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Third-harmonic generation in dirty superconductors
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The third-harmonic response of a superconductor near its transition temperature to a weak electromagnetic
field is calculated, both in the gap and gapless regimes, including the effect of inelastic scattering of
electrons by the phonons. The response is related to the relaxation time of the order parameter in the
perturbed superconductor; it is shown that the temperature dependence of the relaxation time, depending on
the depairing strength, is changed as T, is approached from below.

I. INTRODUCTION

In a recent article, Amato and McLean' reported
a measurement of the order-parameter relaxation
time in a superconductor close to T, . The relaxa-
tion time describes. the return to equilibrium of a
superconductor disturbed by a fairly high-frequen-
cy field (e = 11 GHE), and is measured by observ-
ing the third-harmonic response of the supercon-
ductor. The theoretical basis for the experiment
was developed by Gorkov and Eliashberg. ' How-
ever, that theory was designed for gapless super-
conductors, while the experiment was carried on
a fairly dilute alloy. -Since expressions for the
third-harmonic response in this limit were not
available, the authors of Ref. 1 analyzed their
data on basis of the Gorkov-Eliashberg' theory,
which was modified to include some results of
Eliashberg, ' developed for the case of extremely
dilute alloys. With this modification, it was found
that the temperature dependence of the relaxation
time is (T, T) ' as —T approaches T, .

Here we derive expressions for the third-har-
monic response, which in the limits of high and
low concentrations of magnetic impurities, re-
spectively, yield the results of the Gorkov-Elia-
shberg and Eliashberg theories. We therefore
believe that the expressions presented here fill the

gap which has existed so far. We also include in
the calculation the effect of inelastic scattering of
the electrons by the phonons. The following results
are obtained: For gapless superconductors we re-
cover the Gorkov Elia-shberg' expression, in which
the relaxation time behaves as (T,—T) '. In the
case of dilute alloys (p«1, where p is the pair-
breaking parameter) we distinguish between two
cases: the gapless regime, which occurs close
to T„and the gap regime, dominating when the
order parameter & is such that 4& p2mT. In the
first case we find the (T,—T) behavior, while in
the second the temperature dependence of the re-
laxation time is (T,—T) '~'. We also find that
when the electronic life-time 7'~ due to inelastic

collisions with the phonons is such that 1 «4'rx/
T «~', where ~ is the Landau-Ginzburg parame-
ter, the relaxation time in the gap regime behaves
like 7'z [(T,—T)/T] '~' (for &/T» p).

The outline of the paper is as follows. In Sec.
II we exhibit the equations describing the nonsta-
tionary behavior of the order parameter, disturbed
from equilibrium by a frequency-dependent field.
Naturally, these equations include the electromag-
netic field. We therefore add to them an equation
resulting from the Mmrwell equations, which gives
the field behavior inside the superconductor. This
closes the set of equations needed for the solution
of the problem at hand. In the equation for the
field appears a term proportional to

in which A is the vector potential and 4(z, t) = b
+ &&,(Z, t), where 6, is the equilibrium value of the
order parameter. (The geometry of the problem
is described in Sec. II.) In the equations for the

variation of ~+y appears A'. We insert for it the
zero-order value of the field, namely, treat the
term in equation (1) as &'A(z, t). We therefore
find that &d, (z, t) is proportional to A'-e ""'.
This solution is inserted into the equation for A,
and as a result there appears a term e ~'"' in the
first-order correction to A. [See Eq. (1) j. This
is the origin of the third-harmonic response. In
Sec. III we analyze the frequency regime in which
&d, (z, t) follows the spatial variation of the field
and calculate the third-harmonic amplitude in the
cases mentioned above. From this, the relaxation
time of the order parameter is found.

II. GENERAL EQUATIONS

We consider a superconductor occupying the
half-space Z &0, on which a weak high-frequency
magnetic field is applied parallel to the surface.
Consequently, the superconducting order parame-
ter is disturbed from its equilibrium value. Our
aim is to study its response to the field at the
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vicinity of the transition temperature.
The general equations describing nonstationary

properties of a superconductor close to T, were
first derived by Gorkov and Eliashberg' and Elia-
shberg. ' They were rederived and analyzed by
Schmid and Schon' and us. ' (See specifically Ap-
pendixes A-C in Ref. 6.} It turns out that the equa-
tions for the order parameter, as well as those
for the charge and current densities, consist of
two parts. The first is the regular part, which,
as the external frequency tends to zero, goes over
to the corresponding static expression; e.g. , the
static Ginzburg-Landau equation. The second is
called the anomalous part and appears only below
T . Its origin is in the deviation from equilibrium
of the quasiparticle distribution function, and hence
it is sensitive to the deta, ils of the energy spec-
trum.

In the present problem, &(Z, f) can be chosen
to be real. ' The nonstationary Ginzburg-Landau
equation for 4(Z, t) in the dirty limit, is (see Refs.
2-6),

—'+D" "DA'(Z f)
4mT Bt 9Z c

+ c(, P, b'(Z—, f) A(Z, f) +4'(Z, t) = 0.

(We use dimensions in which R =As = 1.) The follow-
ing notation has been introduced in (2): The de-
pairing parameter is p, and it enters in the poly-
gamma functions g'"'(x). It contains the conduc-
tion electron spin-flip time 7, due to collision with
magnetic impurities, and the time 7'~ due to inel-
astic scattering with the phonons

p = (I/2vT) (I/v', + I/2rs)

The diffusion coefficient is D= m3~v„where vz is
the velocity at Fermi surface and 7', is the poten-
tial scattering time. In the dirty limit, T7, «1.
The vector potential is A and

where E=I(A, T, p). This quantity is calculated in
the. Appendix. The results depend on whether there
is a gap in the excitation spectrum or the gap is
smeared out by the pair breakers.

To close the set of Eqs. (2) and (5), we need an
equation describing the variation of A(Z, t) inside
the superconductor. This will be derived now.

In the case of a neutral superconductor (in which
the charge density vanishes), the current density
is given by (see Refs. 2-6).

j = E- ' —a'(Z t)X
2+T c (6)

Here E is the electric field, o=Ne'v, /m =2M'N(0),
where N is the electron concentration, and N(0} is
the density of states at Fermi surface. Now, from
the Maxwell equations, j =(c/4x) VXA, where' is
the magnetic field. In the present problem, in
which the superconductor occupies the half space
Z&0 and the magnetic field is parallel to it, the
vector potential can be chosen to be parallel to the
interface too. Moreover, it depends only on the
coordinate Z. Hence, in the gauge in which the
scalar potential vanishes, Eq. (6) yields

8' 4vg 8A(Z, f)

Here the relation E = —(1/e)(8A/8t) was used. The
last term on the right-hand side is the origin of
the third harmonic [see the discussion after Eq.
(1)].

From (7) it is seen that the zero-order value of
A [i.e. , when in the last term &'(Z, f) is replaced
by the equilibrium value &'], decays into the su-
perconductor according to the law'

namely, the collision integral is replaced by I/vx.
Consequently, one obtains

8 82 1 a——D + —4'(Z t) =-I —&'(Z f)

(xo= [(&,—2')/&, ] [1—P4'(2+P)],

[I/(«~-)' ] [0"(2+p) + s p(j "(2 + p) ] .

(4a)

(4b)

A(Z f) =A e

Note that P, is positive and that at equilibrium
&'= c(,/P,

The last term on the left-hand side of (2) is the
anomalous term. Explicitly, (see Refs. 5 and 6),
it is given by a certain energy integral of the de-
viation of the quasiparticle distribution from equil-
ibrium. This deviation obeys a Boltzman-type
equation, which includes a collision integral due
to inelastic scattering by the phonons. Here we
treat it in a single relaxation-time approximation, (u, = [y'( ,'+p)/vr]n. '. - (9)

Here 68 is the normal skin depth for a metal in the
normal state and ~~ is the London penetration
depth. At low frequencies the penetration of the
field is determined by ~~, while at high frequen-
cies, the normal skin depth pertains. The fre-
quency which separates the two regions and deter-
mines the low-frequency behavior of the field is
(do )
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For gapless superconductors, p»1, and 2k a+k, a, + 4,a, =0, (16a)

e, = n'/w Tp = 2b'Te, (1Oa)

which is the Gorkov-Eliashberg' result. (Note that
in Ref. 2, vs was omitted. ) For p«1, we have

(u, =(wa'/2T) [1+(2p/v')P"(2) ].
8ince g "(2) is negative, a small amount of pair
breakers reduces ~, compared to its value for
p=o. In any case &u, is given by N /e'er„where
N~ is the "super-electron" concentration.

We now insert the zero-order value of A [Eq.
(8) ] into Eqs. (2) and (5), to solve 4(Z, t). Denot-
ing 4(Z, t) = &+ &&,(Z, t), and linearizing these
equations, we obtain

(lob)

(- —+D, ~M, -(—) DA'6

—2po 6254, +@=0, (11a)

8 9' 1 8——D 2+ —g = —2fb —6n~ .
et aZ' 7., W

(11b)

The solution of Eq. (11) must obey the boundary
conditions"' at Z =0, namely, (S&4,/8Z)e, =o,
(84/BZ)e, =0. After a straightforward, although
cumbersome, calculation, one obtains the follow-
ing solution:

&b (Z t) =e ""'(ae" + a e "~ +a e Re) (12)

in which k is given by (8b) and k„k, depend on &u.

They are given by

+ n L

(k.6 )'„5
(dO 2 IP 2 (d07'& (do 2

n= 1,2, (13)
where v, 2, and y are dimensionless quantities:

(14a)

—k 4
& ~

+ (2k 5~)'2ka = —6~2(k', a, + k,'a, ).H, &~)
(16b)

(Z f) —e- l&u (& e0( w)z+& e k(rv)z +& Let(&a&+k&(~)lz
]. 3 4 5

+& era(a&)+g(ru)12) (17)

The coefficients a„a„and a, are given in terms
of the coefficients a, a„and a„

([3k(&u) ]' —k'(3 &o)}a,= (2A,/0 &~)a, (18a)

([k(&u)+k, (w) ]' —k'(3+)]a, = (2A, /h&~)a, , (18b)

([k(~)+k, (u&) ]' —k'(3~))a, = (2A, /nP~) g, . (18c)

The coefficient a, cannot be found from (7). It is
determined by the boundary conditions on the field.
Now consider the case' in which the electric field
E, = —(1/c)(8/Bt)A, vanishes at the surface Z = 0.
We then find thai the third-harmonic component
of the magnetic field at Z =0 is

H, (Z=O, f) =(2Agn6,")e ""'
1 1

3k(&u)+k(3~) 'k(&u)+k, (Id)+k(3')

1
'k(&u)+k, (~) +k(3~) (19)

where (18) has been used. The amplitude of
H, (Z = 0, f) is the quantity measured in the experi-
ment. ' In Sec. III we study it in detail.

Here H, is the temperature-dependent thermody-
namic critical field.

The expression (12) for 66,(Z, t) is now inserted
into Eq. (7), for the field, and a first-order cor-
rection to A is found. This is done by linearizing
the last term on the right-hand side of (7), &'(2, t)A
= 6'A+24A66, (Z, f). Using Eqs. (8) and (12), the
first-order correction to the vector potential is

(14b)

(14c)

(6~H (do 2lP 2(doT @
(15a)

The last quantity z is the Landau-Qinzburg para-
meter. The coefficients a, a„and a, are given by

III. THIRD-HARMONIC RESPONSE

Here we investigate the frequency regimes in
which the third-harmonic measurement can be
used to study the relaxation time of the order para-
meter. We are interested in the case where the
field penetration is determined by the Meissner
effect, i.e., when [from Eqs. (8) and (9) ]

(d ( (do . (20)

(2k6~)' y . ~ vx iy —+ 2
— —i@——, 15b

COO 2 K 2%07@ (do 2

Next we turn to study the spatial behavior of the
order parameter, given in Eqs. (12)-(16). From
Eq. (12) it is seen that &n, will follow the spatial
variation of the field when the last two terms on
the right-hand side of (12) are negligible compared
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to the first term. To find the frequency regime in
which this behavior occurs, we proceed as follows.
Equation (13) yields that the low-frequency region
of ~4, , is at frequencies such that an additional re-

quirement is satisfied:

vy(&u/&u, ) & —,'(1- y/2u&, rz)' .

%hen these conditions hold, one obtains

(21)

(k, &~)'= 28,
(d p

(k, 5~)' = 28 —i y ——iy ——
~, 2 &- yi2id, r, )'

(22)

(23)

~ v y 'l . ~ (2k& )' yk,a, =-2ka 1+ iy —— 1 — iy —+
(do 2 2QPot& j (do 2K 2(dot& j~

(24a)

k,a. =2ka ~y —
)
I—-

~(
&y —+ (2k ~,)'

0 2 I, 207'~] ( 0 2' 2or~ j (24b)

Using condition (20), which insures that (k&~)'- I,
together with the requirement (21), one can check
that as long as

I

hand, y [see Eqs. (4) and (14)] is of the order 1
both for p«1 and p»1:

2 coo'rs j I, (do 2 (do 7'@ 2 /P j
(25)

p» 1.

[w'/14'(3) ], p «1

12 (29)

a 21, (26)

then the a„a terms in expression (12) for &4, are
negligible compared to the a term. Namely, con-
ditions (21), (25), and (26) determine the frequency
region in which the order parameter follows spa-
tially the field. In this region, the third-harmonic
component takes the form

)
Ho /220

s5,' k'((o)[3+k(3(u)/k(&u)]
' (27)

where a is given in (15) and H, denotes the ampli-
tude of the applied magnetic field.

To proceed, one needs to know the values of the
parameters v and y appearing in (2V), which de-
pend on the pair-breaking parameter p [see Eqs.
(14) ]. In the Appendix we calculate v in three
limiting cases:

(i) gap regime, 4» p2vT,

v = [2&'/7f(3) l(T/&), (28a)

in which f(3) is the Rieman g function;
(ii) gapless regime, 6 «p2m T, p «1, which oc-

curs in dilute alloys close enough to T„

v = [v'/14&(3) ](1/p) .

(iii) gapless superconductors, p»1,

(28b)

v —4/p2 (28c)

In the first two cases v»1 while for gapless super-
conductors, v is negligibly small. Qn the other

The fact that v is large in dilute alloys and very
small in gapless superconductors leads to a cru-
cial difference between the two types of materials.
In gapless superconductors, condition (21), which
marks the low-frequency behavior of the order
parameter, is automatically satisfied. As a re-
sult, there is only one characteristic frequency
in the system, namely, ~, . In this case we re-
cover for H, (Z =0) the Gorkov-Eliashberg' result

c L

~(. &o (2k &~)'
(3o)

(Note that in Ref. 2, (2k&~)'/28 was neglected com-
pared to 1.) This yields that the relaxation time
of the order parameter in gapless superconductors
is (4'r~) ' -On the o. ther hand, in the cases where
v»1, the low-frequency behavior of ~4, is marked
by a frequency ~, which is much smaller than (d, .
From (21) and (24), we have

(n/T)wo, gap regime
&g —&o/yv-

peo, gapless regime (p« 1).

(31)

[Here we have assumed y/2&v, A+ 41, a condition
probably satisfied in the experiment' (see discus-
sion below). ] Note the difference in the tempera-
ture dependence in the two cases: In the gap re-
gime u&,

- (T,—T)'j', in the gapless regime (closer
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to T,) &u, -T,—T For v»1 the third-harmonic amplitude becomes

4 H k(~) /) l( ai 2z' (y(v/w )+ [(2kk~) /2y']- (y/2|d y }1(I

The third-harmonic output power is given by'

P (d [~ff,(Z =0) (/~ j'p(3(4))
(
]',

(32a)

(32b)

where the constant of proportionality is determined by the experimental apparatus parameters. Equa-
tion (32b) is depicted in Fig. 1 for p = 0, 1, and 10. To draw the figure, we have denoted &u/e, =c,/
(1- T/T, ), where

This yields a&/4vT, =0.03, 0.03, and 0.003 for p=0, 1, and 10, respectively. As the ratio (d/4wT,
is decreased, the peak moves towards T/T, = 1 and becomes narrower. In three cases depicted in

Fig. 1 c,=0.03, 0.04, and 0.03 for p=0, 1, and 10, respectively.
To study the conse(luences of expression (32), we approximate in it k(u&)5~-1. Then, using (21)

and (25) it becomes

If0 2 (y&u/&o,)', (2/tP) —(y/2(d, rH)
16H', lP —1+ (2/4*) (2/8) —(y/2 y )'td+ (ytdy/v )' } (33)

We can distinguish here between two cases. (i)
2/x'& y/2(d, rs, Pv&4. In this case the phonon
inelastic scattering time is omitted and as a re-
sult the relaxation time of the order parameter is

a T//kk(d„gap regime
y~K
4 coo x'/~, , gapless regime

(34)

This result, for the gapless regime, was used in
Ref. 1 for analyzing the experimental data. The
temperature dependence of the relaxation time is
again different in the two regions. (ii) 2/((."&y/
2 cop7 @ In this case r~ plays an important role, and
the relaxation time is vv'~. This does not depend
on the temperature in the gapless regime, but in
the gap regime it becomes 2v'T7s/7$(3)b. , with
temperature dependence (T,—T) ' '. It is interest-
ing to note that it is the same result obtained in
Ref. 5 for the decay time of the order parameter
in the longitudinal mode. The longitudinal mode
is associated with fluctuations in the order para-
meter amplitude, i.e., the fluctuations caused by
the field in the present case. Note that this result
is reached close to T„where ~, becomes small
(but there is still a gap in the excitation spectrum).
As coo is the upper limit on the frequency, this
region might be difficult to attain experimentally.

limit and included in the calculations pair-break-
ing effect and inelastic scattering of the electrons
by the phonons.

It was found that depending on the strength of the
depairing parameter, there are two characteris-
tic frequencies in this problem. This first, e„
marks the low-frequency behavior of the field,
i.e. , the region in which the field penetrattion is
determined by the Meissner effect. This frequency
is -n.'/T for small values of p, and &'7~ in gapless

II7—

IV. DISCUSSION 8750 09I7 I 000

An expression for the third-harmonic amplitude,
generated in a superconductor by a weak magnetic
field, was derived. We have operated in the dirty

TrT,
FIG. 1. Third-harmonic output power in arbitrary

units. Here k = 50, ~vz = 10 and co/4&T~ = 0.03, 0.03,
and 0.003 for p= 0, 1, and 10, respectively.
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superconductors (p»1). The second, &u, deter-
mines the low-frequency behavior of the deviation
of the order parameter from equilibrium. In gap-
less superconductors, it turns out that 4)0 Gdy.

For p&& 1, my+(430 Summarizing, we have

gap regime,

Q2
&u,

——(p), gapless regime (p«1),

and ea „&„„arethe retarded (advanced) energy
and order parameter "dressed" by the various
scattering mechanisms. '~

In the gap regime, 4»p2wT,

I~I
~2 (e2 g2)1/2 s Pl (e2 ~2)1/2 (A3)

The important contribution to the integral in (A1}
comes from c =4, and thus we may approximate
cosh'e/2T by 1 and obtain

Q2
&u,

——(p '), gapless super conductors (p» 1). I= K/8T (A4)

In all three cases E'/T is reduced by a small fac-
tor. These frequencies are quite important, since
the amplitude of the measured effect (third-har-
monic power output) is proportional to the fre-
quency.

The inclusion of the inelastic phonon scattering
time r~ leads to an interesting result. We have
assumed throughout the calculation that ~,v'~ »1.
This is quite plausible, since the frequency used
in the experiment' is -10"Hz. But we have found
that for (d07'~ &z', which may occur for large val-
ues of the Landau-Ginzburg parameter, and close
enough to T„ the relaxation time of the order para-
meter is -raT/& This m. ay be used to extract
explicit value for v~.

When &«p2mT,

e'+ (2n T}'''
and as a result

(A5)

I=( ),
—I)"(g+P}+g"(2+P}

477T p
(A6)

I= (+/(4 T ) ] l. 0 ( + P)/P ] (A'7)

and for gapless superconductors, p»1,

In the gapless regime of dilute alloys (P «1), this
yields
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Inserting the values of I into Eq. (14c) for t/ and
using Eq. (4b), we find

APPENDIX: CALCULATION OF I

From the theory for nonstationary superconduc-
tors (see Refs. 2-6), it is found that

g 21 2g'T
v =

8T ~ p =7~(3}~, gap regime,

in which g is Rieman zeta furiction;

(A9)

1 - de 1 P'(e)
24T 4wi cosh'(e/2T) p, (e) '

in which

2 2 2
R& RA RA

(Al)

(A2)

0'(a+p) 2
(4n'T)' p hP, 14$(3) p

'

gapless regime, p «1, (A10)

2 2 4
(4vT}' 3p' APo p' '

gapless superconductors, p» 1. (All)
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