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A proposed liquid state of metallic hydrogen at zero temperature is explored, and a variational

upper bound to the ground-state energy is calculated. It is shown that the possibility that metallic hydrogen
is a liquid around the metastable point (r, = 1.64) cannot be ruled out. This conclusion crucially hinges on
the contribution to the energy arising from the third order in the electron-proton interaction, which is shown

here to be more significant in the liquid phase than in crystals.

I. INTRODUCTION

An interesting possibility of a zero-temperature
liquid ground state of metallic hydrogen has been
recently explored in a calculation' that makes use
of a Jastrow-Slater many-particle variational
wave function' ' to calculate the ground-state en-
ergies of both solid and liquid phases. The sym-
metric part of the wave function is treated by the
Monte Carlo technique and exchange is neglected in
both liquid and solid phases. It is found that the differ-
ences in the energies of the liquid arid the solid
phases varies from 0.1% at &, =1,6 to about 3% at
t', =0.8 [here 4»t/3(&, »t, )s =I/r» and I is proton or
electron density]. From a rough estimate of the
energies it is argued that the solid phase is en-
ergetically more favorable throughout the entire
range of densities considered. However, the cal-
culation is based on a model of pair interactions
between protons and therefore contains only terms
generated to second order in the electron-proton
interaction. The contribution coming from the
third order in the electron-proton interaction is
known to be significant in the calculation of the
band-structure energy" in the solid. In view of
the small energy difference between the solid and
the liquid phases it is therefore necessary to esti-
mate the third-order term for the 1iquid as well.
Furthermore, since in the liquid certain configura-
tions will permit three protons to come closer to-
gether than they would in a solid, we might also
expect that the contribution from the term third
order in the electron-proton interaction may be
relatively more important in the liquid phase.

In this paper we shall first show that a simple
one-parameter variational wave function, when
combined with the hypernetted-chain (HNC) integral
equation, ' can reproduce the energies calculated
in Ref. 1 (with a six-parameter variational wave
function and the Monte Carlo technique) to within
0.025%-4.2'%%uo, and therefore provides a very rea-
sonable upper bound. Precise agreement is not in
fact necessary in order to provide variational

answers to the following questions: (a) How much
does the third-order term contribute to the ground-
state energy of the liquid? (b) What are the correc-
tions in the energy of the liquid state attributable to
long-wavelength phonons? (c) Is itpossible to lower
the energy of the liquid by permitting partial align-
ment of the spins of the protons~

The calculation described below is a judicious
combination of variational and perturbative meth-
ods, and is intended to suggest that for certain den-
sities the possibility of a liquid metallic phase of
hydrogen at zero temperature cannot be ruled out.
The conclusion hinges on the fact that the third-
order term is significant and is perhaps more so
in the liquid.

II. FORMULATION

In a sense, hydrogen is the simplest metal; its
Hamilton. ian is known exactly: For & protons, &
electrons, and volume ~ we write

H =II~+ Hp +Imp

S2 ~2

(2.1)

Here we have denoted the proton coordinates'by
(R») and the electron coordinates by (r» }.A major
simplification takes place' when we rqalize that
there are two widely different time scales involved
in the problem, allowing us to remove electronic
degrees of freedom by assuming that at any instant
we ean consider the electrons to be in the ground
state corresponding to the instantaneous proton
configuration. This Born-Oppenheimer adiabatic

~ approximation reformulates the problem in terms
of an effective Hamiltonian of protons. The price
we pay is that the indirect interaction between the
protons, now mediated by the electrons, is no
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longer a simple Coulombic pair interaction, but
contains many-body forces. ' With electron co-
ordinates now integrated out, the total Hamiltonian
for the protons becomes'

H» =E»~+ T»+ V»»+E ~»»~({Rg})+E»~') ({R,})+

(2.2)

where ~«, which is the exact ground-state energy
of the interacting electrons in a uniform positive
background appears as a constant energy, and sim-
ply drops out of the calculation. In Eq. (2.2) T'»

and V~ are the parts of the original Hamiltonian of
the protons and E~»" ({R~}),which are functions of
the proton coordinates, are the electron-mediated
interactions between protons that are generated by
adiabatic perturbation theory Px.ovided Eq. (2.2)
concierges, the procedure is exact within the adia-
batic approximation. Most important, note that to
this point we have not made any assumptions re-
garding the positions of the ions; the discussion
holds for liquids and crystals, whether static or
dynamic. The precise form of E," ({Rg})can
easily be written'

drops out of the difference in energies between the
liquid and the solid phases, which is the important
quantity in examining the phase transitions between
the two. The uncertainties in the electron-gas re-
sponse functions X~" (k„k„.. . , k„„)will surely
affect each of the terms E," ({Q), but, once again,
they will not influence too greatly the difference
in energies. Thus this particular reformulation,
Eg. (2.2}, should be a reliable starting point to cal-
culate the energy difference between liquid and sol-
id phases.

For X~'~(k) we shall choose the Hubbard-Geldart-
Vosko' (HGV) form for the dielectric function &(&)

which is known to be of sufficient accuracy at
least for &,(2. For X,(k„k„k,) we shall make use
of the form used by Brovman, Eagan and Holas, '
in which the one-body interactions are screened by
the HGV dielectric function. This approximation
for X ' (k„k„k,) has been used extensively, and is
believed to be reasonably accurate. The Hamil-
tonian can now explicitly be written' if we neglect
E~" ({Rg})for +-4:

N

If ~E o — Q V- +Q Q (R)))
I

E» ({Rg})=~QQ V(k, )V(- k, )X ' (k, ),
I

E~" ({R,})=—,'0 P V(k, )V(k, )V(k,)
1s 2s~

(2.3)

+ ~ 4'"(Ri~i»» ~&I»),
i& j&k

w'here

(2.6)

(2.4) (2.7)

and similarly for the nth-order term. Here,

4 'M2

R
1

and

(2.4')

(2.6)

is the exact first-order static response of the in-
teracting electron gas to an external potential.
Similarly, X~"l(k„k„.. . , k „„)is the exact &th
order response. In other words, if we know the
nth-order response function of the interacting elec-
tron gas exactly, we would also know exactly these
extra many-body interactions between protons, and
we can proceed to diagonalize the proton Hamilton-
ian.

The interesting point to note is that the rewriting
of the original Hamiltonian in the fox'Dl given iQ Eq.
(2.2) splits off a large volume-dependent term (or-
der 1 Ry) that does not depend on whether the pro-
tons form a liquid or a solid, and therefore simply

an effective linear-response pair potential. Fin-
ally, the third-order term" is given by

Q~') (Bq), Rq„R),)

1
(2w)

ill R- K R. -4(k + h ) ~ Rx

x&(k„k„-k,—k, }. (2.9)

is a l.arge volume-dependent term that is conveni-
ent to separate out. In Eq. (2.7) + is the number
density (&/&) and & is the compressibility of the
uniform interacting electron gas neutralized by a
uniform positive back~round at the same density.
Note that the terms E»» ({R~}) and V»» have been
combined to give

( } ~ 4~e ~ ik (R-R-}(,~) =
( ), k ~, (~), (2.8)
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Here A is

with

(4»e )
k2kmkme(k )e(k )e(k }1 2 3 1 2 3

(2.io}

&2m' f k'„5 + 2k~+k)

—2e(k, —k„)~ tan-'~a

[1 e(k, k„)j

1-&A
x sin

(2.11)

Finally, we obtain

&=En+If"'+ ~ 0"'(Rw, R&a, Ra), (2 21)

where E& is a constant volume-dependent term and
we have split off the Q~' term from Hi') given by

ff(2) g2 Q (f)(2) (R )
S2

2m'

In Ref. 1, II was approximated by E q +II~' . We
proceed from this point and shall first attempt to
diagonalize II ' as well as possible with a one
parameter-variational function that, as we shall
see, will give an error of no more than 4% when
compared to the calculation of Ref. 1 employing six
variational parameters. An optimum wave function
obtained in this way will be used to calculate the
variational bound for the contribution from Q~').

(2.12)

& =I k» -qkl "/qs,

where 8(&)=l for x-0 and 0 for x&0. The re-
maining parameters are given below:

k, k,k, ,
t' 1 k', +k', +k2

(2k»)~ ~» 2 (2k»)2

III. CALCULATIONAL TECHNIQUE

In this section we shall outline the method used
in calculating the ground-state energy. of the Fermi.
liquid corresponding to the Hamiltonian given in
Eq. (2.6). A Zastrow-Slater variational wave func-
tion' '

and

k,k k,
2[k~km 0 .k, )2P

cos8, = -k, k, /k, k, ,

cos8, = —k, 'k, /k, k, ,

cos8, =-k, k, /k, k, .

(2.13}

(2.14)

(2.is)

(2.16)

q (1,2, . . . , N) =DC'e (3.1)

will be used to calculate an upper bound to the
ground-state energy. In Eq. (3.1}D is a Slater
determinant made out of plane waves and +p is a
symmetric correlating factor designed to take
care of the strong interparticle interactions. It is
responsible for a large part of the energy. A sub-
sequent Wu-Feenberg expansion' ' then uses an
exact transformation to recast the problem into
a calculation of two distinct parts. Thus we shall
set

where

~~(n)/n'
1- »)'&(n)/(2))'+g) (2.17)

E(q) =1+[(1-))'}/2q] ln ~ (1+q}/(] q)), (2.18)

. n = (~s/2»)(4/9»)' ',
g = 1/[1+O.O31(4/ev)"'vr, /2j,

(2.19)

(2.2o)

and )i =k/2k».

If we take & (k) to be the random-phase approxima-
tion (RPA) dielectric function, then A would be
precisely the HPA approximation for the three-
tailed diagram.

As mentioned earlier, the dielectric function
&(k) is taken to be of the HGV form and is explicitly
given as

g -g +g (3.2)

where E., is the exchange contribution and E& is
the eigenvalue of a symmetric ground state corre-
sponding to the Hamiltonian. Then

a((R, j)e,' =E,e,', (3.3)

1
x (4 )mdr ~ ~ ~ drp N

~

y (3.4)

which may be calculated by a statistical cluster

where q', in Eq. (3.1) is chosen to be the eigenfunc-
tion of Eq. (3.3). The calculation of E» therefore
does not involve the antisymmetric factor and re-
sults in a considerably simplified problem. A
knowledge of this +~ is then utilized to calculate

E,„=Q (@o}, V, D* ~ V, Ddr, . dr»m
g
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expansion of the type

E E01+E02 +E03 + ~ ~ ~

ex Ji F E (3.6)

whre &&~ involves +-particle exchange. These
terms are easily calculated (at least up to the
third order) as we shall see below. The entire
procedure is meaningful when EB is much greater
than E,„and the series in E., converges rapidly.
We shall see later that the first condition is very
well satisfied, EB being several orders of magni-
tude larger than E,„, However, the second is only
moderately well satisfied, each term dropping by
a factor of 3-~ of the previous term.

So far we have implictly assumed a paramagnetic
ground state, each level being doubly occupied in
the Slater determinant. However, it is easy to ex-
tend the result to a departure from double occup-
ancy. ' ''2 The resulting form for E,„ is then

E (x) =E~(x) yE~(x)+Eo'(x)+

(3.7)x =(N —N )/N

Here &. P ) are the numbers of up (down) spins
and & is the total number of spins. A nonzero
value of & will signify a magnetically ordered
phase. Clearly & =1 will represent a ferromag-
netically ordered phase. Notice that E0 does not
depend on &. We shall try to determine whether
E,„(x) possesses a minimum E,"„(X„)per particle
at a nonzero value of x. It will turn out that the

where & is the spin-imbalance order parameter de-
fined by

IV. VARIATIONAL METHOD

From the variational point of view, EB in Eq.
(3.2) is conveniently split into three parts,

E E(2) E(s) ~uh
B B + B + B (4.1)

The first term, EB', is calculated by variationally
optimizing the Hamiltonian Hi' ((R,})with the
many-body Jastrow wave function given by

yB e- u(t gg ) /2
0 (4.2)

where

u(r} =(6/r)'e ("~'l (4.3)

This wave function is a simplified one-parameter
form for that used in Ref. 1. The energy functional
is minimized with respect to the parameter & at
every value of &„and the resulting wave function
is then used to calculate the expectation value of
(]]) ' (fR,}). The E g obtained in this first-order
perturbation is also a variational bound. The u(&)
expressed in E(I. (4.3) is short ranged and does
not include the contribution due to the long-wave-
length phonons. This is done perturbatively with
the help of the Chester-Reatto wave function. "
The relevant formulas are summarized below:

energy difference r).E(X)=E„(x=0) —E,„(X„)per
particle is small, only -10 ' Ry. (It is worth noting
that this is not small on the scale of a supercon-
ducting pairing energy. )

V m mp (4
Cxx'v (x)gas(x)

(4.4)

where all distances are scaled with respect to the
inverse Fermi wave vector, I/&~, including the
variational parameter & (& =&r/~~). In E(I. (4.4),
&, denotes the average interparticle distance
scaled by the' Bohr radius and goe(x) =-gas(&), (&

=x/&r) is the pair correlation function defined as"

g s(r„)= s, (+,}'dr, & r„N(N —1)

o~ ~r| dr])(
(4 6)

Note that @0 is defined in E(ls. (4.2) and (4.3). The
corresponding static-structure factor S,(&) is de-
fined by the Fourier transform' '

Finally, with the distance and the wave vector
scaled,

oo

is the screened interaction and &(W} is the HGV
dielectric function. Once again, all wave vectors
are scaled by &|,(~~~ =X~~). For g03(&) we shall use
the HNC approximation, ' ' which is known to be
satisfactory for Bose fluids and has been tested
for a variety of interaction potentials. ' ' In this
approximation gas(&) is the solution of the non-
linear integral equations relating the direct corre-
lation function &(&) to go~(&):

S'(1)=)rejC re'"' '[1'(r) —1], (4.6)
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c(r) =g B(r) 1 lngB(r) +u(r) . (4.9)

x - ~, ~ ~ SB(kq, -k —q)

The procedure is to solve Eqs. (4.8) and (4.9) for
a given value of the variational parameter ~ by a
standard numerical procedure and to use the re-
sulting goB(r) in Eq. (4.4) to calculate the energy.
This process is repeated for a number of different
values of b to find the optimum goB(r), u(r), and
the minimum in energy at a given density or &, .
We then proceed to calculate the contribution due
to Q

' (f Rj). Thus

@(.) &+'. IIf'(ER ))I q".&

&q;lq;&

&k dq
~e 1 1
7r3 q q~e(q) kne(k)

ture factor, an approximation that has been ex-
tensively tested for soft-core potentials'4 and in
many other situations. " Thus w'e set

SB(k, q, —k —q) SB(k)SB(q)SB(k +q), (4.14)

which clearly has the required property that it
vanishes when any of the three arguments vanish-
es. As is made clear in the Appendix, this is sim-
ply because of the fact that the convolution approxi-
mation satisfies all of the normalization conditions
to be required of the probability-distribution func-
tions. However, as is well known, '' the short-
range wave function in Eq. (4.3) does not lead to a
SB(k) that vanishes as k-0. This needs to be cor-
rected for the presence, expected physically, of
long-range phonons before we can evaluate the
third-order energy given by Eqs. (4.10) and (4.14).
The procedure is almost standard. " The Chester
and Reatto wave function is long ranged and has the
form

X A(k, q, -k —q), (4.10)
xp

30k c 1
x +x (4.15)

where

SDB(k, q, -k- q) =&~.'I p;p;p;-;iq;&/&q;I q;&

and
E

pg=P e ' '*, k&0.

(4.11)

(4.12)

where we have scaled the distance by &~, i.e.,
r =&/kr and &, is a variational cutoff parameter.
Here & is the velocity of sound in this hypothetical
Boson system and can be obtained from the energy
E(2)./+.

4 & ~~ y'~cr
9v 2 dr, ' dr,

(4.16)
A distinct feature" of the response function of
A(k, q, -k —q) is its singular behavior when k+q
=0, i.e.,

a(k, -k, o)-lnl k;--.'knl. (4.13)

This singularity is stronger here than in the sec-
ond-order response, where only the derivative
has a logarithmic singularity. This amplification
is due to the confluence of the usual second-order
Kohn anomaly, which is always present in the
third-order response, and the intrinsic singularity
of the third order response. It is clear that the
integral in Eq. (4.10}can only be defined if this
singularity is canceled by other terms present in
the integrand. To this effect we prove rigorously
in the Appendix the following result:
lim~ OSB(k, 1, -k-1}-ok if lim~ OSB(k}-ak.
Similar results hold when 1-0 and (k+1~ -0.

Thus it is necessary that S (k) vanish at least
linearly with & in the limit of small &. Further-
more, any approximation for the three-particle-
structure factor must be such as to preserve this
property. One such approximation is the convolu-
tion approximation' ' for the three-particle-struc-

where LH is long ranged and the corresponding
correction in the pair-correlation function is

bg(r} =g (r) {e " —1), (4.18)

where

gB(r) =gB (r) + bg(r) (4.19)

and U»(k) is the Fourier transform of U». Fin-
ally,

r(r) = 1
(2)( ' SB(k) U» (k)

1+«i (k)SB(k)

(4.20)

where cBB = (vr/~3)(m, /m~)'~' and vB kkB/m, -
The choice of such a long-range wave function leads
to a sequence of changes, given next. The structure
factor SB(k} calculated with the short-ranged (LR)
wave function is modified to SB(k), given by

SB(k) =SB(k)/(1+"SB(")U»(k)~, (4 1'1)
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d r 5g(r) V'[U(r) + U (r)]

The correction to the energy is then

a@B&" a' n
dr g's(r)V U~n(r)

mp

82n
+8m'

+ 'p -~(r) 5g(r) dr . (4.21 }

Finally, Eq. (4.10) can be rewritten to obtain the
third-order contribution to the energy,

g(3)
B

N

OO

g 0
(4.22)

where ~ is the angle between the vectors k and q.
Thus E~g~/N can now be calculated numerically if
SB(g) is known.

V. EXCHANGE CONTRIBUTIONS

to the energy. The total energy per particle is

E(x)/N =E,„/N

=[E~~~~+E~g ~+EEe )/N+E, „(x)/N, (5.1)
where E,„(x}/N is the exchange energy of the ferm-
ions (protons in this case). In Eg. (5.1) the energy
up to third order in exchange is given by

E,„/N =Z, (n x)/N+E~ (n, x)/N+E~ (n x)/N+ ~ ~ ~

As mentioned earlier, the Wu-Feenberg expan-
sion is used to obtain the exchange contributions where

(5.2)

Z'(n x) =&e [(1+x)' ' (I x)' '] (5.3)

E'~n x 1 I
'=12 er (1 yx}8~' (y4 ——'y'+ zy')[S (2kJy) —1]dy+(I-x)8~' (y4 ——'y'+ —'y') [S(2kzy) I] dy

~

(5.4)

z„,(m, ~) e, [3)( y,'.S(kzyl. }[S(key„)—1][S(kEy, s}—1] dyl dy, dy3

+ (1 —x)"~' y,'p (k~ y„)[S(k~y„) —1][S(k~y,s) —1] dy, dy, dy,
~
.

pe (] 1 2 3]' (5.5)

Note that e~ =@'k~2/2m~, k~ =kr (1 a x)' ', and x
=(N. N )/N. As mentionedearlier, our intention
is to compute the ground-state energy as a func-
tion of ~. The term E03 is calculated by making
the quadratic approximation described in Refs.
2 and 12.

VI. RESULTS

In Fig. 1 we show the dimensionless potential
function Uo(x) [Eq. (4.7)], for some typical values
of &,. In Fig. 2 we show the corresponding pair-
correlation functions gs(r). The actual fermion
pair-correlation function can be obtained from
these by the Wu-Feenberg expansion, 2' fermion
corrections being small in this case. The reason
why we have not displayed them is because they
are not explicitly required in the method of cal-

S

culating the Wu-Feenberg series used here. The
structure factor S~(k} corresPonding to ge(r) is
shown in Fig. 3 for a few typical values of &, . It
is clear from these plots that there is a consider-
able amount of short-range order in liquid metal-
lic hydrogen as compared to, say, liquid helium.
One should also note that the interaction potential
exhibits a strong density dependence.

Table I compares our results for Eem~[Eq. (4.4)]
with the calculation in Ref. 1. It is clear that our
one-parameter variational wave function gives a
reasonably good upper bound. Also shown in Table
I is the detailed decomposition of EB into kinetic
and potential energies. We should emphasize that
precise agreement between our one-parameter
variational results with the six-parameter Monte
Carlo results, ' is not necessary since we are sim-
ply interested in an upper bound for the contribu-
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TABLE I. Boson part Es of the ground-state energy. Eg)(MC) is the Monte Carlo results of
Bef. 1. All energies are expressed in By.

7$ E+/N Eo MC)/N AgB /N g(3)/N
B

0.50
0.80
1.20
1.30
1.36
1.40
1.45
1.488
1.50
1.55
1.60
1.70
1.80

5.35
5.55
5.50
5.435
.5.40
5.37
5.315

5.28
5.225
5.175
5.05
4.9

0.074 06
0.031 95
0.013 86
0.01143
0.010 26
0 ~ 009 54
0.008 65

0.007 94
0.007 23
0.006 61
0.005 49
0.004 52

2.762 68
0.762 54
0.19986
0.146 16
0.12104
0.106 65
0.090 95

2.836 74
0.794 49
0.213 72
0.157 59
0.13130
0.11619
0.099 60

0.077 26 0.085 20
0.065 43 0.072 66
0.055 10 0.061 71
0.038 24 0.043 73
0.025 31 0.029 83

0.7943
0.2079

0.1262

0.0847

0.0592

-0.001 58 -0.014 42 0.540 62
-0.000 54 -0.021 20 -0.861 88
-0.000 21 -0.02944 -1.103 53

-0.000 16 -0.032 58 -1.100 50

-0.000 12 -0.035 28 -1.083 94

-0.000 11 -0.037 18 -1.067 90
-0.000 09 -0.039 08 -1.049 88
-0.000 08 -0.041 00 -1.030 74

hydrogen" could easily be of the order of 0.01 Ry.
The contribution of the third-order term in the
liquid is more significant than in the solid. For
example, at &, =1.6, the third-order energy in the
liquid is -0.0372 Ry, as opposed to -0.0322 Ry
as calculated by Hammerberg and Ashcroft. The
corresponding comparison at &, =1.36 yields
-0.0326 Ry for liquid as opposed to -0.0281 Ry
for the solid." Finally, the liquid-state energies
calculated in this paper are a variational upper
bound, and the exact energy is expected to be low-
er. Thus one cannot in principle exclude the ex-
istence of a liquid ground state of metallic hydro-
gen, though it is certainly not established as a
preferred ground state.

VII. CONCLUSION

We have investigated the possibility for a liquid
ground state of metallic hydrogen at zero tempera-
ture. We conclude that the possibility of a liquid
phase near the metastable zero pressure point

TABLE II. Exchange contribution to the ground-state
energy. All energies are expressed in By.

cannot be ruled out. We have found that the third-
order terms in the liquid are significantly loner
than the corresponding ones in the solid, and a
careful estimate of these terms in the solid phase,
which also incorporates the dynamics of the pro-
tons, is essential to determine the liquid-solid
transition (if any). We have also found that the
contribution to the ground-state energy due to the
long-range phonons is neglible, although their
presence is necessary. An interesting part of our
calculation is that the energy of this proton-elec-
tron liquid can be lowered by a partial spin align-
ment of the protons.
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TABLE III. Comparisons of the ground-state energies
of the liquid [E(x)/N] and the solid phases [E'(HA)/N:
Hammerberg and Ashcroft, (Bef. 4)l. All energies are
expressed in By. sc: simple cubic; bcc: body-centered
cubic; face-centered cubic.

's

's

sc

E (HA)/N

fcc

E(x)/N

0.50
0.80
1.20
1.30
1.36
1.40
1.45
1.50
1.55
1.60
1.70
1.80

0.589
0.579
0.582
0 ~ 585
0.587
0.588
0.591
0.593
0.595
0.598
0.603
0.607

0.002 63
0.001 02
0.000 45
0.000 39
0.000 35
0.000 33
0.000 31
0.000 29
0.000 27
0.000 26
0.000 23
0.000 21

0.50
0.S0
1.00 -0.71188 -0.71929
1.20 -0.937 96 -0.940 19
1,25 -0.968 42 -0.969 61
1.30 -0.992 17 -0.99242
1.36
1.50 -1.041 04 -1.038 18
1.60 -1.047 59 -1.043 45
1.65 -1.048 03 -1.043 38
1.70
1.80

-0.718 19
-0.93902
-0.968 43
-0.99122

-1.03693
-1.042 22
-1.042 09

3.363 99
-0.08S 11

-0.91901

-1.001 59
-1.033 85
-1.043 22

-1.045 09
-1.041 78
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APPENDIX

We shall prove that the limiting value of
Ss(k, q, -k-q) as any one of the wave vectors ap-
proaches zero from above, vanishes, provided the
static-structure factor Ss(&) vanishes in the same
limit. Strictly speaking, this result should be con-
sidered as a limiting value, defining the function
by continuity at the origin and requiring the defini-
tion to hold in the thermodynamic limit.

First note that'

- -, &~:lprp;p-x -,l~'. &8» q» k 'q) ~(hl»d»l hl»8 )0 0

Since Ss(k, q, -k-q} is invariant with respect to the
interchange of its arguments. it is sufficient to
prove the result when any one of the wave vectors
tends to zero, say &-O'. The following cluster
decomposition' of P(r„r„r,) is exact as long as
one does not specify &P (r„r„r,):

P(r„r„r,) =it'l1+h(x„) ~h(r„)+h(r„}

+h(~„)h(~„),h(r„)h(r„)

=2+8(&}+S(e)+S(lk+ql }

8 iK r + q ~ T ](Q+ q) ~ p2 3

+ "('si}"(ass}~+'P(ri r. r~}, (»)

&&P(r„r„r,)&r {fr &r
2 3

(A1)

where h(r} gs(&) —1. Then one can easily prove
from the normalization of the probability-distri-
bution functions that'

where the three-particle-distribution function
P (r„r„r,) is

A{'(X- 1)(At- 2)P r„r„r,)= „s

»»'(r„r„r, »dF, = —r. ' fh{r„»h(r )dr, .

x (O' Pdr ' ' 'dr . (A2)
Now one can easily evaluate the right-hand side
of Eq. (A1) for &-0' and obtain the stated result.
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