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Superconducting phase transitions in rare-earth compounds

S. Maekawa and M. Tachiki
The Research Institute for Iron, Steel, and Other Metals, Tohoku University, Sendai, 980 Japan

{Received 27 February 1978)

The superconducting transition temperature T, and the upper critical field II,2 in the rare-earth {R)
compounds R„Mo6SS, R„Mo6Ses, and RRh484, are theoretically studied within a model in which the
superelectrons mainly originate from the 4d electrons of Mo and Rh atoms. The fluctuation of local spins inside
a Cooper pair weakens the BCS coupling. Thus, the quantities T, and H„are strongly influenced by the
fluctuation. These quantities are obtained as functions of the intra- and interatomic exchange interactions
and the concentration of the spins. The theoretical results explain the existence of the upper and lower
superconducting transition temperatures T,&

and T„ in ErRh484 and Ho&2Mo6SS, and the concentration
dependence of T, in La&„6d Mo6Ses and Sn, ,(, „&Eu„Mo635SS. The suppression of the spin fluctuation by
application of a magnetic field causes an increase of the BCS coupling. In calculating H„, this fact is taken
into account as well as the spin splitting of conduction bands and spin-orbit scattering. Our theory explains
the anomalous behavior of the temperature dependence of H„observed in Sn, 2&, „)Eu„Mo635SS It is proposed
that in certain compounds a superconducting state may appear only in the presence of a magnetic field.

I. INTRODUCTION

The interplay of superconductivity and magnetism
has attracted the attention of many solid state phy-
sicists. ~"4 The effect of a single magnetic impur-
ity on the superconductivity has been well under-
stood. 3'4 However, the effect of highly concen-
trated or stoichiometic magnetic ions on the super-
conductivity is still open to question in spite of
considerable research efforts. '2 This is partly
because there existed no stoichiometric compound
suitable for studying this problem.

The recent discovery of the superconducting
compounds RRh4B4 (Ref. 5) and RMo6XS, R being
rare-earth ions and X being S (see Ref. 6) or Se
(see Ref. 7), has brought about an amazing number
of examples concerning the problem. Supercon-
ductivity in ' ErRh4B4 and Ho& 2Mo6S8 is quenched
by a magnetic-ordering transition and, thus, these
compounds provide the first examples of supercon-
duc ting- to- magnetic phase transition. However,
superconductivity in Tb& 2Mo6S8, Dy&. 2Mo688, and
Er& 2Mo6S8 is quenched by a magnetic-ordering
transition only under a magnetic field. " It is also
surprising that some of these compounds such as
Pbod0 2Mo6S8, ' La'0 8Eu0o2Mo6Se8 and Sn& 2 « „&

12p13

Eu Mo6 35S8,
' '3 are ultra-high-field superconduc-

tors; the upper critical field H, 2 of these com-
pounds is much higher than 300 kG. Particularly
interesting is the temperature and Eu-concentra-
tion dependence of H, 2 in Sn& 2&&,&Eu„Mo6. 3588.

' '
With increasing Eu concentration, H, 2 at absolute
zero increases although the superconducting tran-
sition temperature T, decreases. Furthermore,
the H-, 2 temperature dependence of the compounds
with a considerable amount of Eu ions is quite dif-
ferent from that of usual superconductors. The

objective of this paper is to study theoretically the
magnetic and superconducting properties of the
above rare-earth compounds. %e discuss the
effects of magnetic ions on T, and H,2, taking into
account the collective nature of the motion of local
spins.

As is well known, an impurity spin acts on a
Cooper pair as a pair breaker and suppresses T,.'5
In calculating T„elastic scattering of electrons
due to a local spin is assumed by taking the local
spin as a static potential. At very low tempera-
tures, the quantum motion of a local spin is intro-
duced to take into account the Kondo effect. ~ In our
systems with highly concentrated or stoichiometric
magnetic ions, however, the spins are coupled
among themselves through the exchange interac-
tion. Thus, there exists collective motion of spins
even in the paramagnetic phases. . Therefore, one
must take into account the inelastic scattering of
electrons due to the spins.

In Sec. II, we propose a model Hamiltonian suit-
able for our compounds. In Sec. III, the effect of
local spins in the paramagnetic phases of both
ferromagnets and antiferromagnets on T, is
studied. The weak-coupling-limit condition for
spins is investigated. In this limit, the effective
BCS coupling constant is expressed as a function
of the staggered spin susceptibilities. Our theo-
retical study shows that the superconducting elec-
trons are different from electrons which contri-
bute to the exchange interaction between local
spins. The rare-earth ions in the compounds
BMo+, can easily be substituted by nonmagnetic
ions such as La and Sn. In Sec. IV, we calculate
the dependence of T, on the concentration of mag-
netic ions in ferromagnets and antiferromagnets,
extending the effective-Hamiltonian method of spin
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statistics proposed by Oguchi et al. ' ' The ex-
perimental results on T, for La, „Gd„MoeSe8,'8 and
Sn&.2~~ „~Eu„Moe.»S8, ' ' are analyzed, and the de-
pendence of 7.', on the concentration of the magnet-
ic ions in ErHh484 and Ho&. ,Mo6SS is predicted.

In a magnetic field, local spins are polarized,
and the up- and down-spin bands of the conduction
electrons are split. Furthermore, the orbital
motion of electrons (the Meissner term) is modi-
fied by the spin polarization. These effects are
easily included in the usual formulation for type-II
superconductors. '9' It is also important to con-
sider the spin fluctuations in a, magnetic field.
The magnetic field suppresses the spin fluctuations
so that the effective electron-electron interaction,
which has been reduced by the spin fluctuations
from the BCS interaction, increases. In Sec. V,
H, 2 is determined as the resultant of the interplay
of the following terms: the field-dependent term
of the effective BCS interaction, the Meissner
term, and the spin splitting of the bands. In Sec.
VI, the numerical results of various H, 2 versus
temperature T curves are shown, limited to ultra;
high-field superconductors. The theoretical re-
sults contained in the H,2-vs-T curves qualitatively
explain the experimental results observed by
Fischer et al. ' '" in Sn, 2~, &Eu,Mo6. »S8. A quan-
titative comparison as well as results for H, 2 in
low- or moderate-field superconductors will be
given in a separate paper.

II. MODEL

X —$CO +Xep +KCf +Xff e (2. l)

The Hamiltonian for the superconducting electrons
is written

interaction I. Since the overlap integral of the
wave function of the 4d electrons of a Mo atom
with the 4f spin of a rare-earth ion is very small,
it is expected that the interaction I is extremely
weak compared with that between the 5d and Gs

electrons and the 4f spins of a rare-earth ion.
Therefore, the contribution of the superconducting
electrons to the indirect interaction between local
spins may be neglected. Actually, we will show
in Sec. III that a superconducting state should not
exist in the compounds at any temperature if the
magnetic ordering were caused by the indirect
interaction only through the superconducting elec-
trons.

The ternary rare-earth rhodium borides RRh4B4
have a tetragonal crystal structure, and the rare-
earth ions form a body-centered-tetragonal lat-
tice. 26 For these compounds we have no precise
information about the electronic state as found in
the sulfides. 2' However, these compounds may
also be described from the same view point as
RMo6XS, because of the similarity of properties
between RRh484 (Ref. 8) and RMo, X, (Ref. 28).

In the rest of this section the model Hamiltonian
for these systems is constructed. k& —5 =c = 1
is used. Neglecting the anisotropy of the crystal,
we write the Hamiltonian as

The ternary rare-earth molybdenum chalcogen-
ides (XM or Se) have a rhombohedral crystal
structure of a distorted CsCl type with a MoGX&

cluster on the corner and a rare-earth ion on the
center. It has been experimentally concluded that
the superconducting electrons of the sulfides are
the 4d electrons of Mo atoms. '2'3 Although such
a conclusion has not been obtained in the selen-
ides, the similarity between the sulfides and the
selenides suggests that the same conclusion holds
for the selenides. The local 4f spins of the rare
earth ions are coupled through the exchange in-
teraction. Since the local spins form a primitive
lattice, it is possible for them to order magnetic-
ally with a single wave number Q. 24 The exchange
interaction between the local spins originates from
the superexchange mechanism 5 and from the in-
direct interaction through the conduction electrons
(the Ruderman-Kittel-Kasuya- Yosida interaction).
It is considered that the indirect interaction oc-
curs through the 5d and 6s electron bands of the
rare-earth ions which have large wave-function
overlap integrals with the 4f electrons. The su-
perconducting 4d electrons of Mo atoms also in-
teract with the loca1. spins through the exchange

+ i(s jt d3x H(x)[gt(x)g, (x) —$~(x)g, (x)], (2. 2)

where nz is the electron effective mass, A is the
vector potential, p. is the chemical potential, p. &

is the Bohr magneton, H(x) is the magnetic field
whose direction is parallel to the z direction, and

P,(x} is the electron field with spin o. The elec-
tron-electron Coulomb interaction will not ex-
plicitly be considered. The Hamiltonian X,& is
the electron-phonon interaction given by

X,~=+ d'x
)
d'x'C(x-x')P', (x)g,(x)P(x'), (2. 3)

fy

where C(x —x'} is the electron-phonon interaction
potential and Q(x) is the phonon field. The free-
phonon Hamiltonian is not written explicitly. In
the next sections, the weak-coupling limit will be
taken. - However, in order to clarify the effect of
local spins on superconductivity it is useful to
start our study from the more general viewpoint.
The Hamiltonian 3C,& is that of the local spin and
electron interaction, and $C&& is for the local spins:
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xe,e=-dg fd'x x(R, — )X{ [d[d'(x)d(x), -dl(x)d(x)l

+Sfgt(x}g, (x}

+S,gt(x)g, (x)J, (2. 4)

8Kff ~ Jg)Sf S +gJp+H (2. 5)

Here, the exchange interaction constant I may
have either sign. S& and g& are the spin and total
angular momenta of the rare-earth ion at the site
R&, respectively, and are related to each other by
S, =(gd—1)„Jq, gJ being the Lande g factor. J',

z is
the exchange interaction constant. We note that
in our compounds RMo6XS and RRh4B4, J~& is not
a function of I. The rare-earth ions except Gd3'

and Eu ' have large magnetic-anjsotropy energies
because they have orbital angular momenta. How-
ever, we will not write them explicitly.

The compounds which we are concerned with
belong between dirty superconductors. There-
fore, spin-flip scattering of the conduction elec-
trons due to the spin-orbit interaction as well as
non-spin-flip scattering are crucial to describe
the superconductivity. These scattering effects
will be taken into account later.

III. SUPERCONDUCTING TRANSITION TEMPERATURES

In this section, the superconducting transition
temperature T, is studied. Several authors
have extended the Abrikosov and Gorkov theory'5
to include the effect of spatial correlation between
impurity spins. In their theories, impurity spins
are assumed to exert static potentials on elec-
trons. In our system with highly concentrated or
stoichiometric magnetic ions, however, the spins
behave just like a Bose system because they are
strongly correlated through the exchange inter-

action. As a resuj. t, the electrons are inelastic-
ally scattered by the spins and exchange their en-
ergies and momenta with the spins. 3'3 ' Several
authors have also proposed indirect coupling
between conduction electrons owing to virtual ex-
citation of the spins in magnetically ordered states.
However, in the paramagnetic phases which we
are interested in, the motion of local spins is of
damping form because of the thermal effect. 3 '

Therefore, we extend the previous theories in the
following way.

To set up the generalized Gorkov equations when
local spins are included, we first introduce the
following Green's functions:

G...(x&, x'7') =- (Tgg, (x, v )Pt(x', r')]),

I".. .(x&, x'&'} = &T.[-P'.( x&)0' (x', ~')]&,

E'...(x~, x'v') = —(T,[g,(x, r) I](x)', r')]),

L) (x~, x'~') =- (T,[P(x, ~)P(x', ~')]),

X"(R{r,Rgr'} = (T,[Sf(~)Sf(r') J),

X '(R)'r, R~~') = &T,IS,(7')SJ(r') J&

(3 1)

where the spin Green's functions are defined by
using the fluctuating parts of the spins; Sf —&$,)
with (S,) being the polarization of a local spin due

a magnetjc fjeld. ' Here, v' js the jmagjnary
time, T, is the time-ordering operator, and (A)
denotes the thermal average of A. taken in the
exact state; (A) = TrAe ~/Tre ~ and P =1/T. The
spin Green's functions have opposite signs from
the others so that they are related to the spin
susceptibilities. Using Hamiltonian (2. 1}, the
differential Green's-function equations are ob-
tained as

+I g 5(R, —x)/(T, [S;(7')g, (x, r) g, (x', 7')])

(3.2)

[x.+ (ed(x)]' —)l, d.„(xe,x'e') =fd'x, C (x- x, ) (x[ (dx„)e(dx, e)d', (x e')])',
a7- 2m

+I+ 5(R —x)((TQS (v)tg(x, &}g~(x', r')])

where

—(T,[S((v)g(x, &)(t (x', 7')J)), (3. 3)
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c being the magnetic-ion concentration and B the magnetic induction. The electron-phonon (multiparticle)
Green's function in Eq. (3. 2) is calculated as

8

( Tgy(x„~) q &( x&~)g(x'
&
~')])=- dr, ~ d x2 l d x 3 C(x 2- x~) D( x» x2:r —~,)E'»(x&x 3:r - r, )

0

X+&&(X3& x,7) 7 ) + ~ ~ ~ (3. 5)

where the dots denote the term which contributes to the normal self-energy. The Green's functions on the
right-hand side of Eq. (3. 5) are determined self-consistently. On the other hand, the spin-electron
Green s functions in Eq. (3.2} are calculated up to first order of the electron-spin interaction as

8

(T,[Sf(7)g&(x& v)g, (x'& r')) =I Q d'x, dv, 6(R~-x, )X"(R„R~:7—r, )E»(x&x,:r r, )-E»(x„x'.~, —7') + ~ ~ ~,
Jf 0

(3.6)
8

(T~[Sf(1)4&(x& 7)if)&(x &
T )])=I g d x, d7', 5(R& —x, )X '(R„R& 7' T'.()E—»(x(& x:T( —7)E»(x(& x'7'( —7' ) + ~ ~ ~ .

0

(3. 7)

Here, the dots in Eqs. (3.6} and (3. 7) denote the terms which contribute to the normal self-energy. When
the order parameter is defined as

A(x& xf 6») =—T I d x2 ' d x) C(x —x&)C(x& —x2)D(x3& x2:O'6 6g)

2+I 6(Rg x)5{RJ x1) [X (R) Ry&:En —6)}+X (Rl&RJ En+el)] F»{x&x1El )&' (3.8)

Eqs. (3.2) and (3.3) are rewritten

ie„+ P„-ieA(x)] + p, , —Z, (x, x':e„) G„(x,x':e„)+ d x& &(x, x&.e„)E„{x&,x'x„)= 5(x- x'),~ ~

2yrL
(3.9)

(3.10)

where Z, (x, x'.e„}is the integral operator for the normal self-energy with spin o, and e„and e, are the
imaginary frequencies defined as e„=2vT(n+ —,') and e, =2vT(l +~}with n and / integers. Here, the rela-
tion E„(x„x:e„)=E„(x,x, :e„)was used. Contrary to the usual Gorkov equations, ' ' the order parameter
is nonlocal in space. This nonlocality originates from the fact -that the spin fluctuations as well as the
phonons are of long range in space. The parameter &(x, x':e„) corresponds to the wave function of a

~Qx

Cooper pair, and x and x' are the coordinates of the electrons constructing a Cooper pair. As seen in
Eq. (3.8), the spin fluctuations inside a Cooper pair act on electrons as an effective interaction.

In this section we neglect for simplicity the terms involving the vector potential. Then, the electronic
Green's functions recover the translational symmetry. By using the Fourier coefficients of the functions,
we find

&(k ~.)=TZ 2 [IC(q)l'D(q ~ &t)+I'x (q&&n & )+(I'x (q & El)]
l q

-(&&(k- q, e, }
-].~~)+ 4~&(~s)][&(—4a.,&(-~s)]+~~(k- q&~)) ~' (3.11}

5~ ——No' g S, exp(iq. R&). (3.12)

In Eq. (3.11), (&„(e„)is the normal electron energy

where C(q) is the Fourier transform of the elec-
tron-phonon interaction. In deriving Eq. (3.11) we
used

including the self-energy Z, (k, e„) with momentum
k and spin o. The energy is measured from the
Fermi energy. Equation (3.11}is essentially the
same as that for the paramagnon system " 2 if the
electron-spin interaction I and the spin Green's
functions are replaced by the short-ranged elec-
tron-electron interaction U0 and the paramagnon
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propagators, '3 respectively.
Equation (3.11) depends on the phonon and spin

Green's functions so that it belongs to the strong-
coupling system. 3 In the following, we consider
the weak-coupling condition. The phonon Green's
function is written 3

(3.13)

where v, is the phonon energy and e„=2mT v, v being
integer. The parameter 4(k, e„) with le„l «(dD,
is finite below T„coL) being the phonon Debye
energy. In the weak-coupling limit (T, «(dD), re-
placing the phonon energy (u by uD and taking
(e„—e, } to be zero because e„-e, l «&d» the pho-
non- mediated electron-electron interaction in Eq.
(3.11) is substituted with the BCS interaction gaea
as

—l&(q) I'D(q ~.-~})= l&(q) I'(2/(dD) gac~ ~

The spin Green's functions in the paramagnetic
state are of damping-type and are written33

press the BCS interaction because the sign of the
terms is opposite to that of the BCS term. We
assume that the BCS interaction is usually stronger
than the interaction due to the spin fluctuations.
Therefore, the summation in Eq. (3. 16) is taken
over le, l

«dn and the prime on the summation in
Eq. (3.16) indicates this restriction. The elec-
trons which contribute to superconductivity are
restricted to those near the Fermi surface. Since
both the incident electron and the electron scat-
tered by the spin fluctuation should be near the
Fermi surface, the equation to determine T, is
given from Eq. (3.16) by

(3.17)

g«, ——gsc8 —— d(cosa) X" 2k~qsin-

8
+X 2kzq sin

2

(3. 18)

,.(- )
i (- )

x(q)r(q. )

r(q)+ le„l
(3.14) where 8 is the scattering angle, q is the unit vector

in the direction k- p, and N(0) is the density of
states at the Fermi level in the normal state.

where the anisotropy of the spin fluctuations was
neglected, for simplicity. Here, X(q} is the static
spin susceptibility which is defined to be the stag-
gered susceptibility measured in units of (gz —1)
x (g~ p,s}', and I'(q) is the damping constant. Re-
ferring to the case of the phonon-mediated inter-
action, the weak-coupling treatment for the spin-
mediated electron- electron interaction requires
that T,«(r}qwith certain q values. The damping
constant I'(q) is conventionally expressed as2'22

A. Ferromagnets

When we define the Fourier transform of the ex-
change interaction given in Eq. (2. 5) as

(3. 19)

the staggered susceptibility in mean-field theo-
ry, ' is written

r(q) =pa, /x(q), (3. iS) x(q) =x"(q) =kx '(q) =~0/(~ —& ), (3.20)

where Bp is a constant dependent on the magnetic
materials but independent of temperature. Al-
though we have no information on I'(q) in the com-
pounds which we are concerned with, we assume
that the condition T, « I'(q) holds. Since our study
is restricted to the weak-coupling limit for both
the electron-phonon and the electron-spin inter-
actions, we may also neglect the normal self-
energy due to both phonon and spin fluctuations.

In the weak-coupling limit without magnetic field,
Eq. (3. 11) is written

with

Tq —2Cp Jq,

C, =-,'cS(S+1),

(3.21)

(3. 22)

c being the magnetic-ion concentration. In ferro-
magnets with magnetic-phase-transition tempera-
ture T~ equal to Tp the spin fluctuations with
small momenta are dominant so that x(q) may be
written

~(k}=T Z 'Z lgacs -I'X"(q}-I'X '(q}l

~(k- q) . (3. i6)
e2, + )~2, + l&(k- q)12

x(q) =&0/(~ —~~+&e') (3.23)

(3.24)

As seen in Eq. (3.16) the spin fluctuations sup- Inserting Eq. (3.23) into Eq. (3.18), we obtain
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Tc =1~ 14coa exp 1 gscs N 0
3COI III(0)

p

x T —T~+'~~a

(3. 25)

Since the value of k& may be of the order of the in-
verse of the lattice constant, Eq. (3.25} is ap-
proximated by

3I N(0}T, =1.14@)zexp -1 gscs & 0 —--
0

(3. 26)

The numerical calculation shows that T, deter-
mined from Eq. (3. 25} is well approximated by
that from Eq. (3.26}. As seen in Eq. (3.26}, T,
decreases with increasing T„arid I when T, & T„.
The relation between T, and T~ obtained from Eq.
(3.26) is plotted in Fig. 1 for four values of 3I'/
2Jog~cs the parameter T,o is the superconducting
transition temperature of the system without local
spin and is given by

spin-singlet state in a Cooper pair. This fact is
not restricted to ferromagnets. In See. IDB, T,
in antiferromagnets is discussed.

B. Antifcrromalnets

As seen in Eq. (3.18), the spin fluctuations which
weaken the BCS coupling depend on the Fermi wave
number. When we define the wave number Q which
specifies the magnetic state below T„, the spin
fluctuations around Q are dominant. When Q is
much smaller than 2k&, the spin fluctuations
around Q contribute effectively in Eq. (3.18) so
that the result is similar to that in ferromagnets,
as discussed above. When Q is much larger than
2k~, the spin fluctuations around Q do not contri-
bute to the effective interaction in Eq. (3.18) be-
cause the fluctuations around Q cannot scatter elec-
trons on the Fermi surface. In this ca.se, the mo-
mentum of the spin fluctuations included in Eq.
(3.18) is much smaller than Q so that we may re-
place the staggered susceptibilities in the equation
by that with q=0. Then from Eq. (3.18) we have

3CO I 2N(0)T, =1.14&@&&exp -1 gscsAI'(0)—
Tc TO

T,0
—1.14(on exp[-1jgscaII(0)]. (3.2V)

(3.aS)

Fer rornagnets

l.0 -—

0.e

/T,
Ji

0.6

0.4
JoQics)=

-2

0.2

0.2 0 4 0.6
= T„/T„

FIG. 1. Belation between the superoonducting transi-
tion temperature 7.'c and the Curie temperature T~ in
ferromagnets obtained from Eq. (3.26}. The parameter
Tcp is defined ln Eq. (3.27}.

As seen in Fig. 1, the superconducting region is
drastically reduced by the spin fluctuations. This
is because the spin fluctuations prefer the spin-
triplet state of conduction electrons rather than the

where Tp
& T„. Although the effect of the spin fluc-

tuation is weak compared to that in ferromagnets,
we still find that the effect is crucial. When Q is
not greatly different from 2k+, the scattering of
the electrons due to the spin fluctuations becomes
ani. sotropic. In this case, the anisotropy of the
order parameter should be taken into account for
solving Eq. (3.17). This problem will be treated
in a separate paper. However, Eq. (3.28) holds
semiquantitatively even in this case.

At this stage, it is worthwhile to mention the
mechanism of the exchange interaction between lo-
cal spins. I et us assume that the exchange inter-
action between local spins comes from the indirect
interaction only via the electrons which contribute
to the onset of superconductivity. Then, the inter-
action I, which is estimated from the relation
J'0=I N(0},44~6 is considerably strong if the para-
magnetic Curie temperature 8 is of order of 1 K
[8 =-',S(S +1)J'0]. In this case, the effect of the
spin fluctuations becomes extremely large. Refer-
ring to Eqs. (3.26) and (3.28) as well as to Fig. 1,
we find that superconductivity does not exist at
any temperature in these magnetic systems.
Therefore, we eonelude that in the compounds,
RMoaIf'8 and RRh484, the superconducting electrons
are neither 5d nor Gs of the rare-earth ions which
are responsible for the indirect interaction between
local spins.

The dependence of the staggered susceptibilities
on the concentration of local spins was calculated
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within mean-field theory. However, mean-field
theory does not work when the concentration de-
creases substantially. In Sec. IV, the mean-field
theory for calculating the staggered susceptibilities
is improved.

z ' = 1+(z —1)c', (4. 5)

where the distance between nearest-neighbor spins
is taken as unity. Here, we note that the critical
concentration c, below which T~ vanishes is given
by

IV. MAGNETICALLY DILUTE SYSTEMS c,[1—(1 —c,)'] = 3/(z —1). (4. 8)
In the compounds RMosX's, the magnetic ions can

easily be substituted by nonmagnetic ions such as
La+ and Sn '. The concentration of magnetic ions
was introduced with mean-field theory in Sec. III.
In this section, the superconducting transition tem-
perature T, in a magnetically dilute system is
studied by improving mean-field theory.

When magnetic ions are substituted by nonmag-
netic ions, the magnetic transition temperature
T„decreases, and at a certain value of the con-
centration of the magnetic ions T~ vanishes, al-
though at high temperatures the magnetic suscep-
tibility shows the Curie-Weiss law with a finite
paramagnetic Curie temperature (here, we neglect
the possibility of a spin-glass state). For sim-
plicity, we assume that there exists exchange in-
teraction J between the nearest-neighbor spins.
The concentration of the magnetic ions is given by
c. In the system, some of the ions are isolated
from the others and do not contribute to the collec-
tive properties of spins. The isolated-ion prob-
ability is given by (1 —C)', z being the number of
nearest-neighbor sites. Therefore, the concentra-
tion of nonisolated ions is

J' ln[z'/(z ' —4)] '

X(q ) =,'-c 'S(S + 1)p12 —sz '(1 —e s )

(4. 2)

+ [(z'+1)/z][l —(2PJ') '

with

J'= 4S(S+1)J,

x(1.—e ms~ )]qsP

(4. 3)

(4. 4)

(4. 1)

However, even if the magnetic ions are coupled
with each other, the magnetic phase transition is
not expected in the low-concentration system be-
cause of the statistical effect. For treating this
statistical effect, the effective-Hamiltonian method
developed by Oguchi et al. ' '7 is used. This meth-
od is extended to calculate the spin susceptibilities.
The details are given in Appendix A.

First, we discuss the ferromagnetic case. Fol-
lowing Appendix A, the magnetic transition tem-
perature and the staggered susceptibility with a
small wave number q are expressed as

Inserting Eq. (4. 3) into Eq. (3.18), we obtain

3I2N(0)C'
T, = l. 14&oD exp ~-I gscsN(0)—

2 & c

)+4k~ 2 (4. 7)

where

C0 ——,'c'S(S + 1),

f, = 2 —z '[1 —' exp(-Pg') cosh(P,J')], (4. 8)

with P, = 1/T, . In Fig. 2(a), the numerical results
for T, as a function of c are given by the solid lines
for various values of I N(0)/T«. The dotted line
shows T„given by Oguchi et al. ' For calculating
T„we took z =8, gs col' (0)=0. 3, 4k+ —1, S = —,
and J'/T«=0. 5. The ratio TQT« is not sensitive
to the values of gscsN(0) and 4k' (hereafter, the
values of these parameters are fixed at 0.3 and 1,
respectively). Even when the ferromagnetic trans-
ition does not exist because of the low concentra-
tion, the superconducting state disappears at very
low temperatures. This is because the suscepti-
bility increases with decreasing temperature at
very low temperatures as X(0) ~ 1/T. Since we
neglected the effect of the isolated spins which act
on electrons as pair breakers, as studied by Abri-
kosov and Gorkov, ' our results have only quali-
tative meaning at very low concentrations. In
Fig. 2(b), both T, and T„are given for various
values of J'/T, o, with I N(0)/T« taken as 3.2
&& 10 4. The other parameters are the same as
those in Fig. 2(a).

Ishikawa and Fischer' have observed that the
compound Ho, 2Mo6S8 is a superconductor in the
temperature range between 1.2 and 0. 64'K. The
susceptibility measurements above 1.5 K give a
positive paramagnetic Curie temperature 9 of
0. 54'K. ' We calculated the superconducting
transition temperature T, in this compound as a
function of the magnetic-ion (Ho ') concentration.
In this calculation, we used z =6, S=—,', T,o=1.56'K, and J'=0. 18'K, which was estimated
from 0. In Fig. 3(a), the solid lines show T, for
various values of I N(0). The dotted line shows
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FIG. 2. (a) Dependence of T, on the concentration of
magnetic ions c in a simple cubic ferromagnet. The
solid lines show TJT,p for various values of I N{0)/T~p
and the dotted line shows Tz/T, o. The parameters are
taken as S=&, J'/T, o-—0.5, gacsN(0)=0. 3, and 4k+=1.=7

(b) Relation between T~ and Tz for various values of
J'/T~ as a function of the concentration c in a simple
cubic ferromagnet. The value of I2N(0)/T, o is taken as
3.2 &&10 4. The other parameters are the same as those
in (a).

T~. The black circles and the triangle, respec-
tively, represent the experimental values of T,
and 8 observed by Ishikawa and Fischer. ' When
we tentatively use the value N(0) = 0. 5 eV ', '2 we
find III =0.81 meV.

In ErRh4B4 the superconducting transition occurs
at 8. 7'K and the supercongucting to ferromagnetic
phase transition at 0.9 K. '9 Assuming the mag-

FIG. 3. (a) Theoretical results for T~ and Tz when the
magnetic ions are substituted by nonmagnetic ions in the
compound Ho& 2Mo6S8. The abscissa gives the concentra-
tion of magnetic ions. The black circles show the exper-
imental values of T~ observed by Ishikawa and Fischer
(Hef. 10) in Ho& 2Mo6SS. The triangle is the experimental
value of 6 (Ref. 10). (b) Theoretical results for T, and

Tz when the magnetic ions are substituted by nonmag-
netic ions in the compound ErRh4B4. The abscissa gives
the concentration of magnetic ions. The solid circles
show the experimental values of T, observed by Fertig
et al. (Ref. 8) and Moncton et al. (Ref. 9) in ErRh484.

netic lattice of a body-centered-cubic crystal
(z =8) and 8 =1 as the spin value of an Erp' ion,
T, is calculated and the results are given in Fig.
3(b) by solid lines for various values of I N(0). In
the figure, the dotted line which shows T„ is almost
overlapping with the solid line corresponding to
I2N(0) =4. 1 && 10 P 'K. The closed circles are the
experimental values of T, observed by Fertig et
al. and Moncton et al. 9 The other parameters
appearing in Eq. (4. 7) were taken as T p=8, 83 K,
and J'=0. 295'K. When we use the value N(0)
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V. UPPER CRITICAL FIELD

In a magnetic field, the superconducting trans-
ition temperature decreases because of the Meiss-
ner effect and the spin splitting of the conduction
bands. In our compounds with many magnetic
ions, the local spins are polarized by the magnetic
field. The vector potential acting on the orbital
motion of conduction electrons is related to the
magnetic induction B rather than the magnetic
field H,

B =curl A, (5. 1)

where

Sn ion and our theory has only qualitative meaning
when the concentration of the magnetic ions is quite
low, as mentioned above. As seen in Figs. 4(a}
and 4(b), T, is almost independent of the concen-
tration at very low temperatures. This is be-
cause the susceptibility y(0) becomes almost zero
at these temperatures. In this paper we concen-
trate ourselves on the paramagnetic phases. The
antiferromagnetic states will be studied in a sep-
arate paper.

d, (x) =g,«(H)TQ Et (x, x:e,), (5. 4)

where the effective coupling defined in Eq. (3. 18)
was rewritten g,«(H) because it is a function of
the field. Once the order parameter is expressed
as the local one, it is straightforward to obtain
the integral equations

G»» (x, x:c»» ) =G»» (x» x:E»» )

v+ being the Fermi velocity. On the other hand,
the force range of the spin-spin interaction is of
the order of the nearest-neighbor distance between
spins. Therefore, the spin correlation length is
also of the order of the distance unless the tem-
perature is extremely close to the magnetic trans-
ition temperature. 49 Because of the smallness of
the spin correlation length compared with the size
of a Cooper pair, we may replace the nonlocal or-
der parameter by the local one after summing up
the spin fluctuations inside a Cooper pair. %e are
restricted to the case of the isotropic g,«given in
Eq (3..18). Then, Eq. (3.8) is reduced in the weak-
coupling limit, for both electron-phonon and elec-
tron-spin interactions, to be

B=H+4mM.

Here, M is the magnetization and is given by

(5. 2) d X( +(X()G»»(x» X)'.P»») E (xsi»x:»P»»)»

(5. 5)

I= g~(g~ -1) '~a&~-. )c&p, (5. 3)

where No is the number of local spins in a unit
volume, and (S,) is the local spin polarization in-
duced by the field and has a negative value. In
the compounds studied the value of 47rM reaches
up to a few ko. The polarization of the local spins
in the magnetic field causes the spin splitting of
the conduction bands, as discussed in Sec. III.
Since the electron-spin interaction I, which may
have either sign, is of the order of 1 meV in the
compounds studied, as obtained in Sec. IV, the
usual Pauli paramagnetic effect may drastically
be modified by the polarization of the local
spins. 2'4~ As studied in the preceding sections,
the spin fluctuations suppress the effective BCS
interaction. Since the fluctuations decrease in the
field, ' the effective BCS interaction increases
with increasing magnetic field. In this section we
formulate the upper critical field of dirty super-
conductors taking into account these effects of the
local spins.

As discussed in Sec. III, the order parameter is
nonlocal in space because the spin fluctuations are
of long range. The spin fluctuations inside a Coop-
er pair produce an effective interaction between
the electrons. The size of a Cooper pair in space
is of the order of the coherence length $p vy/T„

F„(x,x': )=eJdxiG, , (xi, x: —e„)S (xi)G, (xi, x'.s„),

(5. 8}

where G,",,(x, x':e„) is the Green's function in the
normal state.

Since the range of G"„(x,x'.e„) in space is short
compared with the radius of an electron cyclotron
orbit in a magnetic field, we may introduce the
semiclassical phase- integration approximation

G"„(x„xe) =G" (x, —x e) exp (»e ds )»(s )),
(5. 7)

,
t

where G"„(x)—x:p„) is the Green's function without
the term involving the vector potential. Using
Eqs. (5. 4}, (5. 5}, and (5.6) and retaining a term
linear in &(x), we have

&(x)=g.„(H)T Q' d'x, E„(x,—x:e„)

~ exp 2ie ds A s &x~

X( Es»(X( —X:6»»)

X exp[-i(x-x, ) ~ II ]a(x},
(5.8)
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with

IIt =iV„—2eA(x), (5.9)

K g, ~(xg —x:sq) =G ~, q(x( —x: —s„) Gg, g(xg —x:s„).

(5. 10)

(5. 11)

Eq. (5. 8}becomes

When we introduce the Fourier coefficient K „,(q:s„)
~50

T 1 5~

b. =(37'so) '

+ 1 — 2-I2 &re ~ +P+

(5. 18)

where k and k' are the momenta of the incoming
and outgoing electrons, respectively, and o' is the
Pauli spin matrix. Leaving the detailed calcula-
tion to Appendix B, we find the equation for deter-
mining H,2(T):

I, =oh, (5. 19)

A. Dirty limit

Although we have not introduced the effect of im-
purities explicitly, it is obvious how the effect
enters in the equations in the standard way. ~' Let
us first calculate H,2 in the dirty limit taking into
account the non-spin-flip scattering of electrons.
Following Appendix B and neglecting the term of
the order of (tsl&z)', we have

z ...(q:s„)=vx(0)(ls.
l
+fa)s/I" I+-', ~sq'", ) '

(5. 13}

where 7'0 is the relaxation time and is expressed,
by using the non-spin-flip impurity potential u and
the number density n, as

o, = (I/2vT}[a, + (b~2 —I2)' ~2],

with

a, =b, + —,e70v~B,

~so —-', v+(o)n, lmso I
',

(5. 20)

T 1 870vy B
T, (H) ~ 2 6T (5.21)

where n, is the number density of the scatterers.
Here, we assumed To«7'po In the limit of weak
spin-orbit interaction, Eq. (5. 18) is reduced to
Eq. (5. 15}. On the other hand, in the limit of
strong spin-oribt interaction, Eq. (5. 18) is reduced
to

. =2.A(0)n (5. 14)

Introducing Eq. (5. 13) into Eq. (5. 12) and taking'0

h(x) =exp(-eBx'),

we find the equation for determining H,2(T),

with

T g 1 Nzh e7 0P~B
T, (H) 2 2vrT 6vT

(5. 15}

T, (H)s= 1.14&os exp[-1/g, «(H)N(0)], (5. 16)

iusokz (k&& k )' a
~

g(z) being the digamma function.
The spin-orbit interaction of conduction electrons

reduces the effect of the spin splitting of the band
on the superconducting transition temperature. '~'

This interaction is quite important in our system
because the splitting becomes extremely large.
The spin-orbit interaction potential is expressed as

X"(q) =cS2B,'(PSa)/[T —2',S2B,'(PSa)], (5.22}

X '(q) =2cSB,(pSa)/[a —2cJ,SB,(pSa)], (5. 23)

a = g'p, sH + 2cJo(S,)-,

g =gz/(gz- I)
(5. 24)

where B,(z} is the Brillouin function, B,'(z }= (d/
dz)B, (z), and J, is given in Eq. (3.19). For sim-
plicity, the concentration of spins c was intro-
duced within mean-field theory instead of using

8. Effective coupling constant

Equation (5.18}is different from that for the
usual superconductors52 because T,o(H), h, and B
are functions of the magnetic field. The functional
forms of k and B are given in Eqs. (3.4) and (5. 2),
respectively. In this subsection, we consider
T«(H) and g,«(H). The effective coupling constant
g,«(H) is a function of the staggered susceptibilities
in a magnetic field. The susceptibilities were cal-
culated by using the mean-field theory of Ref. 21.
According to Ref. 21 we have
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the effective-Hamiltonian method given in Sec. IV.
When the magnitude of

~
(IS,) ~

is less than 0. 3S at
the temperature and field we are concerned with,
we may expand the Brillouin function and retain
terms up to third order and have

X"(q) = C()(I —&)/[T - T,(1 —&)],

X "(q) =2C (1 ——,'b)/[T —T,(l ——,'b}],

5 =-,', p'[$'+($+1)']a',

(5. 25)

(5. 26)

(5. 27)

2Jq 2J0 Dpg (5. 28)

where T, and C() are defined in Eqs. (3.21} and

(3.22), respectively. From Eqs. (5. 25) and
(5. 26), it is easy to see that the staggered suscep-
tibilities decrease with increasing magnetic field.

In ferromagnets, the susceptibilities around
q =0 contribute to g„f(H) dominantly so that we
approximate J, as

VI. ULTRA-HIGH-FIELD SUPERCONDUCTORS
e

Since the compounds we are concerned with belong
between the dirty superconductors, the spin-oribt
interaction is quite strong, as shown in experi-
ments. '2 'f Therefore, we first study H,f(T) in
the limit of strong spin-oribt interaction (Tsp 0},
in which the band-splitting effect is erased [Eq.
(5.21}].

Near the superconducting transition temperature
T, where Hcf(T) is small, H, f(T) is expressed by
expanding Eq. (5. 21) up to second order in the
field as

T, (()H) —T ffeT2fff', B
9

eT()vf', B
T„(H) 12T„(H)

'
6ffT„(H)

(6. 1)

where we used g'(2) = f(2) and P"(2)=- 14$(3) with
d"g(s )/ds" = p

")
(2 ). Here, B is a function of the

field and given, from Eqs. (5. 2) and (5. 3), by

B = [1 + 4ffg P BNP)( (0)]H, (6. 2)
Using Eqs. (3. 18), (5. 22), (5. 23), and (5.28), we
have

I~
gcff( ) RBCS 4k2D

0

2 —c(SJ,—42'Bc)S'B (SSa))',
T —2cJ()$2BB'(PSa)

We note that T~(H) is also a function of the field.
Using the susceptibilities in Eqs. (5. 25) and (5. 26),
the effective coupling constant g «(H) is written

T(B)=S c 2J» f 2 (2 2))0 - N

+2ln (a —c(2J() —4kf Dc)SB,(PSa)
a —2cJ2$B,(PSa)

(5. 29)

T
+21n

(6. 3)

When we appl oximate 4k~Dp to be 2J0 because k&

is of the order of the inverse of the lattice constant
and because the results are not sensitive to the
value of 4kff,D(), Eq. (5. 29) becomes

I2 I- T
2Jc 2 —2cJSB'(SSa))

(

a —2cJ2$B,(PSa)

(5. 30)

In antiferromagnets, g,«(H) depends on the wave
number Q which describes the antiferromagnetic
properties as discussed in Sec. III. In the case
that Q is large enough, the dispersion of the
staggered susceptibilities in Eq. (3.18}may be
neglected. Substituting the staggered suscepti-
bilities with the uniform ones, we have

$2B,'(pSa)
Iaeff( ) ABcs —

T 2cJ' $2BI(p$a)

for ferromagnets, and

C()(1 I)) 2C()(1 2b)
gcff =gscs —

T T()(1 b)
+T T()(1 I))

(6.4)
e

f or antiferromagnets. It is easy to see from Eqs.
(6. 3), (6. 4), and (5.16}that g, ff(H) and thus Tc2(H)
are functions of H'. This is in strong contrast to
the case of the usual superconductors in which
T, (H()) in Eq. (6. 1) is replaced by a constant T,2

independent of H. From the above relations, we
find that the polarization of the local spins reduces
the usual value 12/ffeT()f)„' of the initial slope of
Hcf, [dHcf (T)/dT]T=T 2 to

[I + 4ffg'P ~()x"(0)] '(12/ffsT()f)&) ~

When the temperature goes to zero and the Zee-
man energy of the local spins is much larger than
the exchange energy, Eq. (5. 21) is rewritten

2$B,(PSa}
a —2cJcSB,(l)Sa) ) ~2 eT()&~B=4yfrT, p(H), (6. 5)

where Jp &J@. y being the Euler constant (lny=0. 577. . .}. Since
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2eI2S
T e(H)=T (e( «(0) «) (6. 7)

where we assumed gscs» 2cI S/g'p, sH. Inserting

the effective coupling constant is expressed as

g«ff(H) =gaea —2cI S/g'p, sH, (6. 6)

for both ferromagnets and antiferromagnets, T,p(H)
is written

Eq. (6. 7) into Eq. (6.5), we have

24yff 2cItS
eeev e g H(0)g j'«e(0,)}

—4'�'p.& NOES. (6. 6)

As seen in Eq. (6.6), at low temperatures H, (pT)

almost recovers the value it has in the system

Ferromagnet

H x IO

(o)
Ferromagnef

N(o)/ Tcp 5 0 x IO
(b)

1 T
0.5

"2-

I

o
I

0.5 0 T„ pe5 l.O

Ferromagnet

I N(o) / T

I

pe5
I

t.0

FIG. 5. (a) Theoretical results for H~2(T) as a function of T = T/T« in a ferromagnet with Tz/T~= 0.105 and I N(0)/
T~= 1.0 0&10 p. The ordinate gives the magnetic field H= c(II with c(=er(Igz~/T~. In the calculation the parameters 8, g',
c, and 0. were taken as +2, 2, 1.0, and 6.72 &&10 kG, respectively. The dotted line shows H~~(T) in the system with-
out local spin, as a reference. The inset is the enlarged portion of the figure which shows the lower critical tempera-
ture. (b) Theoretical results for H,2(T) when the value of I N(0)/T, o increases to 3.0 &10 3 from the value 1.0 &&10 3 in
(a). (c) Theoretical results for H@(T) when Tz increases to 0.525 from 0.104 in (a).
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without local spin. In the following, we present the
numerical results for H,2(T).

A. Ferromagnets

The numerical results for H,2(T) in ferromagnets
as a function of temperature T are shown in Fig. 5,
for various values of I2N(0}/T, o and T„/T~. Here,
the temperature and the magnetic field H are re-
spectively normalized by T,o and n as T=T/T, o and

B=aH, where n = e7,v~T~. For the numerical
calculation, S, g', c, and a are taken as 3.5, 2,
1.0, and 6.,72 &&10 3 kG ', respectively, referr-
ing to the compound Snf 2(f )Eu Moe 35S8.

'' In
this case, unity for B corresponds to 149 kG.
Changing o only causes scaling of the magnetic
field in ultra-high-field superconductors. In each
Fig. 5, the dotted line denotes H,2(T) in the sys-
tem without local spin as a reference. Figure
5(a) is the result for T„/T« —0. 105 and I N(0)/T, o

=1.0&10 . When there is no magnetic field, the
superconducting state appears in the temperature
range between T/T& —0.765 and 0.230. With in-
creasing magnetic field, the upper critical tem-
perature decreases according to Eq. (6.1). On

the other hand, the lower critical temperature
rapidly shrinks because the ferromagnetic trans-
ition temperature disappears in the field, as shown
in the inset. By further increasing the magnetic
field, the upper critical temperature starts to
increase because the spin fluctuations are sup-
pressed in the field. When the field becomes
strong enough, the local spins are forced to align
because of the field and the spin fluctuations al-
most disappear. Therefore, H,2(T}behaves as
if there were no local spin. The small deviation
of H, 2(T) at low temperatures from the H,2(T} for
the system with no local spin is due to the fact
that the suppression of the fluctuation is not com-
plete in a finite field, as seen in Eq. (6.8}.

In Fig. 5(b), we show H,2(T) when the value of
I N(0)/T, 0 is increased, and in Fig. 5(c), we show

H,2(T) when the exchange interaction between local
spins is strengthened. As seen in these figures,
the upper critical temperature at zero field de-
creases with increasing I2N(0} and T„/T~, and for
these parameters the superconducting state does
not exist at zero field. However, application of
the magnetic field induces the superconducting
state. This'~is due to the following reason: In no
magnetic field, the electron-electron interaction
due to the spin fluctuations overcompensates the
BCS interaction, and g,«(H) becomes negative. In
the magnetic field, the spin fluctuations are sup-
pressed and g, fz(H} returns positive. This fact
suggests the possibility of the onset of supercon-
ductivity in the field.

B. Antiferromagnets

Antiferromagnet
(a)

x)0

04

0.5 I.O

Antiferromagnet (b)

I' N(o) /T = 3.0 x l0

=-0. )04

2
H

0
0.5 l.p

FIG. 6. (a) Theoretical results forH, 2(T) as a functionf
in an antiferromagnet with paramagnetic Curie tempera-
ture 8/T&p= 1,04 and I N(0)/T, p= 3.0X 10"3

~ The other
pirameters are the same as those used in Fig. 5(a). (b)
Theoretical results for H,2(T) with e/T, p= —0.104 and
I&(0)/T p=3.0 &&10 . The other parameters are the
same as those used in {a).

Figures 6 show the numerical results for H,2(T)
in antiferromagnets. In Fig. 6(a), PN(0)/T„and
6/T, o= TJT,O are taken to be 3.0 && 10 ' and -1.04,
respectively. %e note that the paramagnetic Curie
temperature ~e ~

differs from the magnetic transi-
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tion temperature T„ in antiferromagnets when they
have distant-neighbor exchange interactions. When
the magnetic field is larger than (T —T,)/g'ps, ,

the spins are forced to align uniformly owing to
the field, and above the field H„(T) increases
along the dotted line with decreasing temperature.
The spin fluctuations decrease with increasing
magnetic field. Therefore, in ultra-high-field
superconductors the behavior of H„(T) is similar
to that in ferromagnets except for the small-field
region. In Fig. 6(b), the H„(T) vs T-cur-ve with
PN(0)/T„= 3.0 && 10 ' and B/T„= -0 104. is given.
Even in antiferromagnet;s, the superconducting
state at zero field does not exist when I is large
and/or

~

B
~

is small. It has been observed that in
the compound Sn, ,&, „,Eu„Mo6 35S8

' the super-
conducting state at zero magnetic field does not
exist above x = 0.9. From the above theoretical
results, we suggest that application of the magnetic
field may induce the superconducting state in the
compound.

The temperature dependence of the upper critical
field H,2(T) has been studied in the strong spin-
orbit interaction limit. In the following, we briefly
discuss how the spin-orbit interaction modifies
H„(T) when the interaction is reduced. In Fig. I,
lines (1) and (2) represent the numerical results

for &so= 1/3vT, orso=~ and 4.24, respectively, in
the system without local spin, and the lines (3)
and (4) represent those for Xso=~ and 4.24, re-
spectively, in antiferromagnets with B/T„= -1.26,
I/T, 0=-1.0, and IN(0) = 3.0-X10 '. When' is neg-
ative, the Pauli paramagnetic term is reduced by
the polarization of the local spins in the field. 4'

'Therefore, line (4) increases at low temperatures
compared with line (2). Furthermore, we see that
the H„(T) curve becomes steeper when iso=4.24
at intermediate temperatures. The anomalous be-
havior of H„(T) has been observed by Fischer
et al."' in Sn, „,„&Eu„Mo, 35S8 The quantitative
comparison between theory and experiment will be
given in a separate paper. If I is taken to be posi-
tive the value of H„becomes very small even
when iso=4.24. Therefore, in the compound, the
interaction I must be negative.

In this paper, we restricted ourselves to the
super conducting state of spin- singlet BCS pairings.
We also note the possibility of triplet BCS pairing
in the region of low temperatures and weak mag-
netic fields which we assigned as the normal state
in Figs. 5(b), 5(c), and 6(b), because the spin
fluctuations prefer the electron spin-triplet state,
as mentioned in Sec. III. This possibility will be
discussed in a separate paper.

2-

Antif err ornagnet
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APPENDIX A: STAGGERED SUSCEPTIBILITIES
OF A MAGNETICALLY DILUTE SYSTEM

Let us consider a randomly diluted magnetic
system, in which spins with S = & interact among
themselves through the nearest-neighbor exchange
interaction J. We take a nearest-neighbor S„and
S~„spin pair in the system, the subscripts in-
dicating the lattice site 8 and its nearest-neighbor
site R+ p, respectively. The effective Hamiltonian
for the spin S„may be written

XI= -g'X.Sg~, (Al)

FIG. 7. Theoretical results for H,2(T). The lines (1)
and (2) represent H 2(T) with X80=1/3xT p7~= and 4.24,
respectively, in the system without local spin. The lines
(3) and (4) represent H~2 with Xao=~ and 4.24, respec-
tively, in an antiferromagnet with e/T&p= —1.26,
I/T, p= —1.0, and IN(0) =- 3.0 &&10" . The other parame-
ters are the same as those used in Fig. 6(b). X,= &'~S; (&'5~+H )S;, (A2)

where s' is given in Eq. (4.5), and X is a parame-
ter which is determined self-consistently. When
a magnetic field H', which is measured in units of
gz p, s(gz —1), is applied in the s direction, Eq.
(Al) is rewritten
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where &X represents the increase of ~ due to the
field and is proportional to H'. From Hamiltonian
(A2), the density matrix p, for the spin at H is
constructed.

The effective Hamiltonian for two spins at the
sites R and R+p is written

X»= -2J S~ S~„-((g' —1)X+[(g' —1)6X+H']]

x (S'„+Ss,p) .

Using Eq. (AS), we have the density matrix p» for
two spins. Then, we take a trace over S~„ in p~~,
and determine the parameters X and &X by the rela-
tion

is obtained as

(A9)

which is the same as the Fourier transform of the
staggered susceptibility Z"(q) times the tempera-
ture T.

In the system with S& ~, we replace 4 by 4'
= (4/3)S(S+1)J and the factor & in Eq. (A5) by
3S(S+1). Then we find Eqs. (4.2) and (4.3) for T„
and &(q), respectively. For the calculation of the
Weel temperature in an antiferromagnet the reader
is referred to the papers by Oguchi et al."'"

Tra p pzz= px. (A4)
APPENDIX B: DERIVATION OF THE KERNEL E, (q:e„)

The parallel susceptibility X"(0) in paramagnetic
phases (&=0) is obtained as

The impurity potentials are introduced as fol-
lows":

X-(0)=c'(Trs'„p, )/If' V(k, k') =u+iusokz'(k xk') 'o, (B1)

,'c'p/-[g'e ~~ cosh(pZ) —~'+ 2],
where the effect of isolated spins was neglected.

We shall calculate the longitudinal-spin correla-
tion function in the paramagnetic phases without
magnetic field. When the spin at the origin 0 is
fixed as "+," the probability that the neighboring
spins are "+"increases. This effect propagates
to the more distant spins through the exchange in-
teraction. Let us consider the spin at R. Because
of the effect due to the spin at 0, the parameter X

of Sz in Eq. (A1) must be replaced by X+ ((H. + p'),
where p' is one of the vectors from R to the
nearest neighbors. Therefore, the Hamiltonian
for the spin at R is written

SC, = -[e'~+ ~(R)]S;, (Ae)

where e(R) is the statistical average of the devia-
tion of the interaction given as

where u is the non-spin-flip scattering potential
and us~ is the spin-flip scattering potential defined
in Eq. (5.1V). Using the Born approximation and
assuming that the Fermi surface is spherical, we
have the normal-electron Green's function without
the term involving the vector potential,

G" (k, c„)= (iR„—( ) (B2)

1 -1 -1
0 +~SO (B4)

where r, and 78o are given in Eqs. (5.14) and
(5.20), respectively. For calculating the kernel
K, ,(q:c„) in Eq. (5.12) involving the potentials Eq.
(B.1), the self-consistent equations are given in
Fig. 8.and expressed as

where $, is the normal-electron energy with mo-
k@

mentum k and spin o, which is measured from the
Fermi energy, and

(B3)

with

The density matrix p, for the spin S~ is calculated
to first order in o. In the same way& the effective
Hamiltonian for two spins at R and R+P is written

X„=-2~ S„~S„„-(e'- 1)~(s'„+S~,)

g ~(H+ p')S'„
pI gp

K, ,(q:c„)=K', ,(q:c„)

x [1+(v, +v,)K, ,(q:e„)

+ 2v, K, ,(q:a„)],

v, =[2m+(0)~J ',
,v=[ ev~()0rJ',

(B5)

(ae)

pÃg~p

~(R+ p+ p )Sz p ~ (Ae)

Using Eq. (A8), the density matrix p» for two
spins is also constructed. Taking the trace over
S~, in p» and using the relation (A4), we find e(R).
The longitudinal-spin correlation function (Sosz)

FIG. 8. Self-consistent equations for the kernel
+fy, fye (q:Eff) due to the impuzity potentials Eq. (Bl), where
0 denotes the spin state of the electron.
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where K', ,(q:c„) is defined as

d'k
K', ,(q:c„)=

(2 ), G"', ,(q —k:-&„)G",'„(k:&„)~

(BV)

Solving Eq. (B5), we have

It is easy to see that Eq. (B8) is reduced to Eq.
(5.13) when r8o- ~. Taking the dirty limit and
assuming To 7so me find

ii@(0)(le„l+il, e„/I z„l+a, + b, )

(I ~„l+a,)' b', +I,'
K , ,(q:a „)=K', ,(q:&„)[1—(v, —v, )K,' ,(q:a„)]

x([I —(v, +v, )K', ,(q:c„)]
x [1—(v, +v, )K,',(q:e„))

-2v, K'. .(q:~„)K.' .(q:&„)P. (B8)

(B9)

where b„ I„and a, are given in Eqs. (5.19) and
(5.20). Inserting Eq. (B9) into Eq. (5.12), we ob-
tain Eq. (5.18).
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