=-%IntanhK,(®). ' (A7)
Remember that K} and K, follow the same duality relationship. Since
i cosh(B - 3im)et/ 2)1ntanhtB-i1/2) _ oo gh B 1/ 2) Intanh B (A8)

is an exact identity, (A6) can be written

<¢7£ ( I A) oj> Zop TMs7"7°072) exp@Qiy, 5K (D)sysy + LigH*sy) *9)
) 8D
r Z"SI)(HIS;I a7z exp( 5 KFsisi+ Ly H*s7)

The duality relations (A7) together with the fact that

tanh(B -3 4m) = (tanh B)™*, . (A10)
lead us to the conclusion that the line dual couplings K *(I) satisfy
-K¥ iflerl
KX(D)= PR (A11)
Kr if I€T.

We conclude that the string of gauge variables IIA transforms into a string of flipped dual bonds (Fig. 8).
The flipped dual bonds are those which are pierced by the string.

We now return to the constrained situation K,~«. Thus we set H*=0.

The correlation function, in the dual system (with a dual string of flipped bonds), is written

(oo L 4) o) _Zap (ALST7"™) expluuj KH (D)sisy) @)

(1-2i)/ 2 S
r Doy (Masy*V"%) exp@i 5K Fs357)

We now proceed to write (A12) in a gauge-invariant manner.
Define Az; to be the dual gauge variable of dual link ij. Then (A12) holds for the configuration
az=K}(T)/K¥.

Introducing strings of A’s between the s variables pairwise, Eq. (A12) can be written (for this configura-
tion of A’s)

<°'t ( HA) 0,-> =(=1)" E(s;}{nﬂf[s'ia(n’fm('{a,fa)a)s?a]} exp(Z)(;';)K;"(I‘)s;s;) , - (A13)
r 2o A2 [57a(0Xr i @055, 1} exp @iz 5, K Fs73
with the same conventions used for Eq. (3.?_2). Again n is the number of times the path I" connecting the

correlated spins ¢ and j crpsses the paths I joining the frustrations. Equation (A13) is manifestly gauge
invariant. Thus, from Eql (3:1), we can write

R MMal2ls, (s a7, @850 k@6
<0',~(HrA)°'j>K,{q)i} (1) a=1 LS, Hl’.‘a(imia) i fl{ ( } , (A14)
(Ui(nrA)"j>K,{‘I"i'= 1} . <H§£12 [S;a(ni«a(;;,;u)sgabmlk{‘l’(i')= 1}
I
where " tions we have performed from Eq. (A5) up to Eq.
1 i (A12) can be paralleled here too. Thus, in analogy
36" = {_ ’ 7 with (A12) we can write
h ise.
1, otherwis (Ui(HrA)Gj)K,{q’T?} B
B. Three dimensions (0‘{ (II FA) 01) K z{q)ﬁ =1}
We have already pointed out in Sec. IV that the ' (‘H(-;';)aﬁ'ﬁ”/z),{;(r, (A15)
3-D Ising model is dual to the 3-D Ising gauge (ILz =8935/ 2) 4
theory [Eq. (4.7)]. Therefore, all the manipula- 4,075 Xp
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where

K3(r)= {
K¥, otherwise.
Since frustrations come in tubes (see Sec. IV)
from Eq. (A15) it follows that the gauge-invariant
spin-spin correlation function in the presence of
frustrations dualizes into the loop integrals in the
presence of a tube of overturned plaquette cou-
plings. This tube begins and ends at the corre-
lated spins and follows the path I" of A variables.

APPENDIX B: DUALITY RELATIONS FOR THE GAUGE-
INVARIANT SPIN-SPIN CORRELATION FUNCTION IN
THE PRESENCE OF FRUSTRATIONS: X-Y MODEL

@=23)

The gauge-invariant function for an X-Y system
if given by

-K}, if the plaquette p is pierced by '

Cr

_ ReJ D6 exp(i 2y, 1 SulA,0G) = 9,6)]) exp( 2 4 €08[8,06) - 9,()]

Cr= (cos( D [8.66) - zPu(i)]su(i))qum} )

(i, u)

(B1)

where (i) are the gauge variables, qbu('i') is the
frustration field [27¢,(1) =€ ,,,0,4,()], and S,(i)
is an integer variable which specifies the path T’
connecting the correlated spins, i.e.,

Su(i)={1’ if (j,u)eT (B2)
0, otherwise.

The thermal average is taken in a fixed distribu-
tion of frustrations. So

(B3)

IS)O exp(KlE(i, w) COS[Aue(i) - Zpu(l)])

The first step in the duality transformation for an
X-Y model is to perform a Fourier expansion at’
each link. Further integration over the angular
X-Y variables 6 at each site leads to the existence
of constraints in the transformed model. Within
the Villian approximation the correlation function
(B3) takes the form

1
exp(-i [1,G)+5,.()]v,.0)
Z{Su}lzu(m ( (i,zu) )

X exp (- EL > Zzu(i))

1 (i, »)

I,:

x [T o(aul1,0+ $,0D,  (B4)

where Z{S,} is the partition function

Zs}= eXp<_ 2_1_ ) l'i(i))

{10} 1 (i, n)

X H G(Au[lu(i)"'su(i)])' (B5)

These expressions are valid regardless of the
dimensionality d of space. In fact, Jose et al.,?®
have obtained Eq. (B5) in their discussion of the
correlation functions of the pure 2-D X-Y model.
We follow closely their approach. Space dimen-
sionality becomes important in solving the con-
straints.

A. Two dimensions

In two dimensions the constraint that the integer-
valued link variables 7 ,({) must satisfy,

8,[1.(0)+S5,()]=0, (B6)
can be satisfied if we write [,+S, as a curl, i.e.,
1.(0) = € A,nli) = S,(1) (B7)

where the dual variables n(i) are the (integer-
valued) degrees of freedom of the (dual) surface-
roughening model in two dimensions.

Hence, Eq. (B3), written in terms of the surface
roughening variables n(i), reads

1
Zs r{s u}

x Z e‘xp(—27ri - n(i.)ﬁﬂ(.i))

{n(1)}

Re

r

1 < 12
xexp(—gzl (rz;” [A n(i)+€,,S,()] > ’

270(1) = €,,8,8,(1) . (B8)

The partition function Zsr{S u} represents a surface-
roughening model with all its integer variables
shifted by one unit on those dual links perpendicu-
lar to the original path I'. Defining the dual of

the string variable S,(7) as

tu(D=¢,,5,6) , (B9)
the partition function Z_{¢,(i)} takes the form
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Zsr{tu(z)}
= exp(—-—l- > [Aun(bn“({)]"‘) (B10)
{n (D) 2K, (5,
Thus,
. cr=<cos(Zznn(i)<p(i)\)>“{t“6)}. (B11)

For arbitrary boundary conditions, the frustration
field ¢(i) must satisfy the “neutrality” condition

22,¢t1) =0 (mod integer) [Eq. (5.21)].

From (B11) we see that, through a duality trans-
formation, shifted bonds are mapped into corre-
lated dual variables and vice versa. We have
already found this result within the Ising-model
duality transformations.

Finally, we can perform a further duality trans-
formation: the mapping to the Coulomb gas. The
Poisson summation formula transforms (B11) into
the expression

_ e . - TN T 1 ~ 12
_Z{gaT")}Re{mX(;,} j:n Dy exp(—2mz.{: [q0(1)+m(1)]x(1))exp(—2—lG,“)[Aux(1)+t“(1)] ) (B12)
and
= D -2 - D)+2,0)12) . 1
o= ¥ I xew (- mZm(x)xu))eXp( 2K”§)[ axD+,01) (B13)

In order to integrate out the x variables, it is useful to expand the square and to reqrite (B12) and (B13)

in the compact form

cr” z{lcp} Re[

where the source J{¢} is given by

{m(D)} 2K 1, w) )

Jot=2milo@+m®]- L a,,0).
Kl

T e xp<_.._1__2 £2(3) f Dyexp —51—2 [8,.xD]% -

Z J{w}x(i))], (B14)

(T, 1)

(B15)

After performing the path integral, the expression between brackets in (B14) becomes

Cp= C, (F)Re Z eXp( lz (p(1)+m(1)] AiG'(l—])t (]))

Z{¢} {m(1)}

x eXp,(sz, 2. [¢(i)+m<i>]cr(i_5)[¢(§)+m(§)]), (B16)

[

where C_,(T) is the spin-wave result for the cor-
relation function of the pure system

Coul@)=exp (~7K, T 25,0645
a,n
(B17)
Z{} is the partition function of the Coulomb gas
with impurities, G(i-7J) is the lattice Coulomb
propagator and

G'I-N=6G-7)-6(0). (B18)

The reduced lattice Coulomb propagator G'(%) is
asymptotically equal to log |#| (d=2). Following
José, Kadanoff, Kirkpatrick, and Nelson®* we
make use of the Cauchy-Riemann equations for

G'(2).
€wdiReG'(1-j)=-AlImG'(i-j). (B19)

r

We also define the angle 6(F)
6(F)=ImG'(r), (B20)

which represents the angular position of the vortex
or frustration respect to the integration site j. The
branch of the logarithm is chosen in such a way
that 9 is measured accordingly with the usual con-
vention from the positive X axis and ranges be-
tween 0 and 27. Thus,

2 8l @9

i

Z € uvA{J»G ’G - ])Su( _7)
i

- 37 AImG (1 -5)8,(5)

i

-[6G-9) - 6(i-N]r,

(B21)
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where the expression between brackets is the
parallax angle of the frustration (or vortex) as
seen from both ends of the path I'. However, it
has to be specified whether this angle is being
scanned clockwise or counterclockwise. Such a
specification depends on the position of the path
(i.e., is path dependent). Consider the case in
which the path is a straight line I'; from site ¢
to site j. Then for all frustrations lying to the
left (right) of the path, the parallax angle has to
be computed clockwise (counterclockwise). For
an arbitrary path I' the rule goes as follows:
compute first the parallax for the straight path
T',. Then compute the closed line integral (B20)

“along the path T'+ T'; (where T'; is the negatively

oriented path I')). If the frustration is left inside
the closed path and the orientation of that path is
positive (negative) then the line integral (B20)
along an arbitrary path I' is shifted by 27 (-2).
For a pure vortex, all these considerations are
unimportant since they imply shifting the argument
of (B15) by 2mn. Since frustrations are fractional
vortices, these shifts are detectable. In fact,
they are in analog of the (-1)" factor already found
in the 2-D Ising model,

Finally, the gauge-invariant correlation function
C{¢} in the Coulomb gas representation is

cde@} _ (eos@ap[o@)+mE)] [0 - i) - 0G" - )], o@D}
(cosZr.mE)[6(" - ) - 6G" = ), . {0 (0) = 0}

Crie()=0}

(B22)

where the numerator is averaged in a Coulomb gas with a fixed distribution of impurities (frustrations)
¢(i) and the denominator is the pure Coulomb gas. The sites i and j are the endpoints of the path I'. Note
that since the denominator is evaluated in the pure Coulomb gas, it is path independent.

B. Three dimensions

In three dimensions the constraint

8,[1.(@)+5,)]=0

can be solved by requiring 7,+S, to be a curl, i,e.,

lu(i) =€ ulevnl('{) -8,

(B23)

(B24)

where the dual variables »n “(-i) are the integer-valued degrees of freedom of the (dual) gauge theory in

three dimensions.

Hence, Eq. (B3), written in terms of the (dual) gauge variables (i), reads

B 1 O T bt
cr_mRe Z exp<—2m Z n, (1)@, (1

(nu(D S, w
where

¢ uu(;) =€ “nS,‘(.iv) ’

L 3. [A%nv('i)—évnu('i)— t“vﬁ)]2> , (B25)

1, wv)

(B26)

and ZGT{tw(f)} represents the partition function of the (dual) gauge theory with a tube of shifted plaquette

intevactions.

Zoxlt (D)= Zexp(— 2—1— ) [Aun,(i)-A,m(’i)-tu,,(i)r). (B27)

K

{nu(1) 1 (3, up)

Thus, the gauge-invariant correlation function is

Cr{wu(i)}=(cos(2n D nu(I)(pu(€)>)GT{tw(I)}.

(1, n)

(B28)

In the gauge-theory picture, the line S,(¢), defining the path of the correlation function inthe 3-D X-Y model,

is just a line (tube) of external magnetic flux “injected” in the system by sources residing at the endpoints

of the path T. Here again the frustration field is constrained by the condition Aucpu(i): 0. (mod integer).
To write Eq. (B28) in terms of the topological excitations of the 3-D X-Y model, we use once again the

Poisson summation formula
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Zaltu@tclo.Dt=re T [ Toxem(2ni T (0.0 m 01x0)

{my (D)}~ = (i, w)
1 - - -~
X exp (— — 2 (A -ax.0)- tuv(l)]2> . (B29)
1 G, e
Expanding the square in the exponent we obtain
ZGT{tuu(;)} Cr {Wud)}
1 o4 +°° ot S 1 ~ ~
=Re ), exv(— =) tz,w(l)) J :Dx,.exp<z Ju(l)xu(l)) exp (— — 2 [A,x,01) - Avxu(l)]"’) , (B30)
{m, (1)) 2K, o - Tu 2K, un
where the current J,(i) is given by
- o > 1 >
J (1) =27i[@, (1) +m ,(i)] + P At (1) . , (B31)
. .

Since tu,,(~i) is an antisymmetric tensor, the last term in the current does not affect the ¢onstraint equation
(6.12)

A J,(G)=0. (6.12)
Hence, we obtain
1) i 1 T K R S N
Zorltullcelo,@-Re 3 ew(- L T ad)en(-5 P sded-na), (B32)
{m, (1) 2K (1, w0 T (Tw)(Ge)

where G'(i - 5) is the reduced Coulomb lattice propagator in three dimensions and the summation is re-
stricted to those configurations which obey Eq. (6.12).
After some algebra, Eq. (B32) takes the form

Celou@} _ (cos(i2y 5[0, +m 016l un A M. o (0,0} (B33)
Cr{eu()=0}  (cos(z23;,7m .G (1 = 7)€ unA IS, (i My 1. ()}
where the averages are taken in the gas of topological excitations with impurities (numerator) and without

impurities (denominator).
The spin-spin correlation function of the pure system is given by

- 1 P e (s = '
Crip.())=0}= Csw<005<§ 2 m DG (= 1)eundiS,(i )))t_ JPu(d)=0}. (B34)
1,7
The factor C,, is the spin-wave approximation to the correlation function

C,,=exp (_ ZLK 3 A8, ()G (i = 1)AsSy(j )), - (B35)

1,3

At large distances, C_, is given by

C,,~exp(1/471K R). (B36)
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