
PHYSICAL REVIE% B VOLUME 18, NUMBER 9 1 NOVEMBER 1978

Lifetime of an excited atom in a metal cavity
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Several broadening mechanisms for an optical absorption line of a gas atom or molecule trapped in a
spherical cavity in a metallic host are examined. Among these, the linewidth due to the coupling of the atom
to damped surface polaritons of the metal cavity is analyzed in detail, and its dependence on cavity radius
and on atom position is obtained. One finds that the surface-polariton coupling effect is important only for
bubbles of atomic sizes (a few vacancy clusters), or for resonant cases where the atomic frequency coincides
with one of the surface-plasmon frequencies. Numerical. application is made to the broadening of the
resonance line of helium trapped in an aluminum matrix. For this system the polariton coupling appears to be
negligible as compared to the so-called resonance broadening in the gas under the pressures which are
presumed to prevail in bubbles produced by He implantation. The optical absorption of a random distribution
of small He-gas bubbles in Al is also computed by means of an effective-medium theory. One finds that the
absorption linewidth and position should give a good measure of the average He density in the bubbles.

I. INTRODUCTION

The irradiation of metals with energetic He ions,
o. particles, or He-generating radiations such as
neutrons, creates extended damage in the form of
He bubbles ' trapped in the metal matrix. The
bubble size may range from a few angstroms to
several micrometers, depending on radiation dose,
specimen temperature, and other irradiation con-
ditions. At high doses, blisters appear at the sur-
face of the target as a result of large bubbles de-
veloping and eventually bursting in the surface
region.

The formation of such internal cavities causes
bulk swelling, surface flaking, and adverse con-
sequences for the mechanical properties of struc-
tural materials in the core of nuclear fission and
fusion reactors. Consequently, a great deal of
efforts has been devoted to the study and control
of this phenomenon by a variety of experimental
as well as theoretical methods. '

One important parameter for bubble nucleation
and growth is the He pressure inside the cavity. '
Depending on the He injection dose and bubble size,
the pressure is presumed to vary from zero in so-
called voids to tens of kilobars, exceeding the yield
strength of the surrounding metal, in overpres-
surized bubbles.

Although several studies of bubble formation in
He-bombarded metals assume that the He gas
pressure in small cavities is in equilibrium with
the surface-tension pressure, one does not really
have a direct experimental mean to verify this
hypothesis or to measure the actual pressure in
over- or underpressured bubbles.

Perhaps one way of having access to this infor-
mation would consist in measuring a spectroscopic

property of trapped He which would exhibit suf-
ficient pressure sensitivity. One such property
might be the position, the width, or the detailed
line shape of an atomic absorption line for uv ra-
diation such as the strong resonance line of the
principal series (l ~SO-n ~P, , n = 2) of He at 584.3
A or 21.2 eV." However the usefulness of this
spectroscopic method will depend on our ability
to evaluate the numerous' mechanisms influencing
the line shape of an atom trapped in a bubble as
much as on the experimental capability to dis-
criminate the atomic absorption from the metal
background.

The purpose of the present paper is (i) to study
a number of causes of li.'ne broadening for an in-
dividual gas atom in a spherical metal cavity and
(ii) to compute the bubble absorption line shape in
the framework of a simple macroscopic theory.

One particular mode of line broadening which
may be expected to be important for small bubble
radii is the long-range interaction between the
atom and the surrounding metal matrix. A satis-
factory description of the metal in this context is
by means of a complex dielectric function e(e) em-
bodying the only metal excitation which responds
to the high-frequency atomic excitation external
to the metal surface, namely, the plasmon oscil-
lations. ~~ The real part of e causes line broaden-
ing by inhomogeneously shifting the atomic levels
as a result of Van der Waals interactions whereas
the imaginary part of e enhances the linewidth by
providing the possibility for the atomic excitation
to be carried away by the substrate.

Belated problems have been studied by Morawitz
and Philpott, ' Chance, Prock, and Silbey, "and
Agarwal and Vollmer" who have shown that an ex-
cited molecule near a flat metal surface may de-
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TABLE I. Two classes of line-broadening effects for an optical
excitation line of an atom in a bubble.

Gas-phase effects Substrate effects

1. Radiation damping
2. Doppler effect
3. Van der Waals broadening

a. Ground state

b. Excited state
{resonance broadening)

l. Wall collision
2. Physisorption
3. Surface-polariton effects

a. Modified radiation
damping

b. Inhomogeneous shift
c. Plasmon decay

Others

cay faster than in free space through resonant ex-
citation of surface polaritons. In the present work
we shall extend the theory to the spherical geo-
metry of a cavity and also the plasmon damping
will be included and shown to be important.

After discussing the absorption line shape from
the atomic point of view, we then turn to a mac-

'

roscopic description of the porous metal in which
the gas bubbles are treated as spherical regions
of homogeneous dielectric function e (&u), sur-
rounded by the continuous metallic substrate of
dielectric function e(&o). When the wavelengths
of interest are much larger than the average bubble
radius, the optical properties of the system may
be described in terms of an average dielectric
function 7(&o,f) depending only on the volume frac-
tion f occupied by the bubbles, as shown in recent
works by Barker, ~' Genzel and Martin, ~' and Grand-
qvist and Hunderi~' in different contexts. This
simple approach readily provides the absorption
line position and width. lf the wavelengths are of
order or smaller than the bubble dimension, then
the full Mie theory '» of light scattering by
spheres should be applied. This will not be at-
tempted here.

Throughout the paper, numerical application
will be made for the system of He bubbles in al-
uminum. The reason for choosing this combin-
ation is that aluminum, besides being a metal of
nuclear technological interest, is one of the most
transparent to uv light in the 20-eV energy range
and hence offers the best conditioris for He detec-
tion by selective optical absorption. "

In Sec. II we shall briefly review the broadening
mechanisms of the gas phase such as listed in
Table I. In Sec. III the effects of the metal matrix
listed in this table will be analyzed. Section IV
contains the average-medium dielectric approach
and Sec. V draws the conclusions of the present
work.

H. BROADENING EFFECTS IN THE GAS PHASE

y, = 2e'uP, /3m c' . (2)

This gives a relative width y, /+o=1. 5x10 ' for
the 584.3-A resonant line of He. The radiative
width of this resonant line of He in a metal cavity
will be discussed in Sec. III.

B. Doppler width

If one could treat the He gas in high-pressure
bubbles as a perfect gas, the relative Doppler
width would be20*"

w'here T is the temperature, I the molecular
weight, and v some average velocity. At room
temperature this gives ya/~0=10', i.e. , much
larger than the natural width y~ seen above. How-
ever we shall see that the major broadening me-
chanisms are much more important than this.
Hence there is no need to use the Van der Waals
or other equations of states' to obtain a better
estimate of the negligible Doppler width.

C. Van der Waals broadening

It is customary to distinguish between two kinds
of Van der Waals broadening for a pure gas':
(a) the inhomogeneous broadening of the line due
to the statistical shift of the ground-state level of
interacting atoms and (b) the inhomogeneous broad-
ening of the excited level resulting from resonant
transfer of energy from the excited atom to the
neighboring unexcited ones. The latter effect is
the so-called resonance broadening and constitutes
the dominant source of line broadening in pure
gases at most temperatures and pressures. '

For a model, which we shall be using throughout
the paper, in which the He atom is represented by

A. Radiation damping

For future reference we recall here the formula
for the radiation linewidth" " in empty space [full
width at half maximum (FWHM)] of a resonant
transition originating from level 1 and ending in
the ground level 0 (no other one-photon transition
is allowed for the resonance level of an isolated
He atom)

yo=(2e'&o/mc')f» .
where ~0 is the (angular) frequency of the transi-
tion and f» its oscillator strength. The accurate
value off„is known" '" for the 2~p, -l ~S, tran-
sition in He but we shall be satisfied here to use
the approximate value f»=-,' which makes formula
(1) coincide with the Lorentzian width of a classi-
cal damped oscillator
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a single isotropic osciQator, it is easy to describe
the basic reason of Van der Waals broadening: two
such isotropic oscillators separated by a. distance
d and interacting through a nonretarded dipole field
have six modes of vibration with frequencies given
by

(4)

for the two nondegenerate axial modes (magnetic
quantum number m = 0) of even (+) or odd (-) parity
with respect to inversion symmetry and

't 1/2
(o ~~1~ 3

( (m ~1}t 0(d3
for the two degenerate transverse modes (m =+1}.
In these expressions

()(, = (e3/m(o(')) f„=0.15 A'

is a measure of the He ground-state static polari-
zability. The ground-state energy of the pair is,
for all molecular orientations,

E,=3ha),(1-n3, /4d3) .
Equation (7) is the dipole analog of the origin of

the broadening (a), which leads to an inhomogene-
ous blue shift of the excitation energy. Expres-
sions (4) and (5) of the level splittings, on the other
hand, result in a symmetric broadening (taking
into account the degree of degeneracy and the di-
pole selection rule of the optical excitation) and
express the classical origin of the broadening (b).

1. Ground-state broadening

The line shape which results from this broaden-
ing (neglecting the resonance effect discussed be
low) is derived by treating statistically the second
term of Eq. (f). Using the additivity of the(f 3

shift with respect to possible atom pairs, Mar-
genau" obtained the highly asymmetric line shape:

0 for M&Qpp qI(v) =

(~ ~ )-3/3e t(X+(tu-(ug) f()r ~)~
where

A, = —,wWbn

in which n is the He number density and Q is the
constant which appears in the ground-state attrac-
tion energy of a pair of neutral atoms written as

hb/d3. For th-e He model of Eq. (7) this constant
is of order' 5 = 3 co a'~5x 10 ' cm see e The
FTHM of this line is given by

y~ X' yn'v =1 85m =25 (9)
(dp QPp COp

Even at liquid-He densities n -5~ 10" cm ', this
does not exceed y 3 /&@3=10 '.

f((d) =, ' „ for ( ~ —((),(»(()»
(40 —Q)p)

with the FWHM

(10)

y "„/a&3 =C non= 10()(3n,

where C is a dimensionless constant of order 10
whose precise value depends on which type of the-
ory is used. " Using again a liquid density to
evaluate the expected maximum broadening one
finds y"„/(00=0.05, i.e., an order of magnitude
larger than the ground-state Van der Waals broad-
ening.

We conclude that since the resonance width is
proportional to density n, in contrast to the ground-
state broadening [Eq. (9)], the former should be
the dominant cause of line broadening within the
gas phase over the complete range of bubble pres-
sures.

III. SUBSTRATE EFFECTS ON LINEWIDTH

A. Ãa11 coBisions

For the smallest bubbles, the mean free path of
the atom for collisions becomes limited by the
bubble size. The frequency of collisions with the
bubble wall, to which transfer of the atomic ex-
citation may occur, is of order v/a, where a is
the radius of the bubble. This gives a wall-col-
lision broadening

y(((c /(d() —v/a(t)() . (12)

For a bubble madeof afew atomic vacancies in Al,
one may estimate a~4 A and y~c/(d «10 4. For
larger bubbles, the wall-collision frequency be-
comes negligible as compared to other decay
rates of the problem.

B. Physisorption

It has been suggested that under the high pres-
sure prevailing in small bubbles, the wall may be
covered by some layer of condensed He. The elec-
tronic states of such adsorbed atoms are broadened
to bands. Then there must be a corresponding
broadening of the optical-absorption line, the up-
per level of which is broad resonance in the metal

2. Resonance broudening

For a randomly distributed N-atom system a
correct statistical treatment of the level splitting
Eqs. (4) and (5) is difficult, because the level
splitting is not additive in contrast to Sec. QC 1
(consider, for example, the dispersion relation of
the Frenkel exciton in the translationally invariant
system). The line shape and width are calculated
concentrating on an isolated pair of atoms. Sever-
al authors arrived at the line shape"'"
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C. Surface-plasmon effects

We now turn to one major objective of the pres-
ent work: the calculation of the effect on linewidth
of the coupling of the atomic excitation to the sur-
rounding metal though the mediation of surface
plasmons. The geometry which we consider is
presented in Fig. 1: the origin is at the center of
the cavity with the radius a'and the atom, on the
z axis, is at the distance ~0 from the center and
z from the cavity wall.

As in Morawitz and Philpott's work, ~' the He
atom will be treated as a point dipole of eigen-
frequency +0, charge e, and mass m. The metal
substrate will be characterized by a dielectric
function e(&u) appropriate to its response to the
high-frequency external perturbation (k&uo = 21.2
eV). In a free-electron-like material such as Al,
one uses

e(td) = 1 —(d& /((d + l &g) ~

where &u~ =(4n'n, e'/m)+' is the so-called bulk-
plasma frequency and g is some damping constant

(13)

conduction-band states. " Unfortunately, to our
knowledge, calculations of such a band structure
are not yet available for He on metal.

The ratio 3n, /an„of the number of physisorbed
atoms to that of gas atoms (n, and n„are surface
and volume densities, respectively) may be evalu-
ated from the Gibbs adsorption equation, but should
rapidly drop to negligible values for bubble radii
exceeding, . say, 10 &. Hence, beyond the bubble
nulceation stage, the effect of physisorption, if
any, is expected to become weak for two reasons:
desorption due to pressure drop and decrease of
relative population of surface He versus gas He.

which will be assumed to be frequency independent.
As is seen from the work of Hagemann et al. ,"
formula (13) is a good approximation for Al and
for Sv around the He excitation energy.

The coupling with the substrate occurs because
the fluctuating dipole field of the atom drives the
surface-plasmori osciilations of the cavity. This
coupling, which strongly depends on the atom-
surface distance, causes the atomic frequency to
shift [through Rem (&o)] and to broaden [through
Ime(&u)]. Both effects will ultimately result in
broadening of the He-gas resonance line when we
take account of the statistical distribution of atom-
surface distances in the gas bubble. If we write
the position-dependent oscillator frequency and its
energy-damping constant as v(ro) and y(~0), the
overall line shape for incoherent absorption in a
spherical bubble should be proportional to

a"zo 1
I((o) = r', n(xo) Im

( )
.~, (. )]

dro,

(14)

where zo is the minimum atom-surface distance
and n(r, ) the local gas density. Although the line
shift and line broadening give nonadditive contribu-
tions to the final linewidth, we first evaluate the
two effects separately in what follows.

To compare the surface-polariton effects of the
cavity geometry with those of the flat-metal case,
we formulate the problem taking into account the
retardation effect. Effects associated with the
plasmon gxcitation discussed above will be obtained
by considering the nonretardation regime of the
full result.

1. Formulation

FIG. 1, Geometry for the atom-in-a-bubble problem.
The bubble is assumed spherical (radius a) and the atom
sits at distance xo from the center or z =a —ro from the
wall. The metal substrate is characterized by a com-
plex dielectric function & (~).

To simplify somewhat the calculation, we sha11
restrict ourselves to radial dipole oscillations.
The tangential dipole modes can also be treated
analytically but one finds nothing drastically new
but some anisotropy of the decay rate and level
shift, whereas the functional dependence on xo and
a of the quantities v(ro) and y(xo) of Eq. (14) re-
mains the same for both dipole orientations.

The classical calculations proceed along the
lines indicated by Sommerfeld" in his treatment
of a vertical radio antenna on the spherical earth
surface (here we have a hollow-earth surface).

The time dependence of the E and H fields are
assumed to be of the form E(r) e'~', etc , and one.
must solve Maxwell's equations plus boundary
conditions at the cavity surface. The symmetry of
the problem allows us to use the spherical coor-
dinates (r, 8, cp) and to restrict the field components
to the three y-independent variables E„, Ee, and
IIq) ~
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H ~( r) = i&os( r) ee '

the other fieM components are expressed

Z„( r) = — . sinersin8 88 80) '

1 QEe(r) = — (ru) .r er80

(16)

The Maxwell equations then reduce to the scalar
Helmholtz equation

au+ e( r) k', u =0.
In Eqs. (15) and (18) we employed the notations

(16)

With the introduction of a scalar potential u(r, 8)
by the definition

where the prime means the first derivative, and

=ip(ko/ro)(2I+1)i (koro)

~& = ~(~) kI"(z.}[zoA(z.)]'
—j,(z,) [z,k', "(z,)]',

(24a)

(24b)

with

The unknown coefficients A, and B, are deter-
mined by Eqs. (20a) and (20b). The result is

A, =(&2, /I, ) (kI~'(z ) [z, k',"(z,)]'
—e(&0) k,"'(z,) [z,k,"'(z,)]'], (23a)

B,=(, /M, )9,"'( .) [ .j,( .)]'
-j,( .) [ .kI"( .)]'],

ko = &8)/C 8 (19a) z; =k,a (i = 0, 1) . (25)

1 for r&a,
E( r

e(e) for r&a.
(19b)

The continuity of the fields and displacements at
w =a is guaranteed by the boundary conditions

~ + u g=g+= u g=a" r (20a)

sr («}I
= («) I

~ (20b)

x j,(k, r, )P, (cos8), (21)

where p is the magnitude of the dipole moment,
h,"' and j, are spherical Hankel and Bessel func-
tions, and r, (r&) is the larger (smaller) of r and

+0 ~

The complete solution of Eq. (18) is

u(r, 8) =u'(r, 8) + gA, j,(kor) P,(cos8), r&a,

(22a)

The scalar field u has a singular part u' associ-
ated with the direct-dipole field in vacuum. Its
expression is obtained from Eq. (15) by using the
expression of II~ field of the direct dipole field:

u'(r, 8) =ip ' g (2I+I)kI')(k, r, )
k0

0

Note that the zeros of M, give the eigenfrequencies
of the void plasmons with the retardation included. '
Hence there are resonances in the field amplitudes
when the oscillator frequency coincides with pne of
the cavity eigenfrequencies. For the flat-metal
surface geometry, such resonant cases have been
discussed in Refs. 12-14.

Next one computes the radial component of the
Poynting vector for x&a by

S(r, 8) =(c/4n)[ReE'e(r) e&~'] [ReH (r) e'"']
After a somewhat lengthy calculation, one obtains
for the total outward energy flow

S(r )-=fS(r, 8)r 8)nddrdddd

2

k', &u +2I(I+1)(2l+1)

0&0 'I'
1

(26)

This expression gives the rate at which energy is
lost by the osciQator. Hence the position-depen-
dent energy-damping constant is

e k0y(r, ) =y, + ' QI.(I+1)(21+1)
62 40

u(r, 8) = gB, k', '(k~r)P, (cos8), r&a, (22b) „(j&(koro) '('RReEk.~. ) e, (2V)

where

k,'=e(&0) k', .
The form (22a) is dictated by the fact that the sing-
ular part u' has been extracted and reflected waves
must remain everywhere finite, whereas the form
(22b) expresses the outgoing-wave boundary con-
dition at distances larger than a.

Here y0 is the isolated-dipole damping rate in
vacuum as given by Eq. (2} [the proof that the
first term of Eq. (26) gives rise to yo in Eq. (2V)
is given in Appendix A]. The second term in Eq.
(2V) takes account of the surrounding metal and
depends in a complicated manner on ~0 and a
through Eqs. (23} and (24).

To see the Van der Naals shift due to the virtual
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excitation of plasmons,
'

we return to Eq. (16) and
consider the equation of motion of the dipole mo-
ment. The electric field seen by the dipole is ob-
tained from Eq. (16) and Eq. (22a) (ignoring the
self-field u'):

Note that due to the factor l in Eq. (28) the mono-
pole plasmon mode (l = 0) does not contribute to
the damping nor to the Van der Waals shift.

2. Discussion ofpure radiutive effects

p + (g0'p = (e'/m) Z„(r =X„e= 0), (29)

where in our case k&@0=21.2 eV. Thus the real
part of Eq. (28) gives the Van der Waals shift,
whereas the imaginary part reproduces the decay
rate [the second term of Eq. (2V)] as it should.

=pipk0i(1+1)(2l+1) ~' ' (28)qar) 'X
l ~0 0 +1

The equation of motion of the radial dipole oscil-
lation is

To gain a qualitative understanding of the metal-
substrate effect on the purely radiativp width, let
us consider the case where the dipole occupies the
cavity center (r0 =0) and assume a real dielectric
function (g= 0) for the metal. The only surviving
contribution to Eq. (2V) comes from the dipole
polariton l = 1 [the contribution to Eq. (2V) from
real e(&o) is denoted as y„(x0)]:

y„(0)/y0 =(1+n cosz0 —p sinz0) e((o —a&0), (30)

where e(x) =1 for x&0 and =0 for x&0 and the two
real constants n and P are defined by

(z, + i) [z, + (1 —z', ) i] —e(00)(z, + i) [z, + (1 —z', ) i]
e(&o)(z, +i) [(z0 —1) sinz0+z0cosz, ]+[z,+(1-z,') i](sinz, -z0cosz0) ' (31)

The result (30) is plotted in Fig. 2 as a function of
boa using the parameters of the He-Al system.
One gets the following results; (i) When the oscil-
lator frequency e, is less than the metal-plasma
frequency co~, the dipole field does not penetrate
deeply into the metallic region because e(+)&0 for

S

this frequency range. There is energy transfer
back and forth between the atom and the cavity sur
face modes but this energy exchange goes on in-
definitely if e is assumed to be lossless. In other
words, the light gets indefinitely reflected by the
concave metal surface and the energy remains

Jl
&', (o)

1.5-

0.5-

FIG. 2. (a) Oscillatory ra-
diation linewidth for an at-
om at the center of a spher-
ical cavity in a metal of
real dielectric function, as
a function of reduced cav-
ity radius (koa=1 for

0
a = 90 A in the He case);
(b) and (c): nonradiative
width obtained when inclu d-
irg surface plasmon damp-
ing with two values of the
damping constant: g=4 eV
(b) and g=2 eV (c).
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r.(0) [e(~)]"'
y, c((o) sin'z, + cos'z, (33)

Thus y„(0) oscillates between the extreme values
ype" and ypc . Such oscillatory behavior is
easily understood as due to a phase-matching ef-
fect between the oscillator amplitude and the re-
Qected wave which has traveled twice the cavity
radius. Note that in the flat-metal surface case,
the effect of the surface decays as z ' in the limit
z ~ (z is the distance between the dipole and the
metal surface), as is shown by extending the cal-
culation of Ref. 12, for example.

(iv) When e((o) is real, the damping width y„(0}
is of the same order of magnitude as yp, irrespec-
tive of the cavity radius.

3. Inhomogeneogs line shift and width

Since we are interested in large enhancements
of linewidth over the natural width yp, we see
from the general result (28) that we should work
in the limit where kpa&1, i.e., small bubble radii

confined within a few radii around the cavity. This
conclusion also holds true for any position of the
atom in the cavity. This is in clear contrast to the
case of a flat-metal surface. "'4 For the planar
geometry, energy can effectively be drained away
at an infinite distance either towards the semi-
infinite free space or along any direction within
the planar surface even though, & being real and
negative, energy cannot be radiated towards the
interior of the metallic half space. Mathematical-
ly, the fact that y„/yo =0 when (o&(o~ is implicit in
Eqs. (30} and (31). Indeed when e&0, z, is purely
imaginary and a simple algebraic calculation then
shows that 1+c.cosz, —P sinzo=—0 so that the 6 step
function in Eq. (30) is simply redundant.

(ii) From Fig. 2 one sees that for (o&(o~ and in
the limit a 0, the damping rate approaches a
finite value:

r„(o) 9e((o)~'

Apart from the factor 9/[1+2m((o)]'~2. 2, y„(0) is
equal to yo as given by Eq. (2) in which ko is re-
placed by Weko, the wave vector of the radiation
in the metallic region. The dipole lifetime is
somewhat increased due to multiple reflection
and reexcitation effects. Note that the apparent
resonance of the denominator at c((o) = =,' [(o
= (o~(~) '] is not real since y„(0) = 0 for (o«o~ as
discussed in (i).

(iii) For real e((o), the effect of the metal sub
strate does not vanish in the limit of very large
bubble radius. Indeed y„(0) is seen to oscillate
with the periodicity Spa = m. The asymptotic formu-
la is, from Eqs. (30) and (31),

as compared to the vacuum wavelength of 584.3 A

(in fact, one should have a&%0~=90 A). For such
small radii, we are justified to neglect retardation
effects altogether by assuming c ~ in formula
(28).

Taking the limit c-~ of Eq. (2V) or Eq. (28) is
easily done by returning to Eqs. (23) and (24).
From Eq. (29) one obtains

2 &p
(0 —(Op = COp a

)2(l-1) I g((o)
a )~ 1+[(I+1)/I]e((o) '

(34)
where

c(, =e'/m(o',

is a measure of the He ground-state polarizability.
The right-hand side of Eq. (34) has a resonance at
the frequency determined by

I+I )~'
I+(I+1) e((o) =0 or (o=(o, =—

~ (o~, (35)2)+ 1]

2&o 1 —E((o)
(2z) 1+z((o)

From the figure we see the following.
(a} The finiteness of the curvature manifests

itself mostly when the dipole is near the center
of the cavity.

' Just at rp=0, the only contribution
comes from the l =1 mode as before.

(b} For ro=a or z=0, the damping constant be-
comes enhanced and diverges at z =0. It is inter-
esting to note that this rp dependence comes from
the multipolar modes of order higher than l =1.,

(36)

i.e., at the frequency of the cavity surface plasmon
of angular momentum (I,m). '0 If the dipole fre-
quency ar coincides with one of these plasmon fre-
quencies, the corresponding term in Eq. (34) may
get quite large and Eq. (34} should be solved non-
perturbationally by using, say, Eq. (BV) in Ap-
pendix B. For our He-Al system, however, one
is far from resonance so that we may safely put
(o equal to (oo in the right-hand side of Eq. (34).

To compare the decay rate due to the plasmon
excitation with the radiation damping, we plotted
in Fig. 2 the energy-damping constant for the cen-
ter position rp=O. We see that for reasonable
values of g the plasmon-damping effect dominates
the radiative damping for small voids (i.e., g,a&1),
as was mentioned before.

The summation over I in Eq. (34) is performed
in Appendix B and in Fig. 3 we plot the energy-
damping constant yz&(ro) as a function of the dis-
tance z from the void wall (z =a -r,}for three
values of the void radius a=5, 1OA, and a=.
The last case corresponds to the Qat-metal sur-
face:
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FIG. 3. Linewidth due to
atom-plasmon coupling as
a function of atom distance
from the wall surface and
for several cavity radii.
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aP —(o' = 2(0' Q
0 3a

a' 1 —e((u)
(a' r', )' 1+we-((o)

(37)

This formula correctly predicts the actual shift
and decay rate in the two extreme cases

since the contribution from -/ = 1 is x0 independent.
When z-0, the summation in Eq. (34) should be
truncated at some maximum value of / determined
by the void radius, according to l (Q,a, where k,
is the plasmon cutoff wave vector. »» This effect
removes the divergence at z =0. However, . an
actual calculation which incorporates the cutoff
shows that this effect is appreciable only for z &2

A, as shown in Fig. 4.
(c) For z less than 3 A Eq. (34) is practically

the same as the flat surface formula (36).
For the frequency shift [real part of Eq. (34)],

analogous discussions can be performed. In the
following discussion of the line shapes we shall
use an approximate formula obtained as follows.
Let us replace the factor (l+1)/i in the denominator
of Eq. (34) by some constant X (1(X&2) independ-
ent of l. This procedure corresponds to replacing
the l-dependent frequency v, [Eq. (35)] by some
average cavity-plasmon frequency. Then the re-
maining l summation of Eq. (34) is a simple geo-
metrical series. We get the simple analytical
expression:

2(OOOO 1 —6 (g7)

a' 1 + 2 e((g))
lim ((u' —(o,') = ', ' (x =2) (38)

for the atom at the center of the cavity and

2(dotXO 1 —f ((d)lim (&o' —cg ) (2 ) 1+ ( )
(A, = 1) (39)

6 z0
I((o) =n r06 ((o —(o(r,)}dr,

0

=nr ((0)'
den

(40)

where from Eq. (37) the position-dependent oscil-
lator frequency is

(o'(x) = aP, [1+«/(1 —x)'], (41)

for the flat-metal-surface situation. Since the ex-
citation frequency of the He is well sepa, rated from
the narrow range to~/v2(a&, «o~v-, and since an
actual ro dependence of the local density n(ro) in-
volved in Eq. (14) is not at hand, the approximate
formula (37) is certainly sufficient for the dis-
cussion of the line shapes.

Let us return to Eq. (14) and first calculate the
line shape arising from the inhomogeneous line
shift alone. Assuniing zero damping [real e(a&)]
and a uniform density n, Eq. (14) reduces to
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10 ~

40 .

10-

H:G. 4. Effect of finite-
cutoff angular momentum
E of the plasmons on the
plasmon-related width
written as y, /go= {koa)
G{s/u). One sees that the
finite cutoff removes the
s ' divergence due to
higher angular momenta.

10
0 0.5

with

x = (r, /a)',

2(XO 1 —E((00)
a' 1+Xe((o,)

(42)

u = (y' - 1)/x=2(y —1)/~,

one obtains the universal line shape

f(y) =noix(1-x)'

(43)

(44)

This is plotted in Fig. 5 for a void of radius a=10
A, taking n =o.15 A' for the He polarizability and
A. = —', (K=10 '}. The line shape is seen to be highly
asymmetrical with a maximum (at ro= —',a, x = —, ,
u=1.4} very close to &oo and a long tail towards
higher frequencies. The linewidth is roughly bu
=4, i.e.,

&~/~0=2'=2x 10 4 (45)

for the example considered.
One sees that the broadening due to inhomogene-

and ro(co) in Eg. (40) is implicitly given by Eq. (41).
Letting

ous Van der Waals shift is indeed quite small for
cavities of radii larger than, say, IOA.

For smaller voids and ultimately for substitution-
al He in a single atomic vacancy, one may attempt
to extrapolate the above results. Taking a =2 A
for AI as the size of the vacancy and assuming
single He occupation at the vacancy center, Eq.
(38) predicts a maximum shift of

(46)

Only if a substantial fraction of implanted He re-
mains in substitutional sites or very small vac-
ancy clusters may this shift manifest itself in the
absorption spectrum both as a shift and as a broad-
ening. However one should reca11 that for He
trapped in vacancies (even more than for physi-
sorbed He) the mechanism discussed earlier of
electron hopping from the He 2P excited state into
the metal coriduction-band states is expected to
provide another important source of line shift and
width, perhaps more important than Eq. (46).

One can analyze, in a similar fashion, the broad-
ening due to the imaginary part of Eq. (37) assum-
ing a complex dielectric function as in Eq. (13) with
some reasonable g value.

From Eqs. (14) and (37) the full line shape which
combines both inhomogeneous shift and width due
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FIG. 5. Universal line shape
of Eq. (44) (see text) illus-
trating the broadening due to
inhomogeneous Van der Waals
of the atomic line.

0/ 10 20

to plasmons is

(47)

where y = e/&o, as before and

P =z, /a,
1 —E'((d) Qo 1

a' 1+xe(&u) a' 25

the last equality being obtained by taking g=4 eV in
Eq. (13). Equation (4V) can be written

p
l-0 x2

I(y) n Im 1 dx
( )(1

(49)

The integral can be obtained analytically (rational
function) but the result is too lengthy to report
here. Figure 6 shows the resulting line shape for
typical values of the parameters. Again it is seen
to be highly asymmetrical and relatively narrow
for bubbles of not too small radii. The width is of
order b y =6 v/&so= 2.8 && 10 ', slightly larger than
the inhomogeneous shift Eq. (45).

IV. BUBBLE ABSORPTION FROM EFFECTIVE-MEDIUM

THEORY

The results of Sec. L'II for the bubble-absorption
line shape were obtained by statistically averaging
the absorption spectrum of single i~dependent at-
oms in the metal cavity. However for all bubbles
whose size is smaller than the wavelength, all
atoms in it absorb coherently in an electric field
essentially uniform over the bubble diameter.
This effect may be taken into account by using a
different approach in which the gas bubbles are
viewed as macroscopic spherical inclusions of
homogeneous dielectric function e (&u) randomly
and homogeneously dispersed in the metal matrix.
The system is complementary to small solid par-
ticles dispersed in a gas and, when the sphere
radii are smaller than the wavelengths of interest,
the optical properties of the composite medium
may be formulated in terms of an effective-medium
approach.

A detailed discussion of the available effective-
medium theories has recently been given by Grand-
qvist and Hunderi. ~' All theories eventually co-
incide'when the so-called "filling" factor f (i.e.,
the volume fraction occupied by the spheres, which
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l(y} (arbitrary units)

10- FIG. 6. Line shape of the
atomic li.ne as given by Eq.
(49) in the text and taking
account of both inhomogen-
eous shift and damping due
to plasmons.
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10' {y-1)

in our context is in effect an "unfilling" factor and
will be, more appropriately, called the swelling
factor) is sufficiently small, say less than 10%.
In this small swelling limit, the optical properties
may be obtained from an average dielectric func-
tion 6 given hp

e = e+ 3fe(e, —e)/(e, + 2&), (50)

valid up to first order in f.
For the metal dielectric function e(&u), we keep

using expression (13) whereas for the gas c~(u&)

we are led to use the Clausius-Mossotti form

c,((o) = 1+4vnn (ar)/ [I —-', 4vna(a))], (51)

n((o) = a, &o', /[(@~0 —(o((o+iyg )], (52)

where n, is, as before, the static atomic polari-
zabiiity and where y is the linewidth. Since e~(&u)

should correctly describe the properties of the

in which n is the gas density and a(&u) is the gas-
atom dynamical polarizability.

It will be recalled that this basic formula for e
includes the dipole interactions between the gas
atoms when the external field Which they experi-
ence is uniform over the occupied region of space.
The local field is changed by the Lorentz field of
the uniform distribution of dipoles. For the polar-
izahility a(v) we take a single oscillator, Drude
form

pure gas in its actual pressure state within the
bubbles, we are led to identify y with the reso-
nance broadening width discussed in Sec. II C.
Here we shall use"

y, /(o, = 2wnn„ (53)

assuming that all bubbles have a common gas den-
sity n. This rather strong assumption restricts
the validity of the present treatment to the fairly
frequent case of narrow bubble-size distribution.
It can be lifted in a more quantitative theory if an
actual size —and hence density —histogram is taken
into account. '7

The pole of e,(v) occurs at the frequency

&o = &oo(1 ——', 2wn no), (54)

cg((u) +2&(a)) =0, (55)

i.e., if the damping terms y and g are neglected,
at

slightly red shifted with respect to the atomic line
po 81t1on Q)p due to the dipole interactions. The ab-
sorption Lorentzian Ime~(ur) appropriate to the He
gas alone is plotted as the dashed curve in Fig. 7.
The width of this line is given in (53).

The composite-medium dielectric function Z(&o),

on the other hand, is seen, from (50), to have poles
Rt
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FIG. 7. Absorption line
shape hn & (~) of the He-Al
system around the free-
atom resonance line p [Eq.
(50)]. The dotted Lorentz-
ian is the infinite gas ab-
sorption at density n. The
full Lorentzians give the
absorption of He spherical
bubbles, above the Al-metal
background shown as Im &

(~), for two values of the
swelling factor f. The
dotted line is arbitrarily
normalized to the same
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(o = a), [1+—', 4mnno (o~ /(3(oo2 —2(v~2 )] . (5V)

2 -( 2 )2

(Oo -& (Oo j
2 ~l/2 1 1/2

+ 327fn Q 0
(do

and ImZ has peculiar behavior which we shall not
investigate here.

(58)

One obtains two Lorentzian absorption peaks in
ImZ(&o), one centered around (56) with width of
order g and one around (5V) of width y . The first
line gives the absorption of the dipole plasmon of
the bubble slightly red shifted by the presence of
the trapped gas and the second line is the gas ab-
sorption, blue shifted by the metal substrate. This
atomic line is illustrated in Fig. 7 for the He-Al
case for two values of the swelling factor f to which
the absorption strength is roughly proportional.

The above results are correct up to first order
in 4mneo and off resonance. If the resonance con-
dition 3e'o —2|d~ -—0 is satisfied, the correct solu-
tions of (55) are

The aim of the present work was to examine a
number of broadening mechanisms for an optical
transition line of an atom trapped in a metal cavity
and to estimate the absorption spectrum of gas
bubbles. Particularly the line shape resulting
from long-range multipole interaction with the
surface polaritons of the substrate was studied
in detail.

If the dielectric function e(&o) of the substrate
can be treated as real, two major effects associ-
ated with the substrate occur: (i) The linewidth
vanishes when the line frequency &o renders e(v)
negative. In the free-electron model, this occurs
when &o is less than the, plasma frequency &u~; (ii)
The linewidth is oscillatory as a function of cavity
radius for frequencies higher than co~ and never
tends to the free-space natural linewidth, irrespec-
tive of cavity radius.

Both effects result from reflections and inter-
ferences of emitted photons by the concave cavity
surface and are in clear contrast to the effects
occurring with flat surfaces. These conclusions
show that it is important in curved geometries to
take account of the imaginary part of e(~) which
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brings about polariton damping and, hence, en-
hanced atomic excitation damping.

We have formulated the problem in full general-
ity, within the classical framework of Maxwell's
equations, and obtained an exact expression [Eq.
(27)] for the overall polariton linewidth.

In applying the theory to an example of practical
interest, namely, the resonance line of He trapped
in bubbles in Al, we have neglected retardation ef-
fects in view of the fact that in many instances the
bubbles have radii smaller than the vacuum wave-
length (584 A) of the He radiation. Then the shift
and shape of the atop. ic line is governed by Van der
Waals interactions with the substrate through the
nonretarded damped-surface plasmons of the cav-
ity. The new result [Eq. (38}] also applies to the
limiting case of infinite cavity radius, i.e., to an
atom near a Qat-metal surface, and agrees with
previous results obtained by other authors for this
situation. "~4 The theory predicts large shifts and
broadening of the line when its frequency happens
to coincide with one of the cavity plasmon frequen-
cies.

In the He-Al system, because of the smallness
of the He polarizability and of the fact that the He
resonance line frequency is substantially larger
than the plasmon frequencies, the plasmon-induced
width, amounting to ypl /roa=(a few times) na/a',
remains rather modest except of course for cav-
ities of radii smaller than, say, 10 A. Similar
conclusions are obtained by an analysis of the op-
tical properties of the porous metal in terms of an
effective-medium dielectric constant, along the
lines of the old Maxwell-Garnet theory" for multi-
phase media. This approach leads to both shift
and width of the He excitation proportional to the
assumed common density in the bubbles (a dis-
tribution of different densities in variable-size
bubbles may also be treated). This result is rather
favorable if one is to use the resonant absorption
line shape of He to obtain an indirect measure of
the gas pressure in the bubbles, as proposed in
the Introduction. ".
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APPENDIX A

To prove that the first term of Eq. (26) gives
rise to ya in Eq. (27), we establish the identity

&(z)= g~(I+I)(»+1)i ',&j,(z) ~'

Differentiate (Al)

(Al)

~ f

dz
=2 Q I(I+1)(2l+1)

-=el(z} -g2(z}

Eliminate j', in gl(z) by using the identity'l

(2l+1)j', =Ij, , —(I+I)j„,.
We get

(A2)

(As)

Rl(z) =
~ Z 2(I+ 1}j l/l+1 '

Z
(A4)

On the other hand, use of the recurrence formula"

(2I+ I) j& /z =j(.l+j)-l (A6)

APPENDIX 8

To obtain the analytic form of Eq. (34), let us
write the right-hand side of Eq. (34) as

td', '
~

—'
( E(u, v), (B' a' ( a & 1+e((o)

with

E(u, v)= Q v',
I' I+I)

where
u = e((o)/[1+ e((o)],

v =(~, /a)'.
The decomposition of Eq. (B2}leads to

F(u, v) = Q I'v'+(I -u)lv'-u(1-u) v'

(B2)

(Bsa)

(Bsb)

+u'(1 -u)
v' l

Z+u p

The first three series of Eq. (B4}are easily ob-
tained (note that 0& v&1). The fourth series is ob-
tained by help of the relation

(B4)

V =v dt.
Z+u 0 1-vt

Equation (B5) is valid'l for Reu&-1, i.e.,

(B6)

in g~(z) leads to g,(z) =gl(z) and hence &'(z) = 0 or
E(z) =const whose value is obtained by taking the
limit z =0 in (Al), remembering that lim, 0j,(z)/z

1=3 ~), X.
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)(—,)+2&A~ in the case of real e(co). The expression
valid for any complex value of u is derived by the
analytical continuation of Eq. (85). The result is

eo g 7t'Q tu

l +u 2i sinmu, 1 —vt
dt, (86)

where the contour C in the co&plex t plane is
shown in Fig. 8. Equation (86) has resonances
at u = —1, —2, -3, . . . , i.e., at &u=&o, [Eq. (35)]
and provides a convenient expression for analyzing
the resonant case where m lies in the region
(L)1/2 ~ (~( (2)l/2 ~

From Eqs. (84) and (87) one obtains

[mt

1g„Ret

F(u, v) =', +(1-u), -u(1-u)v(l + v) v V

(1-v ' 1 —'v 1 —5

FIG. 8. Integration contour C in the complex t plane for
Eq. (B6.). The argument of the departure point A is
taken such that t" is reaI.

+u'(1-u) [Eq. (86)] . (87)

To obtain the expression for the Qat-metal case we

have onIy to put ro =a -s and take the limit a-~
with constant z. Due to the a ' factor in Eq. (81),

the only remaining contribution to Eq. (34) occurs
from the first term of Eq. (87), from which fol-
lows Eq. (36) in the text.
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