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It is known that the Lifshitz condition is not a necessary condition for second-order phase tran-

sitions in crystals. We show, however, that a certain necessary condition (which we have termed
"the weak Lifshitz condition") does exist, though much weaker than the original Lifshitz condition.

This necessary condition imposes certain restrictions on the allowed irreducible, or physically ir-

reducible, representations associated with the transition, and accordingly, on the allowed types of
ordering below the transition.

I. INTRODUCTION

According to the Landau theory' (see also Refs.
2 —4), the type of ordering and the change in sym-
metry characterizing a second-order phase transition in
a crystal are associated with a certain irreducible, or

('k080)
physically irreducible, representation S p p (kp and
n0 are the star and the index of this representation, "
respectively) of the space group G of the higher-
symmetry phase. The precise meaning of this is as
follows: the density function of the higher-symmetry
phase p = pp(x) changes below the transition to a den-
sity function p = pp'(x) +Ap(x), where the change
Ap(x), describing the type of ordering, is a superposi-

( k08 0 k08 0)tion of basis functions @;
' ' (x) of S

Ap(x) = Xc,y, ' ' (x) .

As was claimed by Lifshitzs (see also Refs. 2 —4), the
(' "0"0)

antisymmetric square of Q should not contain
any irreducible representation in common with the
vector representation of G. This condition can be
written (see Ref. 4)

1 I I
diff'ering from 0, —, , —, , 4

(in terms of the funda-

mental periods of the reciprocal lattice). Lifshitz
derived his condition (2) by considering, instead of
(1), a more-general change in the density function

Ap(x) = gc, (x)@; ' ' (x),
(

(3)

where c, (x) are slowly varying functions (i.e. , varying
appreciably only over distances that are large com-
pared with the fundamental lattice periods). The state
of the crystal below the transition being described by

p = pp( x ) + 5p( x ) with fixed $;, the free energy
F of the crystal is an integral functional of c, (x). In
the spirit of Landau's theory, Lifshitz assumed that
the integrand of this functional (the density of the
free energy) can be expanded in powers of c, and their
gradients V„c, (p, =1,2, 3). Lifshitz proposed that the
crystalline, i.e., three-dimensionally periodic, state
should be thermodynamically stable below the transi-
tion. This means, in particular, that in thermodynam-
ic equilibrium there should be c, =const and, there-
fore, the above expansion of F should not contain an-
tisymmetric terms,

([' kpnp](2) ~

I")=0, (2) (c; 7~cd —ciVqc;) d x .

where [akpnpl[2] denotes the antisymmetric square of
(» kono) (v)D, I'"' is the vector representation, and the

symbol (S
~
~') denotes the scalar product of the char-

acters of two representations 5) and 2'. Condition
(2), commonly referred to as the Lifshitz condition,
drastically limits the types of ordering that are allo~ed
to appear belo~ the transition point. Out of the
infinity of irreducible representations of space groups,
only a certain finite number of them satisfy this condi-

{» k08() .
tion. In particular, x) 0 0 is forbidden by condition
(2) if a wave vector kp in a kp has components

1

5(c,) = g k„„J (c,V„c,—c,V„c,) d'x, (4)

Lifshitz claimed that no such invariants should exist
for a representation associated with a second-order
phase transition. Condition (2) is the group-
theoretical formulation of this claim,

After the discovery of phase transitions accom-
panied by the formation of spiral magnetic arrange-

Since such terms may enter the expansion of F only in

the form of invariant combinations

1978 The American Physical Society



460 A. MICHEI. SON

ments, in which condition (2) was manifestly violated,
Lifshitz's derivation' of this condition was disputed by
Dimmock. ' Arguing against Dimmock, Dzyaloshin-
skii and Haas suggested an alternative deduction of
the Lifshitz condition, clarifying its physical meaning.
(This deduction was carried out by Goshen et al. '0)

The idea of their suggestion is as follows: according to
the Landau theory, one should start from a general
hp(x) decomposed in terms of all irreducible
representations N' ""' of G. Designating the basis
functions of S' "") as $(""")(x),one can write this
decomposition as

p ( x ) g$ ' $ c ( ~ k n ) y ( ~ k n ) ( x )
fl i

The functions g,' ""'(x)can be chosen to be real, mu-

tually orthogonal, and normalized. Then the second-
order term in the expansion of F in powers of c
has the form

F = ggg(' «) $(c(' «))2 (6)
»k II I.

where the expansion coefficients 3' ""' depend on
pressure P and temperature T. A second-order transi-
tion tp an ordered state occurs when, on varying P
and T, the minimal of the coeScients 3' ""' changes
its sign from positive to negative. The irreducible, or

(» kpnp)
physically irreducible, representation I) - deter-
mining the type of ordering below the transition is
thus related to the minimal coefficient in (6),

(- kpNQ) k
A . Accordingly, we will name ' the
"minimum representation. " The "spectrum" of
coefficients 3' ""' has a typical band structure in the

(» kQNQ)
k space, and 3 - should be the minimum of the
lowest band in this structure (if the small representa-

(kpnp) .'
tion I) is s dimensional, where s ) 1, then the

( kpN p)minimum A o is a sticking point of s bands). '
Now, one can show ' that if this minimum is an ex-
tremum due to symmetry, the "minimum representa-

(» kpnp)tion" D o 0 obeys the Lifshitz condition, Eq. (2); if
it is not due to symmetry ("accidental" minimum),

(» kpnp)
does not obey this condition and, further-

more, varies as a function of P and T in the lower-
symmetry phase.

As claimed by Goshen et al. ,
' in the latter case(' "Q"Q)

may be any irreducible, or physically irreduci-
ble, representation of G. This claim does not however
take into account the following circumstance: the con-
cept of an ordered phase with a given type of ordering
is physically meaningful only if this phase occupies a

, certain two-dimensional area on the P-T diagram.
Indeed, the point (P, T) at which an experimental
determination (say, an x-ray study) of the ordered
structure is performed fluctuates within a two-
dimensional region determined by the fluctuations of
pressure and temperature' i),P = (ks T/ V)rs) 'i' and

5 T = (ka T'/C) ) ' (here ka is the Boltzmann con-
stant, Ks is the adiabatic compressibility, C~ is the .

specific heat at constant volume, and V is the volume
of the crystal). This means that if a given type of ord-
ering exists only at an isolated point, or on an isolated
line, on the P-T diagram, it is unobservable, however

( 'kQI1 p)
large Vmay be. Now, if the minimum A at a
given point (P, T) is not due to symmetry, an
infinitesimal variation of P and T changes the

(' kpnp)
"minimum representation" S,which determines
the type of ordering at this point. Then it may hap-

(' kpnp)
pen, in principle, that this change of X) gives rise
to an abrupt change in the type of ordering associated

( kpll p')

with X) . In this case, the type of ordering in

question will not persist throughout any (however
small) vicinity of the P Tpoint -in question and will

therefore be unobservable.
To clarify this point, consider the following exam-

ple. Let the spa'ce group of the higher-symmetry
phase be D4'. Suppose that at a certain point (P, T) in

the lower-symmetry phase the "minimum representa-
tion" of D4 is p( '". (I' denotes the origin of the
Brillouin zone, and 5 is the ordinal number of this
representation"; this representation coincide's with the
representation E of the point group D4.") It can be
shown" that the ordering associated with this
representation is of ferroelectric (or ferromagnetic)
type, with dipoles being parallel to one of the four ro-
tational axes of second order, so that the space group
of the ordered state is C2. [Though the representa-
tion in question does not obey the Lifshitz condition
(see below), it obeys another necessary condition im-

posed by the Landau theory (Refs. I —4): the sym-
metrical cube of this representation does not contain
the identity representation. ] However, since D( '"
does not" obey the Lifshitz condition, an infinitesimal
deviation from the point (P, T) will lead to another
"minimum representation, " with a nonnull star '

kp

infinitely close to the null star 'I . As a result the
above dipole ordering will become sinusoidally modulat-

ed, with a modulation period much larger than, and
incommensurable with, the fundamental lattice
periods, so that the crystal will become macroscopical-
ly inhomogeneous and will not be described by any
one of the 230 three-dimensional space groups. This
means that the above-mentioned ferroelectric (fer-
romagnetic) second-order phase transition D4' C2),

associated with the representation 53' '" of &4, is

unobservable.
The irreducible, or physically irreducible, represen-

tation associated with an unobservable type of order-
ing may be regarded as forbidden. This means that,
though the Lifshitz condition is not in general a
necessary condition for a second-order phase transi=

tion, there may be a certain weaker necessary condi-
.tion restricting 'the allowed representations in the
above sense, We shall name it the "weak Lifshitz con-
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dition. " The purpose of this paper is to give a precise
formulation of the "weak Lifshitz condition" and to
demonstrate the restrictions it imposes on the space-
group representations and the related types of order-
ing.

One should bear in mind that implicit in our discus-
sion is the applicability of Landau s analytic expansion
of F. As is well known, ' Landau's approach is invalid
in the immediate vicinity of phase transition points
and leads to incorrect results regarding the critical
behavior (critical exponents). However, as regards
the determination of the allowed symmetry changes
and types of ordering, this approach is believed to
yield correct results. It is with this belief in mind that
the "weak Lifshitz condition" is proposed.

XB.&„(c,) (7)

where s (c,) (a =1,2, ... ) are independent invariants
of the type (4), and B„are expansion coefficient
depending on Pand T.

The number and the form of the invariants I (c;)(' "o"o) 4
depend on S,i.c., on the star ko and the index
no. As is known, for a given space group G, all the
stars k can be classified according to their representa-
tive k points in the first Brillouin zone; these k points
are usually designated by certain Latin or Greek sym-
bols. ' " " Every such symbol denotes a certain one-,
two-, or three-dimensional domain of k points, or an
isolated k point (which can be regarded as a zero-
dimensional domain). A k point can move within
such a domain without changing its proper symmetry
G (k), which is the subgroup of G that leaves the wave
vector k invariant (or changes it by a vector of re-
ciprocal lattice). (For physically irreducible represen-
tations, the above classification must take into ac-
count, besides the space group elements of G, also the
inversion of k corresponding to thc operation of com-
plex conjugation. ) Accordingly, all the representations
+' ""' can be classified into the following, four types:
(i) representations with k points in general positions

II. FORMULATION-OF THK "%KAK LIFSHITX
CON DITION "

In order to determine the "weak Lifshitz condition, "
it is convenient to usc the original Lifshitz s ap-
proach, 6 in which hp(x) is taken in the form (3),
and F is presented as a volume integral of a power
series in terms of c; and V„c,. As pointed out by
Dzyaloshinskii, this approach is equivalent to his ap-
proach, in which one should take hp(x) in the form
of a sum (5) over representations S' ""' that are

(% kono)"close" to X) in the sense of compatibility rela-
tions "and then expand F in both c ""' and k —ko.('k )
If R p p does not satisfy the (original) Lifshitz con-
dition, then the Lifshitz expansion of F should contain
a term

in the k space; (ii) representations with k points in
general positions on certain symmetry planes; (iii)
representations with k points in general positions on
certain symmetry axes; (iv) representations with k
points in special positions. One can say that in the
cases (i), (ii), (iii) and (iv) the k point and the
representation Q' ""' in question have three, two,
one, and zero degrees of freedom, respectively.

%hen ko varies within the appropriate domain of
degrees of freedom [in the cases (i) —(iii)] without

(' "o"o)crossing its boundary, the representation Q
varies continuously with ko without the change of the
index no. The number of independent invariants
ii (c;) in the term (7) then remains unchanged, as
well as the form of these invariants, i.e., the
coefficients k;,„in (4). As distinct from this, the
coefficients 8 in (7) may vary with kp and are func-
tions of those coordinates of the ko point that are free
to vary within the appropriate region. Designating
these coordinates as kpt", ..., kpi i, where m - m (kp) is
the number of degrees of freedom of ko, one can
write 8 =B,(P, T;kp"', ...,k@™).

(4 kono)If the representation + involved in the
definition (3) of b p(x) is the "minimum representa-
tion" at a certain point (P, T) below a second-order
phase transition, then the term (7) automatically van-
ishes at this point. This means that

8 (PTkt" ki i)=0 (S)'

Ap(x) = $c,P, ' ' (x)
I

with c; independent of x, varies continuously with P, T
throughout the above vicinity. Ho~ever, along with
this variation, the symmetry of this ordering and its
orientation with respect to the initial crystal structure
(of the higher-symmetry phase) remain unchanged, so

at this point. The number of independent invariants
ii (c;) in (7), which equals ([ kpnp][2]~I' " },may be ei-
ther equal to m(kp) or larger than m (kp). [One can
prove that it can never be smaller than m ( kp), but
this fact is immaterial for the subsequent results. ] If

(['kpnp]l2i[I'"') = m(kp)

then the number of equations in (S) equals the
number of variables ko"', ...,ko™,and one may regard
kp as a solution of these equations at the point (P, T}
in question. An infinitesimal variation of P and T-will

lead to an infinitesirnal variation of this solution.
Then there exists a certain (two-dimensional) vicinity
of the point (P, T), in which the index np of the
"minimum representation" is thc same as at the point
(P, T) and the kp point of this representation varies as
a function of P, T within a single domain of degrees of
freedom. As a result, the ordering below the phase
transition described by the function
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that in spite of the above variation one can speak of a
single type of ordering.

For instance, the helicoidal magnetic ordering in Dy
is associated with an irreducible representation of the
higher-symmetry (paramagnetic) space group D6„,
which is of the type"~' ". Throughout the hel-
icoidal phase, the wave vector kp of the above
representation varies as a function of P and T within
the one-dimensional interval denoted by the symbol
6:kp = kpc, 0 ( kp ( 7r/c (c is the unit vector in the
direction of the sixfold axis, and c is the lattice period
in this direction). This variation exhibits itself in the
variation of the pitch of the helix; ho~ever, the type
of ordering —a spiral with the axis parallel to the six-
fold axis of the crystal —remains invariable. This type
of ordering is determined uniquely by the label ( h5)
of the above representation.

If

(['kpnp](z)lI'"') )m(kp)

y(k)y(&) y(k)@(k) (i J I s) (10)

form a basis for a certain representation I & of the
subgroup G(~k) consisting of those elements of G
which either do not change the vector k or transform
it into —k. If G contains an element [p l

t }(p is a

point group element, and t is an appropriate transla-
tion vector) which transforms k into —k, then

invariants tt (c;) in these cases, let us apply the
method developed by Lyubarskii. ' According to this
method, one has to consider two independent bases
[ih

"
} and [i[i

" }(i= l, . .., s) of S " where Q " js
the small representation of the subgroup G (k)
corresponding to the full-group representation S. Be-
sides [@ "'}, [Q "'},one has to consider the complex-
conJugate bases" [ih "'},$ "'}of the representation
S'")= S( "). [In the cases (i) —(iii), the vectors k and
—k are nonequivalent, and so are the representations
S(") and 5)( ").] The sz antisymmetric functions

then the number of independent equations (8) is

larger than is the number of variables kp", ..., kp '. In
this case, however small the vicinity of the point
(P, T) in question is chosen, Eq. (8) cannot be
resolved throughout this vicinity. If

G(~~) = G(k) + [pit} x G(k)

If G does not contain such an element, then

G(~k) =G(k)

(11a)

(I lb)

The star of the representation I~ is obviously the null
vector. Therefore, I& can also be regarded as a
representation of the point group G(~ k) correspond-
ing to the space group G(+. k). As was shown by
Lyubarskii, ' the number of independent invariants

g (c,) equals the number of times the unit representa-
tion of G(~ k) is contained in the product I"s) x I'v,
where I r is the vector representation of G(~,k).
The application of the weak Lifshitz condition to the
cases (i) —(iii) thus reduces to the determination of Io)
and the decomposition of r~ x I,.

([ kpnp] (2) l
I")= m ( ko) + 1

these equations can be resolved only on a certain line
passing through the point (P, T), and if

(['konol[z) li'") = «ko) +2

III. APPLICATION TO REPRESENTATIONS OF
TYPES (i) -(iii)

Let us first consider representations &of type (i).
In this case G ( k) is simply the subgroup of j&ure

translations, and the small representation X)'" is one
dimensional, Therefore, there exists a single antisym-
metric combination

@(k)y(k) . @(k)p(k) (12)

The point group G(~k) can be either Ci or C;. If
G(~k) =C, , then Is) =A, I i =33; if G(~k) = C„
then I.s) =A„(because the inversion element I
transforms $(") into Q(") and ilt(") into (It(")) and
I y =33„." In both cases there are three independent
invariants s (c;). This means that any representai'(on 2)
of type (i) is allowed by "the weak Lifshitz condition "Ac-.
cordingly, sinusoidal arrangements with a general
wave vector k are always allowed to appear below the
transition.

they can be resolved only at the point (P, T) itself. It
follows immediately that the "weak Lifshitz condition"
is expressed by Eq. (9).

To simplify the notations, let us further replace kp
(4 kpnp)

with k and S p o with D. If S is of the type (iv), it
has no degrees of freedom: m ( k ) = 0. In this case
Eq. (9) reduces to Eq. (2). It foHows that with respect
to the representations of type (iv), the "weak Lifshitz con
dition" is equivalent to the original Lifshitz condition The.
k vectors of representations of type (iv) have com-

[ ] 1

ponents 0, 2 3 4
in terms of the fundamental

periods of the reciprocal lattice; therefore the ordering
associated with any such representation does not des-
troy the three-dimensional periodicity of the crystal
and leaves the crystal macroscopically homogeneous.
The above results means, as should be expected, that
the original Lifshitz condition is a necessary condition
for those second-order phase transitions in which the

i 1

crystal remains three-dimensionally periodic in the
lower-symmetry phase.

Representations of type (iv) that do not satisfy this
condition are thus forbidden. An example of such
representation has been considered in Sec. I.

Let us now consider the representations of types
(i) —(iii): In order to find the number of independent
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Let us now consider representations of type (ii).
Here one encounters the following three possibilities:

G(k) =C,', G(~k) =C, ; (13a)

(14)

The element (I( —cz } of the space group G(+k) = C2i,

(c is the lattice period in the z direction) transforms
the basis functions @it",@2t"' of the representation
I)'"' into @2",$,"', respectively. From here and
from (14) it follows that the representation I'~ of the
point group G(+k) = C2i, based on four functions
(10) with ij = 1, 2 has the following table of charac-
ters:

E C2 o. I
4 2 0 —2

The decomposition of this representation is

I~ =A, +23„+8„.
Since the decomposition of the vector representation
1S

G(k) =C, (m =1,..., 4), G(~k) =C (13b)

G ( k ) = C, (m = 1,. . . 4), G (+ k ) = C2i, , (13c)

where the twofold axis is normal to the plane of the k
points in question. The small representation S'"' can
be either one or two dimensional. If S'") is one di-
mensional, then there exists a single antisymmetric
function (12). Now, if G(k) = C, , then the function
(12) in question is invariant under C, . If the point
group G(~k) contains the element C2 transforming k
into —k, then the corresponding space group element

(C2( t ( in G (~k) transforms @'"' into $'"' and i(i'"'

into Iti'"'. lt follows that in all the three cases
(13a)—(13c), the representation I si is contained twice
in the vector representation I „of G(~k) [in the
cases of (13a)—(13c), I~ = B,A ', 8„, respectively];
therefore there are two independent invariants s (c,).
It follows that if the small representation S'"' is one
dimensional, the full group repre-sentation S of type (ii) is
allowed by "the weak Lifshitz condition" and the
corresponding type of ordering may appear below the
transition.

As distinct from this, if the small representation
D'") is two dimensional, then the representation S
may be forbidden. For example, let us consider the
space group 6 = C2I, . This group has a physically ir-
reducible representation" s = X)' "+ X)'

corresponding to a general point S on the face of the
Brillouin zone normal to the z axis (the twofold axis).
The small representation ~'"' =~' "+~' ' of the,

space group G ( k ) = C,' is two dimensional, the ele-
ments F. (identity element) and o' (reflection in the xy
plane) being represented by the matrices

I v=~„+28

it follows that the product 1~ & I y contains the unit
representation four times. Accordingly, there are four
independent invariants tt„(c,), and the representation
S = B' "+ ' " is forbidden by the "weak Lifshitz
condition. "

Let us now consider representations of type (iii). In
this case the point group G(~k) can be one of the
following groups: C„C,, C3, C, , C, , C„, C3„C4„
C6v& S4s S69 C2h s C3h s C4h s ~6h s D2& D3s D4s D6s D2ds

D3d, D2„, D3i„D4i„D6i„and G(~k) one of the
corresponding space groups. If G (~k) is one of the

groups C„C2, C2q, then the line of k points having
one and the same symmetry is normal to the
reAection plane or parallel to the twofold axis; if
G(~k) = C2„ this line is either parallel to the twofold

axis or normal to one of the reflection planes. The
point group G(k) of the k point can be one of the
following groups: C&, C2, C3, C4, C6, C2„, C3„C4„,
C6, , and G ( k) one of the corresponding space
groups. The small represeritation D'"' can be one di-

mensional or multidimensional. " If X)'" is one di-

mensional, 'then a straightforward calculation made for
all the above groups G(~k) shows that the one-
dimensional representation I & is contained in 1 ) only

once; therefore there is a single invariant (4). This
means that if S'"' is one dimensional, the corresponding

representation D of type (iii) i.s allowed by the "weak

Lifshitz condition

If X)'") is multidimensional, then D may be forbid-
den. Consider, for example, the space group 6 = C3,.
This group has a physically irreducible representation—('~3)=S' ~" + S corresponding to a general point b,

on the threefold axis. The small representation
5)'"' = D'~3' of the group G(k) = CD„ is two dimen-

sional, and its matrices corresponding to the elements
of the point group C3, (the space group C3„ is sym-

morphic) coincide with the matrices of the point group
representation E. The representation I & of
G(~k) = C3„based on four functions (10) has the
following table of characters:

E 2C3 3

4 1 0

and its decomposition is

I ~=A)+A2+E

Since the vector representation of C3„decomposes as
I )

= A ~ + E, the product I ~ x 1 ~ contains the unit
. representation twice. Therefore there are two in-

dependent invariants 5 (c,), and the representation(.g 3)
—('4 3) ."+ S is forbidden by the "weak Lifshitz

condition. "
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IV. CONCLUSION

In conclusion, let us summarize the results of this
paper. We have found that though the original
Lifshitz condition expressed by Eq. (2) is not a neces-
sary condition for second-order phase transitions in

crystals, it should not be omitted altogether, but re-
placed by the "weak Lifshitz condition" expressed by

Eq. (9). It turns out that all the irreducible, or physi-
cally irreducible, representations of type (i) are al-

lowed by this condition, and so are those representa-
tions &of types (ii) and (iii) that are induged from
one-dimensional small representations O'"'. On the
other hand, if the dimensionality of I) '"' is two or
more, then the corresponding representation S may

be forbidden. One must then calculate the number of
independent invariants tt (c;) of the type (4) according
to the procedure described in Sec. II, and compare this
number with the number of degrees of freedom of k
[two degrees of freedom in the case (ii), and one in

the case (iii) j; if the number of invariants tt (c,)
equals the number of degrees of freedom, the
representation I) is allowed by the "weak Lifshitz con-
ditions"; if it is larger, then S is forbidden and so is
the type of ordering associated with X). Finally, if the
representation 8 is of type (iv), the "weak Lifshitz
condition" becomes equivalent to the original Lifshitz
condition, and' the relevant results of the previous
works' "become applicable. In particular, there exist
representations of type (iv) forbidden by this condi-
tion.
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