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The surface electronic properties of d-band perovskites such as SrTiO, are investigated in some detail using a
Green s-function method and a linear-combination-of-atomic-orbitals model developed in our previous work.
We consider the nine energy bands (n bands) associated with the t,g d orbitals of the cation and the
corresponding p orbitals of the oxygen ions. Exact expressions for the local density of states (LDS) of cations
and anions at and near a (001) surface are derived and evaluated for a variety of surface conditions. It is
found that the LDS of a surface cation is substantially enhanced in the energy range of the filled valence
bands when surface states occur in the forbidden band gap. This increase in density results from surface
enhancement of the covalent mixing of d orbitals into valence-band wave functions. The surface-enhanced
covalency leads to a substantial increase in the number of electrons occupying surface cation d orbitals if
intra-atomic Coulomb repulsionisneglected. An approximate Hartree-Fock treatment is employed to
investigate the effect of Coulomb repulsion among excess electrons in surface orbitals. Approximately self-
consistent solutions for the LDS are obtained. These solutions show that band-gap surface states are forced to
lie substantially nearer to the conduction-band edge than predicted by the non-self-consistent theory. Two
competing effects arise when the electron occupation is altered on the surface cations. First, there is an
increase in the interatomic Coulomb repulsion among the excess d-orbital electrons. Second, there is a
corresponding decrease in the inter atomic Coulomb repulsion {Madelung potentials) because of the reduction
in the ionic charges. The intra-atomic Coulomb repulsion dominates for the case of an ideal surface and
surface bands are repelled from the midgap region. It is suggested that a surface oxygen vacancy
concentration of a few percent can alter the balance between interatomic and intra-atomic Coulomb repulsion
resulting in the appearance of band-gap surface bands. These results are employed to suggest a possible
explanation of the results of several recent photoemission experiments on the surface states of SrTi03 and
TiO, .

I. INTRODUCTION

A. Background

The transition-metal oxides are of current in-
terest because of their catalytic' and electrocata-
lytic" properties. These properties are pre-
sumed to be associated with the localized states
of the surface cations, anions, and oxygen vacan-
cies. A detailed first-principles determination of
the nature of these surface states is not yet avail-
able.

Many of the transition-metal oxides are ionic
and have a common local structure ayyroximated
by a yositively charged cation at the center of an
octahedron of negatively charged oxygen anions.
The dominant features of this structure are bond-
ing and antibonding wave functions that are ad-
mixtures of oxygen p orbitals and cation d orbitals.
In the solid, these states may be broadened into
valence and conduction energy bands or when the
electron correlation is large they may retain the
yroyerties of localized "crystal-field states. "

The cubic perovskites are a class of the tran-
sition-metal oxides having the formula unit g&O„
where & represents the transition-metal ion.
Many of the perovskites such as Sr TiO„BaTi03p
KMoO„HeG„and a large number of others have
(delocalized) band states. We refer to these solids

possessing conventional energy bands as "d-band
yerovskites. " This work is concerned with the
surface electronic structure of the d-band perov-
skites.

In previous papers~ we developed a simple ex-
actly solvable linear-combination-of-atomic-or-
bitals (LCAO) model which produces a good de-
scriytion of the electronic properties of d-band
perovskites. Using this model we obtained simple
analytic expressions for the energy bands, wave
functions, ' d-band density of states, the freguency-
deyendent dielectric function and oytical reflectiv-
ity. ' The energy bands and density of states were
shown to be in good agreement with the augmented-
plane-wave calculations of Mattheiss. ' The struc-
tures in the dielectric function and optical reflec-
tivity predicted by the model were found to be in
excellent agreement with the experimental mea-
surements of Cardona' for SrTiO, and BaTiO,.

Because of the success of the model in repre-
senting many of the bulk properties, we were en-
couraged that it would also serve as a useful model
for studying surface states and chemisorption on
the d-band perovskites. Analytical calculations of
the surface energy bands for a (001) surface were
reported in previous papers. ' '

Two types of (001) surfaces are possible for the
perovskites. The type-I surface has the transition-

4509



S. ELLIALTIOGLU AND T. %0LFRAM 18

metal ion exposed on the surface while for the
type-II surface they are covered with a layer of
oxygen ions. Our calculations indicated that a sur-
face-state band derived from the lower conduction
band (m* band) could occur in the band gap between
the w * band and the upper valence band (n band).

The position of the surface band depends upon
yarameters which characterize the surface. For
an ideal type-1 (001) surface the Madelung potential
at a surface cation is less reyulsive than at an in-
terior site. ' This surface perturbation produces a
surface energy band which extends in energy from
about the center of the band gay to the edge of the
m* band. 4 The corresyonding surface states were
also found in our studies" of TiO, and TiO, clus-
ters.

The d-electron surface states of the n* band are
of particular interest because they possess the
yroyer symmetry for strong interaction with the
valence states of many different molecules. '~

Recent photoemission experiments on surfaces
of reduced Sr TiO, by Pomell and Spicer, '~ and on

TiO, and Sr TiO, by Henrich, Dresselhaus, and
Zeiger" may be summarized as follows: (i)
cleaved (or fractured) surfaces of TiO, or Sr TiO,
do not have surface states in the band gap; (ii)
well-ordered Sr TiO, surfaces that have been cut,
polished, etched, and annealed in vacuum do poss-
ess band-gay surface states, but similarly pre-
yared TiO, surfaces show no band-gap states;
(iii) band-gap surface states appear for both TiO,
and SrTiO, when the surfaces are bombarded with
Ar' ions; (iv) exposure to oxygen removes the
band-gap states; and (v) low-energy-electron-
diffraction (LEED) patterns indicate that cleaved
or fractured surfaces of Sr TiO, or TiO, are more
disordered than surfaces annealed in vacuum.

These surface properties are not well understood
but it is believed that the concentration of surface
oxygen vacancies plays a vital role in stabilizing
the band-gap states. Henrich et al. ' have dis-
cussed these phenomena from the point of view of
localized states associated with isolated Ti'+ sur-
face ions charge compensated by oxygen vacancies.
In this payer, we develop further the energy band
description which should be valid for mell-ordered
surfaces with modest concentrations of oxygen va-
cancies.

In this work, we consider the changes in the
electron occupation of surface d-orbital due to the
presence of a surface. We study the effect of
changes in the Coulomb repulsion among d elec-
trons on the behavior of the surface energy bands
of yerovskites. We calculate the local density of
states associated with d electrons on cations and

p electrons on oxygen ions at and near a (001) sur-
face. We find that the electron occupation of sur-

face cation d orbitals is substantially increased
from that of interior cations. This increase in
electrons on surface cations results from in-
creased covalent mixing of the p and 4 orbitals
which make up the filled valence bands of the finite
crystal. Owing to this "surface enhanced coval-
ency" the effect of Coulomb repulsion among d
electrons is large even if the band-gap surface
states are unoccupied.

When Coulomb repulsion is considered, the sur-
face states must be determined self-consistently.
We assume as a starting point an LCAO model
representing a self-consistent description of the
energy bands of the infinite or bulk crystal. We
then treat self-consistently the Coulomb repulsion
due to changes in the Q-orbital electron occupation
due to the presence of the surface. We find that
there is a competition between the electrostatic
Madelung potential and the Coulomb energy. Addi-
tional electrons added to surface cations come
from the oxygen anions. This reduces the formal
ionic charges of both syecies which in turn reduces
the magnitude of the Madelung potentials. Reduc-
tion of the Madelung potential at a surface-cation
site tends to drop cation surface bands into the
band-gay region. On the other hand the repulsion
among excess d electrons tends to raise the sur-
face state out of the band gay towards the conduc-
tion-band region. When the Coulomb energy domi-
nates the Madelung energy, self-consistent sur-
face energy bands tend to be forced away from the
midgap region. As the Fermi level is raised (by
reduction of the sample for example), the surface
bands tend to rise with the Fermi level so that
their occupation is small. Thus, in contrast to
simple semiconductors where the surface states ~

pin the Fermi level, it aypears as though the Fer-
mi level pins the surface states.

The presence of surface oxygen vacancies can
substantially alter these conclusions about the
position of the surface band. Each surface vacancy
contributes an attractive contribution of 7 to 10 eV
to the Madelung potential at the six near- and next-
nearest-neighbor cation sites. A modest concen-
tration of surface vacancies can alter the balance
between intra-atomic Coulomb energy and interat-
omic Coulomb energy causing the Madelung poten-
tial change to dominate. In such a case, the band-
gay surface states are stabilized by the vacancies.

B. Model for surface properties

In this work, me use our LCAO model for the
t„or z bands of d-band perovskites to study the
LDS (local density of states) of cations and anions
at and near a (001) surface.
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In Sec. II, we describe the model Hamiltonian for
a d-band perovskite with a (001) surface including
nearest-neighbor cation-anion interactions and the
effects of variations in the surface Madelung yoten-
tials. The change in Coulomb repulsion energy as-
sociated with changes in the electron occupation of
d orbitals is treated in the Hartree-Fock approxi-
mation.

In Sec. III, we use a lattice-space Green's-func-
tion method to obtain solutions for the cation and
anion local-density-of-states (LDS) functions. The
general features of the bulk and surface states are
described. In Sec. IV, we present explicit results
for the LDS functions and their dependence on the
model parameters. The effects of electron-elec-
tron interactions of the g electrons are included in
an approximate way. In Sec. V, we give a discus-
sion of how the results may relate to the recent
photoemission and electron energy loss experi-
ments. Finally, we present in the Appendices,
detailed discussions of the mathematical proper-
ties of the various Green's functions involved in
the LOS functions.

II. MODEL HAMILTONIAN FOR d-BAND PEROVSKITES

The qualitative features of the electronic states
Qf the d-band yerovskites have been reviewed in
detail in our previous work "and elsewhere. '
The ABO, structure and the Brillouin zone are il-
lustrated in Figs. 1 and 2. The energy bands de-
rived from the cation d orbitals and the anion p
orbitals are of principle interest. The bands de-
rived from 4s and 4p cation states are located ap-
proximately 10 eV above the band gap and the bands
associated with the 2s oxygen states are equally
far below the band gay. For this reason we neglect
these bands in our model. In the A.BO, perovskites
the & ion yroduces energy bands which are also
far removed from the band gay and do not ylay an
important role in determining the electronic prop-
erties. Thus, the only important effect of the A
ion is its electrostatic contribution to the Madelung
potentials and the crystalline field.
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FIG. 2. Energy bands of SrTi03 according to the
nearest-neighbor LCAO model (Ref. 4), with E&

———6.3,
E,= —10.0, pd7t = 0.84, and Pdo = 2.1 eV. The symmetry
points in the first Brillouin zone for the cubic perovskite
structure ABO3 are shown in the center.

H =H~ +Hp+Hpq,

R, = P E„(R„,o,)n, (R„,~),

(2.l)

(2.2)

R, = g Z,(R„p)n,(R„p),
R&,8

(2.2)

H~~ = g g [T~B(R~,R~) dt~(R, )pg(R~) +H.c.],
R~,a Rp, 8

Therefore, within these approximations the prop-
erties of the perovskites are determined by the

Bo~ part of the ABO, structure. In this respect,
the yseudoyerovskite ReQ, is a regular member
of the family of oxides that we shall investigate.

The Hamiltonian for the oxide is as follows:

ABO

FIG. l. A&O3 cubic per-
ovskite structure. The
solid circles represent the
8 or transition-metal ions,
the open circles are the
oxygen ions and the shaded
circles are the A ions.

n, (R„~)=d'„(R„)d„(R,),
n, (R„P)=P,'(R, )P, (R, ) .

In Eq. (2.5), n~(R~, o,) is the number operator for
d orbitals and dt„(R~ ) is an operator which adds an
electron to a d-orbital-of-symmetry type n lo-
cated on a cation site atR~. The operator p&t(R~)
adds an electron to a p-orbital-of-symmetry type
P (P =x, y, or z) on an anion site at R~ and n~(R~, P)
is the corresponding number operator. We assume
orthogonalized orbitals so that the operators obey
the usual commutation relations.
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& V~(R, ) =-&V~ -C„&b,n~(R, )), (2.7)

where', designates a surface site, -~p„' is the

ln Eq. (2.2), @„(R„,o,) is the effective diagonal
energy of an electron occupying a cation d orbital
located at the lattice position R„. The symbol &

designates the symmetry type, o =my, xz, yz,
&z' r'-, or x'-y'. Z~(R„, n) includes the effects
of the Madelung potentials and electrostatic con-
tribution to the crystal field. We also include in

E~(R„,&j) a simple Hartree-Fock approximation to
the Coulomb repulsion among electrons occupying
d orbitals centered on the same site. We write

Z„(R„~)=Z„'(, n) +V, &~n, (R, )) +~ V„(R,),
(2.6)

where E~o(~, n) is the effective energy of the d or-
bital for an infinite crystal including electrostatic
and correlation effects and the remaining terms
are associated with the presence of a surface. The
second term of Eq. (2.6) represents the change in

the Coulomb repulsion among electrons on a d or-
bital at R„due to surface induced changes in the
d-orbital occupancy. The quantity &an~(R~ )) is
the change in the total d-orbital occupancy includ-
ing all symmetry types, and p~ is the effective
Coulomb integral. The third term in Eq. (2.6) ac-
counts for changes in the Madelung potential and

crystal field due to the surface.
It has been previously shown that on a type-I

surface the Madelung potential at a surface cation
site is less repulsive than at an interior site as-
suming that &hn„(R, )) =0. If &n~(R~)) varies at or
near the surface there will be two competing ef-
fects. First, an increase in &n, (R, )) will introduce
additional Coulomb repulsion which reduces the
effective ionization energy E„(R~,n). On the other
hand, because of charge neutrality an increase in

&n„(R~ )) must be accompanied by a corresponding
decrease in charge on the oxygen ions. Therefore
the formal charges on both cations and anions will
be reduced when &n~(R„)) increases As a r. esult,
the repulsive Madelung potential at cation site will
be reduced leading to an increase in the effective
ionization ener gy.

Changes in d-orbital occupation can occur be-
cause of the redistribution of the LDS associated
with highly localized surface states. For simpli-
city and to a good approximation we can assume
that &bn~(R~ )) is, nonvanishing only when R~ desig-
nates a surface site and that changes in ionic
charges are limited to the surface unit cell. Then,
since charge neutrality imposes a proportionality
between anion and cation charges we are able to
write the change in the Madelung potential at the
surface cation site approximately as

change when &b.n, (R, )) =0, and C~ is a constant to
be discussed later.

In addition to the Madelung contribution to ~ P„
there is also a change in the electrostatic crystal
field. Cations at the surface wiQ experience an
axial-field component which introduces additional
splitting. We assume that the covalent contribution
to the axial field dominates and neglects the elec-
trostatic axial-field contribution.

K summary, we have

Z, (R„n)=Z„'(, n)

+(-ay„'+(V, -C,) &an, (R„))]6,
(2.8)

The effective-ionization energy for a p orbital
E~(R~, P) includes electrostatic, crystal field, and

correlation effects. An increase in ~n„ implies
a decrease in gn~ and therefore, the anion effec-
tive-ionization energy is increased with increasing
~n„. The stabilizing attractive Madelung potential,
however, is reduced. A decomposition analogous
to that of Eq. (2.8) should be considered for the
oxygen ions in the surface unit cell. For a type-I
surface ~ V~ at the oxygen site is known to vanish
approximately. ' Because there are three oxygen
ions pgr unit cell, the change in anion charge is
much smaller than that of the cation and the Cou-
lomb integral is also smaller. There is also ap-
proximate cancellation between the Madelung and

correlation energies, and therefore, for simplicity
we shall neglect spatial variations in E~(R ~, p).
This approximation is not essential in what follows
but it greatly simplifies the theory.

The interaction between cations and anions is
expressed by Eq. (2.4). The quantities T„z(R~,R~)
are LCAQ transfer integrals. For nearest-neigh-
bor interactions only the transfer integrals pdm

and pdo are required. The nature of these interac-
tions has been previously discussed by many au-
thors. -"'~ "

A. Properties of the infinite solid

Before describing the solutions for the finite
solid we first discuss the properties of the infinite
solid.

Using the Hamiltonian described by Eqs. (2.1)-
(2.5) with &an~) =0, one can easily find expressions
for the bulk energy bands. The model involves 14
basis states: five d orbitals and nine p orbitals
(three for each of the three oxygen ions in a unit
cell). Therefore there are 14 energy bands. These
bands are illustrated in Fig. 2 for values of the
LCAO parameters representative of SrTi03.

The energy bands may be understood as consist-
ing of a set of three equivalent m* conduction and m
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valence bands. The wave functions for these bands
are admixtures of t, -symmetry (xy, xz, and yz)
d orbitals with p orbitals whose lobes are oriented
perpendicular to the 8 O-axis; (p, states). These
orbitals are admixed through the LCAO interaction
parameter pdm and the energy of the bands are
given by

= —'(~ +E )+([-'(E, -g )]

+4(pd~)' (s' +s,')]'",

2I

-3

-5.

(yP =xg, xz, or Qz p

S„=sin(k„a) .
(2 9) -6,

S

S=S+S+S -SS-8$-8$x y z x y x z y z (2.10)

where g, and g, are defined in a manner analogous
to Q, and E„,pdo is the corresponding LCAO
transfer integral, and the + (-) corresponds to the
o* (g) band.

In addition to the m and 0 bands just described,
there are two nonbonding bands. One of' these
bands involves p, orbitals and no admixture with
cation orbitals. This m-nonbonding band is triply
degenerate. We shall designate these nonbonding
states by m . The other, namely, the o'band, in-
volves only p orbitals, and is nondegenerate.
These bands have energies given by

Z(w' band) =g„~(&y band) =g

In Fig. 3, we compare the energy bands of the
simple model (dashed curves) with a, full LCAO
model fit to the augmented-plane-wave results of
Mattheiss' for Sr TiO, . It is evident that the model

ln Eq. (2.9), g, and g„are the diagonal energies
of the t„and p, orbitals including the Madelung
potentials, electrostatic crystal-field splitting and
the effect of Coulomb repulsion. The quantity pdv
is the LCAO transfer integral and k„ is the o.th
Cartesian component of the energy band wave vec-
tor. These bands are referred to as the m bands.
In analogy with molecular bonding and antibonding
notation, the conduction band is designated as the
w* band (antibonding) while the valence band is
referred to as the v band (bonding). The m bands
are the upper valence band and the lower conduc-
tion band as shown in Fig. 2. (In previous work we
have referred to the m* band as the t, band. )

A second set of bands are formed from the ad-
mixtures of the e, cation orbitals (x' —y', and 3zz
-x ) with p orbitals having their lobes oriented
parallel to the II-0 axis (p, states). The energy of
these four so-called o bands is given by

= —'(g +g )+([—'(g g )]'
+ 2(Pdo)' (S2+S2+S,'~s')]'t',

with

LU

9

-10,

-12i

-13.

-14, —

FIG. 3. Comparison of energy bands obtained from
the nearest-neighbor LCAO model using the para-
meters E&=-6.4, E„=-10.5, pdm =1.34 and pda=-2. 23
eV (dashed curves), and those of the full LCAO model
fit to APW results of Mattheiss (Ref. 6) with pp0=0. 34
and ppx=-0. 03 eV (solid curves).

gives an excellent fit to the d bands. To illustrate
how well the model represents these bands, we
show, in Fig. 4, a comparison of the theoretical
m*-band density of states with the numerical re-
sults of Mattheiss. The theoretical curve shown
is the density of states of the w*-band given by

(2.11)

with

~' = (&/4)' 5'=(1 —h')' "
c = [(& —F.,)(& —~.) —4(p«)']l(pd~)'.

where K(g ') is the complete elliptic integral of
the first kind with modulus ( '. (The derivation of
this result is described in Sec. IIL)

The valence bands given by the model differ from
the solid curves in Fig. 3 principally in the behavi-
or of the nonbonding bands. The simple model
yields "flat" bands while the actual bands have
some dispersion. The origin of the dispersion is
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40—

do this we need to calculate the matrix elements
of the lattice-space Green's functions.

We make use of the retarded Green's functions
defined by

G„„,(R,R'; t) -=-ie(t)([C„(R,f), G'„, (R, o)],) .
(3.1)

THEORY

The properties of these functions have been de-
scribed in detail elsewhere. " In E(I. (3.1), e(t) is
a step function eclual to unity for t &0, and zero
otherwise. The operator C„(R, t) or G, (R', 0)
designate any one of the operators P and PB ap-
pearing in the model Hamiltonian. Each combin-
ation gives a matrix element of the lattice-space
Green's-function matrix.

We define the energy-dependent Green's-function
matrix elements by

G„„,(R,R';R) = f dte'*' G(R, 'Rt). (R2)

, .I

0
RELATj:VE ENERGY

The LOS for a cation at R„or an anion at B~ is
given by

FIG. 4. Comparison of densities of states of the
m* bands of SrTi03 as calculated from the model in this
paper (theory) and as determined by Mattheiss (Ref. 6).
For the curve shown, pd~=1.34 eV.

p„(R) =(-I/v)imG„(R, R;E) . (3.3)

the anion-anion transfer integrals which are neg-
lected in our simple model since they are second-
neighbor interactions.

It is noted from E(I. (2.9) that each of the w bands
is two dimensional in the sense that each band de-
pends only on two components of the three-dimen-
sional 0 vector. This two-dimensional character'
is responsible for the jump discontinuities at the
w-band edge and the logarithmic singularity at the
band center seen in the )) *-band density of states
in Fig. 4. The origin of these two-dimensional
bands is the planar character of the pdw interac-
tion. It is easily verified that each 7t band involves
only the () p d orbital and the o and p p orbitals.
For example the wave functions for E„,are linear
combinations of d„,, p„, and p, .

The remaindt. r of this paper will be devoted to a
study of the surface electronic structure associ-
ated with the m bands of the perovskites.

III. LATTICE GREEN'S FUNCTIONS.

A. Definitions

Our objective is to calculate the I DS of cations
and anions at or near the surface of a semi-infinite
d-band perovskite with a (001) type-I surface. To

B. Calculation of 6 ~ for the n bands

We restrict our attention to the n bands and con-
sider the situations illustrated schematically in

Fig. 5. The sets of orbitals [shown in Fig. 5(a)]
&d„„p„'",p'."&, (d„„p'„",p„'"] a d (d„,p,"),pI')) are
uncoupled orthogonal sets of basis orbitals which
produce the three equivalent w bands in the infinite
solid. These sets remain uncoupled for the semi-
infinite solid with a (001) surface but they are no
longer equivalent. For the semi-infinite solid, xz
is equivalent to yz, but xy is different.

The problem of calculating the n states of the
semi-infinite solid reduces to the solution of two
uncoupled systems as illustrated in Figs. 5(b) and

5(c).
First consider the problem represented by Fig.

5(b). We locate a cation or anion by specifying n
and l which locate a unit cell relative to the surface
and to the l =0 origin. The (n, l) designation togeth-
er with the symmetry index uniquely specifies the
orbital and its location. In this notation,

G„„,(R,R';E)-G„„,(n, l;n', l') .
Using standard methods to generate the equations
of motion we obtain
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[ur-e, (n)]G„, &(n, l;n', l') =5„, &5„„5,, +G„(n, l;n', l'}

-G„&(n —1, l; n', l')(1 —5„0)+G, (n, l; n', l') —G, (n, l —1;n', I'),
[&u —e„(n)]G„&(n, l; n', l') = 5„&5„„i5,~, +G„,

&
(n, l; n', l') —G„, &

(n + 1, l; n', l'),
[&u-e,(n)]G, &(n, l;n', l') =5, &5„„5... +G„, &(n, l;n', l')-G„, (n, l+1;n', l'),

(3.4)

(3.6)

(3.6)

(3.7)

where y =xz, x, or z. In Eqs. (3.4)-(3.6), we
have introduced the dimensionless parameters

Eo, + [-EVo~+ (U~- C~)(hn„(0))]5„o
pav

e„(n) =e, (n) =e, = (3 6)

w'here E, and E are the infinite solid values for
the diagonal matrix elements including U„or U~
and the bulk Madelung potentials. The changes in
occupations are given by

B. x dx2 ( ) b, n„(n) = P (n„(n, dn) -n~(~, do.)),
(d n)

r eF
n, (n, dn) =

~ d(u ps „)(n) .

(3 9)

(3.10)

yz

P(1) ~+

(a)

~(3)

d P (2)

4=2
=- x, y.X;

2

In Eq. (3.9) and (3.10), the notation (do, ) designates
the various d-symmetry orbitais and p (n) is de-
fined by Eg. (3.3). The quantity n„(~) is the occu-
pation number for the infinite solid (no surface) or
for a site very distant from the surface.

The system of Eqs. (3.4)-(3.6) are easily solved
using the method employed in our previous paper. 4

The following results are obtained for the Green's-
function matrix elements:

G„...(n, l;n', I')

=(~-~,)[9(n+n, l-l )-g, (n+n, l-l )

+g, (i n —n'i; l - l')]. (3.11)

fl =2

(3.12)

The functions 9(n, l ) and g, (n, l) are defined by

9(n, l) =—
0

] & cine(4p, K) i lK

2' 0 sin9(e, K)
.(s.1s)

. , x) b,p((u) =1- ((u -e,)ae, , (3.14}

A=2

(c)

FIG. 5. Schematic of the geometry and orbitals in-
volved in calculation of ~ bands on a (001) perovskite
surface. (a) Unit cell for the BO3 structure and the
three equivalent sets of orbitals. (b) The squares in-
dicate the two-dimensional unit cells each of which
contains one cation and two anion orbitals. The position
of an ion is designated by n, the number of unit cells
from the surface, and l, the number of unit cells from
the l = 0 cell. (c) Three-dimensional picture with a
(001) surface.

-2 cosg((0)K) =2 cosK+g i

6 = ((d Ep)((d Et) 4 ~

(s.16)

(3.17)

These functions can be evaluated exactly in terms
of elliptic integrals of the first, second, and third
kind. [Evaluation of the functions 8(0, 0) andg(0, 0)
which are required in this paper is described in
the Appendices. ] The Green's function for a sur-
face cation obtained from Eq. (3.11) with n =n' =0
and E =E' is

ae, =[-SV'+(tr„-C ) an, (0)]/Pdm, (3.15)

with the function 8(~,K) defined through relations
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G„, „(0,0, l, l) —= G„,(0) = ((d —e2) 8 (0, 0) .
Then using Eq. (3.4)-(3.6) together with Eq. (3.18) we obtain

G, ,(o, o, l, I) = G,(0) =(~-e,)-'[(2+e+bp)g(0, 0)+g(1, 0)],

G, „(0,0, l, l) —= G„(0)=((u —e,) '[1+29(0,0) —(2+bP)g(1, 0)+8(2, 0)].
It is convenient to work with the sum G,(0)+G,(0) since from Eqs. (3.14), (3.17), (3.19), and (3.20),

G„(0)+G,(0) =(w —a, —be, )g(0, 0)+((o-e,)-'[1+g(0,0) —(1+bP)g(1, 0)+9(2,0)].

(3.18)

(3.19)

(3.20)

(3.21)

Returning to Eq. (3.11) and using the fact that

I 8(n, l)I and Ig(n, l)I tend to zero exponentially for
large n we see that in the interior, far from the
surface

lim G„, „,(n, n, l, l) =—G„,(~)-(ur —e, )g, (0, 0) (3.22)

[G„(™)+G,(~)]-1/(~ —e, ) + (~ —e, )g, (0, 0) . (3.23)

C. Properties of 6 (~)

The function of g, (0, 0) is a Green's-function
characteristic of the infinite solid. . In Appendix A
we show that

properties are evident from Eq. (3.27). The quan-
tity g '8 is defined through the relations of Eqs.
(3.16) and (3.17). The function 8(&u, K) is real for
values of ((i),K) which lie within the 7( bands de-
scribed by Eq. (2.9). For such values of (+,K),
the function-e '~ is complex and consequently
9(0, 0) will possess an imaginary part. The im-
aginary part of (&u —e, ) 9(0, 0) in this range is the
cation LDS which lies within the n bands of the bulk
solid. Since e 'o is complex, the denominator of
the integrand in Eq. (3.27) cannot vanish and the
density arises from branch cut contributions.

For (~,K) outside of the 7( bands or within the
band gap, e ' is real. The denominator of the
integrand will vanish when

)'(1/21()(1/P)K(1/]) for (—,
' e)2&I, (3.24)

g, 0, 0 =

), (I/»)[sgn(5)&(() —2K((')] for ( ~) ~1,
(3.26)

bP(+) +-18(ru, Ic)

which is the surface-state condition, or

bp ((d) + 1 ((de)Q-=( )
+ =-cosK. (3.28)

with

1E f& (1 (2)1/2

p, (~) =(I/»2)
I » e. ei I

&(~')— — (3.26)

Equation (3.26) is equivalent to the result given by

Eq. (2.11) in Sec. II.

D. Properties of 8(0,0)

From Eq. (3.12) we have for n =l =0,

1 dK
9(0 0}=-

bP (~) i8(u8, lf) (3.27)

This function is a Qreen's-function characteristic
of the semi-infinite solid. Analytic expressions
for 8(0, 0) are given in Appendix B. The general

The result of Eq. (3.23) is the anion Green's
function for the infinite solid. The term ((i) —e, )
is the contribution due to m' band. This term pro-
duces a 6 function contribution to the density of
states at ~ =&,. The second term contributes a
density of states to the rr bands (both the m* and n

bands). Adding this term to the imaginary part of

G„,(~) gives the total density of )T-band states

In our previous paper, ' we showed that if Eq. (3.28)
is satisfied then a surface state can exist. The
surface energy bands are determined by finding the
values of co and K which satisfy Eq. (3.28). In gen-
eral, more than one surface band can occur and
the bands need not exist for all values of K in the
surface Brillouin zone.

Thus for a fixed value of (d, the denominator of
the integrand of 8(0, 0) will vanish for some value
of K if a surface state exists for that value of ~.
This produces a simple-pole contribution to the
LDS.

In summary, the imaginary part of 9(0, 0) arises
from two sources. The first is due to branch-cut
contributions associated with bulklike states in the
m bands, and the second is due to pole contributions
produced by surface states. The relative impor-
tance of these two sources of density of states de-
pends strongly on the function bp((d) [Eq. (3.14}).
bp((d) in turn depends strongly on the surface
Madelung potential and the electron occupation of
surface orbitals, which must be determined self-
consistently.

All of the results described in this section apply
to the states derived from the equivalent set
Id...~.(1),p. (3)).



SURFACE ELECTRONIC PROPERTIES OF d-BAND. . .

f 6(n) [(d t&( )n] [(d 6 (n)] 4. (3.30)

For the model being considered here, e(n) =e ex-
cept for n =0, and when n =0: e, (0) =e, +Ac, . The
quantity he, must be determined self-consistently.
In addition, there is a nonbonding state with &(n)

E [d y,p„(3),p (2) ] Surface states

The remaining set of n orbitals to consider are
illustrated schematically in Fig. 5(a). As noted
in our previous paper, 4 there is no coupling be-
tween orbitals on different layers parallel to the
surface. Consequently each layer constitutes a
two-dimensional subsystem and the states of each
layer are similar to the bulk states. Thus the en-
ergy bands are given by

Z„,(n, A) =-,' [Z, (n) +Z,(n)]+({-,'[Z, (n) -Z.(n)]]'

+4(pdw)'(S„'+S„')}' '.
(3.29)

The LDS for the cation and anion are given by Eqs.
(3.22) and (3.23) using Eg. (3.17) with the replace-
ment

=e,(n) which produces a 6-function contribution at
e,(n).

F. Summary of the results

We are considering a system possessing nine m

bands yer unit cell. We found results for the LOS
for cations and anions in the surface unit cell as-
sociated with each of the nine bands. These re-
sults are summarized below.

1. Nonbonding states

By adding the various nonbonding contributions
one finds that each anion has a LDS due to the non-
bonding states

p~, („b)(~)=&(~-~,) (~=z)
=2(2-5/z)5((o- e,), (n =a, y). (3.31)

(see Appendix D.)

2, g and n" bands: xz and yz

There are two equivalent contributions from the
sets [d„,p„(1),p, (2)] and [d„,p, (1},p, (3)]. We found

p„z((g) = (-1/m) i(ur —e,) iIm9(0, 0)

(o.P =zz, yz), (3.32)

(3.33)

p (w) + pz(v) = (-1/m)
~

a& - e, —«,
~

Im9(0, 0) —(I/z')
~

(&o -c,) '
~
[Im9(0, 0) —(1+hp)lm9(1, 0) + Im9(2, 0)],

(of, P =z, z or y, z) .

3. n and @~bands: xy

(3.34)

For the set [g„„p„(3),p„(2)] we found that

p„„(&o)= (-I/z)
~

(&u —e,)
~
Img, , (0, 0),

with 6 =((d —fg Keg)(hl -Eg) 4p

p. (&u) +P, ((u) =(-I/&) ~(~-~~- «~) limg. ~(0 0}.
(3.35)

ing a factor of 2 for the spin):

p„(~) = (-2/w)
~
(&o- e,)

~
[2lm9(0, 0)

+ Img, , (0, 0)],

with

e = ((d Eg)((0 6~) 4
p

=(M Eg Gag}((d 6q) 4 ~

(3.35)

4. Total I.DS

We can now write exyressions for the total den-
sity of states; for the surface cation LDS (includ-

)

For the sum of the LDS of the anions in the sur-
face unit cell (including spin)

Pp, (&8=2[1+ (4 —IO/&)]~(M —&,) —(2/~)
~

~ —e, —«g jim[29(O, O)+g, ,(0, 0)]—(4/r) ~(M c,)-'~
x Im[9(2, 0}- 9(1,0) —g, (2, 0)+g,(0, 0)] . (3.37)

p,",((u) = (-6/z)
~
((o —c,)

~
Img, (0, 0) . (3.38)

These expressions account for a total density of
nine bands with two spin states. These bands can
accomodate 18 electrons yer unit cell.

For the infinite solid the total cation local den-
sity of state is

5. Special case: 6e, = 0

For the syecial case of ~q, =0 all the Green's
functions can be expressed in terms of the com-
ylete elliptic integrals of the first kind. We show



45I8 S. E LLIA LTIOG L U AND T. WOLFRAM

in Appendix C that

1(1/2n')($ —1)It(l ('I) for ('~i,
7

~ 0 for ('&1,
(3.3S)

where

3- E=LI 0 0

(a) BULK

3 2

8 N
~X

1 (I (1 ]2)1/2

Therefore, we obtain for the total cation density

p„,(~) =(1/v')1(u& —s ) I (3 —2()lt((')

with g'~1, (3.40)

3 2-
N

QX

(b) h6 = 0, 00

(c} h6 = -0.50t

and for the infinite solid:

p,"„((u)= (3/v')
~

((u —e, ) ~
It(g') with ]' ~1 (3.41)

If it is assumed that the change in the surface
Madelung potential vanishes then this solution for
S(0, 0) is self-consistent since

(d) AG = -2.00I

t

Cp E~
dtopuw(&) = d&pa~(&) (&w~&p «g) ~ (3.42)

0
-3 -7 -9

ENER(j Y (eV)

yrovided &~, the Fermi energy, lies in the band

gap.

6. Self-consistency condition

For the model we are considering, the change in

the electron occupation of a surface cation due to
surface effects on the m states is

FIG. 6. LDS of a surface cation as a function of the
surface perturbation hE&. Only the set (d „~, P„(1),
p, (2)) is considered andpdr=1. 0 eV. (a) LDS of a ca-
tion in the infinite solid; the total density in the 7t band
is 0.555 for each spin, (b) LDS of a surface cation for
DE&=0, (c) AE, =-0.5 and (d) AE&=-2.0 eV. The sets
of vertical lines at &=+4 indicate the band edges and
those at e= 0 indicate the band centers of the 7t bands.

d~ Ip&. (~) —p,".(~)], (3.43)

where p~, (&) and p~, (a) are given by Eqs. (3.40)
and (3.41), respectively.

In addition to changes in g„due to the n-band
LDS, we must also consider how the surface will
affect the 0 bands, which arise from the e, and P,
orbitals. In the examples we are concerned with
in this paper, the 0* bands are unoccupied and

changes in LDS in the energy range of the &* con-
duction bands have no effect on ~m„. However,
redistribution of the 0 part of the cation LDS in the
low-lying g-valence band could contribute to ~n„
in a significant way. We do not include the effect
of the 0 bands in this work.

1

0-
I

3

(a) BULK

(b) h6 = 0.00

(c) hC = -0. 50t

IV. RESULTS AND DISCUSSION

A. LDS of surface ions 0-

(d) Pg = -2.00

/

We begin by examining the behavior of the LDS
as a function of the surface perturbation param-
eter &p, ignoring the self-consistency on the posi-
tion of the surface state bands on the LDS.

Using the analytic expressions for g(0, 0) and

8(0, 0) given in Appendices A and B we have cal-
culated the LDS for cations and anions in the sur-
face unit cell. In Fig. 6, we present a series of

-5 -7 -9

ENE RI Y (ev)

FIG. 7. Real parts of the Green's function G'(0, 0)
weighted by the factor (~ —«, )/z for the corresponding
cases in Fig. 6. t" (0, 0) represents 8 (0, 0) in (b) through
(d). In (a), G(0, 0) represents g(0, 0).
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0

-4

(e)

1/2

K

FIG. 8. Surface energy bands of SrTi03 with para-
meters E&=-6.01, E„=-9.02, andpd7r=1. 0 eV. The
labeled curves correspond to different surface pertur-
bations: (a) AE =-0.21, (b) -0.5, (c) -1.0, (d) -2.0,
and {e) -—4.0 eV. The vertical arrow on the lower curve

(d) indicates the energy and K value where the second
surface band merges with the bulk continuum of states.

graphs of the m-band density t'"„,(~) and p„,(~) for
different values of ~e, with pd~ = I eV. The real
parts of g(0, 0) and 8(0, 0) are shown in Fig. 7 for
the corresponding cases. In Fig. 6(a), we show

the bulk density of states p"„,(~). The vertical lines
at q =+4 designate the band edges of the m and m*

bands and the vertical lines at & = 0 designate the
corresponding band centers. Figure 6(b) shows the
surface cation LDS for the "perfect" surface for
which there are no surface perturbations, i.e. ,
gq, =0. For this case there are no surface states,
however, there is a substantial redistribution of
the density due to the existence of the surface. It
can be seen that the density is depleted from the
top of the m* band and increased at the bottom of
this band. The enhancement of density near the
bottom of the m* band is a precurser to the emer-
gence of surface states in the band gap. Figure
6(c) illustrates the LDS with ~e, =-0.5 for which a
surface band exists in the band gap below the m*-

band edge. It appears that the surface band states
overlap the bulk states, however the surface states
always have a lower energy than the corresponding
bulk state having the same wave vector. This is
apparent in Fig. 8, which shows the dispersion
curves as a function of the wave vector. If we in-
crease the surface perturbation to ~&, = -2.0,
shown in Fig. 6(d), the surface band moves com-
pletely into the band-gap region. The LDS in the
~~-band range is very nearly zero and all of the
density lies in the surface band. This indicates
that the surface ions no longer participate in the
bulklike states of the semi-infinite solid. In the
same figure, one also sees a second surface, band
emerging partially from the bottom of the valence
band, however, Fig. 8(d) shows that this new sur-
face band is truncated at one side (indicated by an
arrow) by the bulk band. The occurrence of this
secorid surface band below the m band has impor-
tant implications with regard to the self-consist-
ency conditions. The states involved in this band
will be occupied with electrons even when the Fer-

2-

0
-3

2-

1-

A%0

(b) h6 = -0.10t

(e) hE = -o. 20t

(d) h6 = -0.21t

-5 -j
ENERGY (eV)

E=4 0 -4 0 4
I

I

(a) h6 = 0.00t

2-

0
-3

E, =4
3

0
II

I

(e) hE = -0 30t

(C) A6 = -1.00t

I
(g) M = -2. 00t

(h) h6 = q. 00

-7 -9
E NERGY ( py y

FIG. 9. Total LDS func-
tions given by Eq. (3.36)
for different surface per-
turbations: (a) &E&=0,
{b) -0.1, (c) —0.2, {d)
-0.21, (e) -0.3, (f) -1.0,
(g) -2.0, and {h) —4.0 eV,
where the vertical lines
indicate the band edges
and band centers, and
pd7r= 1.0 eV. The integral
of the density in and below
the 7r band is (a) 0.498;
(b) 0.498; (c) 0.501; (d)
0.504; (e) 0.522; {f) 0.681;
(g) 1.062; and (h) 1.950 for
each spin.
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mi level is below the band-gap surface states.
We shall return to this point in Sec. IVB where we
discuss the effects of self-consistency.

In Fig. 9, we present a series of graphs of the
surface cation LDS p„(which includes all of the w-

band contributions) for ae, varying from 0 to -4.
In all of the examples presented pdm =1 eV. The
structure in p„, is easily understood in terms of
the different types of Van Hove singularities. The
surface bands associated with d„, (or d„) orbitals
yroduce square root singularities characteristic
of a one-dimensional band. The contributions of
states derived form d„, orbitals have characteris-
tic two-dimensional structure; jump discontinui-
ties at the band edges and a logarithmic singularity
at the band center. Thus, for example, in Fig.
9(g) one sees two square-root singularities at
g=-7.5 and -6.2 eV from the band-gay surface
band and a third square-root singularity at
@=-10.9 eV due to the yartial surface band below
the m band. The peaks at E=-6.3 and -10.5 eV
are logarithmic singularities and the jumy dis-
continuities are evident at E=-5.6, -8.0, and
-11.4 eV.

It is clear from Fig. 9 that as ~g, becomes more
negative there is a substantial increase in the ca-
tion LDS in the valence-band region. For example,
in Fig. 9(h), p~, has more density below the m band
than above it.

Figure 10 illustrates the behavior of p„„for posi-

p -4 p 4

(a) h6„= 0.10

4 0
3 I

(a) BULK
& P

0 4
I

(b) b, e = 0. 0

3 j
~64

2

(c) be =-o. s

(d) be =-2. o

0
-3

I I

-7 -9

ENERG Y (ey)
FIG, 11.Total LDS functions-given by Eq. (3.23) for a

bulk anion (a) and Eq. (3.37) for a surface anion with (b)
&E&—-0, (c) -0.5, and (d) -2.0 eV. The arrows at E= E,
= -9.02 eV correspond to the peaks due to the &-function
contributions which contain 3 states/spin for the bulk an-
ion and 2.63 states/spin for the surface anion. The in-
tegral of the density in and below the 7t band is (a) 2.45;
(b) 2.78; (c)2.52; (d) 2.38 for each spin.

0

2-

(b) hg = Q. 50

(c) aE = 1.00

(d) h6 = 1.50

tive values of ~&, . It is seen that there is an in-
creasing depletion of density in the valence band
regime as surface state bands are formed above
the w* band.

In Fig. 11, the sum of the LDS for the oxygen
anions in the surface unit cell, p~, (ru) is presented
for various values of ~q, . In comparing Fig. 11
with Fig. 9 it is clearly seen that the states are
admixtures of p and d orbitals. The arrows in Fig.
11 indicate the position of the ~ nonbonding state,
which contributes a 5 function contribution to the
density of states of the anions.

B. Self-consistent results

0~
-5 -7 -9 -U

ENE RGY (eV)

FIG. 10. Total LDS functions with surface perturba-
tions 4E& positive: (a) BE&=0.1; (b) 0.5, (c) 1.0, and
(d) 1.5 eV. Pdvr is taken to be 1.0 eV. The integral of
the density in and below the x band is (a) 0.447; (b)
0.408; (c) 0.354; and (d) 0.306 for each spin.

~c,=-n. V„'+(V„-C„)~n„(0) . (4.1)

The quantity -6 V„' is the reduction of the repulsive

In this section we address the question of treating
the change in the electron occupancy of d orbitals
in an apyroximate self-consistent manner. In Sec.
IIIB we expressed the surface perturbation param-
eter ~q, in terms of two contributions according to
the relation
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Madelung potential at a surface cation site with the
occupation of the p and d orbitals equal to their
bulk values. The second term represents apyroxi-
mately the change in the Coulomb repulsion energy
among d electrons and the change in the surface
cation Madelung potential due to changes in the
electron occupation of ions in the surface unit cell.
If an, (0) is positive, charge is transferred from
anions to surface cations. This changes the effec-
tive valence state of the surface cation. Consider,
for example, a free Ti" ion. The ionization ener-
gy for liberating ad electron to produce Ti ' is
43 eV while the ionization energy for Ti"-Ti'+ is
only 24 eV. This suggests that for the free ion U'„

for the reyulsion among d electrons on a Ti cation
is about 19 eV. The value for an ion in the solid is
of course expected to be much smaller because of
yolarization and screening effects.

For b,n„(0) positive, the charge on the anions in
the surface unit cell will be reduced. This will
reduce the effective reyulsive Madelung potential
seen by the cation. We may estimate t."~ of Eq.
(4.1) by considering the change in the Madelung
potential at a surface cation site due to changing
the charges of the surface unit cell. This is easily
calculated from the tables given in our previous
paper on the Madelung potentials of perovskites. '
Assuming the B-ion charge is changed by n.n„(0)
and the surface oxygen ion charge is changed by,

—,'gn~(0) gives C„=10eV. Other assumptions about
the redistribution of charge produce comparable
estimates for C„provided the chmges are local-
ized in the surface unit cell. This estimate of C„
is based on a point ion model for nonpolarizable
ions. One expects that t"~ is reduced in the solid in
a manner analogous to the reduction -of U„.

The difference U, -Q„ for bare ions is of the or™
der of 8 eV. The appropriate value for the solid
is not known. We assume that polarization and
screening reduce this difference to about 4 eV.
The qualitative results which we discuss in what
foQows do not deyend sensitively on the yrecise
value of tJ~ -Q„but only upon the assumption that
Ug 1s larger than Q~.

Now consider Fig. 9(g) with b.~, =-2. This case
is approximately what we expect for Sr TiO, ignor-
ing changes in the surface ion charges. The bulk
LDS for a cation is shown in Fig. 6(a). If the crys-
tal is insulating with the Fermi level at midgap
then only the density below midgap corresponds to
filled states. For the cation in the interior the
number of electron in filled states associated with

f,~ d orbitals [Fig. 6(a)] is 1.1. The number of
electrons in filled states for a surface ion with the
LDS.of Fig. 9(g) is 2.1. Therefore an additional
electron could reside on each surface cation even
though the band-gap surface states are unoccupied.

As a result Coulomb repulsion is substantial even
when the band-gap states are empty. The origin
of this effect is an increased covalent mixing of
d orbitals into the filled valence band states of the
finite solid. We refer to this effect as "surface en-
hanced covalency. " The additional electrons in d
orbitals would come from the anions. For exam- .

ple, there are 10.9 electrons occupying the anion
orbitals of the m bands for the bulk sample [Fig.
ll(a)] while for ac, =-2 [Fig. 11(d)] there are only
10 electrons in these bands.

The presence of an extra electron in surface
d orbitals results for Ae, =-s V„'= -2 eV. This is
not a self-consistent solution. The calculated val-
ue of b, e, using Eq. (4.1) and b,g„(0) = 1 is b.e, =+2
assuming the Fermi level to be at midgap. By
varying ~&, with -~ V~ at -2 eV one finds a self-
consistent solution for g ~, = -1.0, gn, (0) ,= 0.25, and
U„-C„=4eV. This solution is illustrated in Fig.
9(f). Comparing the non-self-consistent solution
Fig. 9(g) with Fig. 9(f) it is seen that the effect of
Coulomb repulsion is to force the surface band out
of the band gap toward the conduction-band edge.

Next, we consider the case of adoped or reduced
sample for which the Fermi level is at the bottom
of the m *-band edge. Neglecting Coulomb repulsion
the band-gap states of Fig. 9(f) would be filled.
The self-consistent solution is illustrated by Fig.
9(d) with ge, =-0.21 and an„(0) =0.446 for U„-C„
=4 eV. It is evident that the surface band has been
effective expelled from the band gap. The peak in
the surface-state density is only about 0.1 eV into
the band-gap region.

If the g bands involving the e d orbitals are also
included the surface enhanced covalency effect is
further increased. This would have the same ef-
fect as increasing the parameter U„-g„. There-
fore, it seems possible that the surface-state
bands may be forced to lie very near to the Fermi
level.

This suggests that the Fermi level is not
"pinned" by the surface states as is usually as-
sumed for simple semiconductors. Indeed, it
aypears that the converse is more nearly true;
the Fermi level, in effect, pins the surface states.

C. Discussion

According to the results described in Sec. IVB,
attemyts to fill the one-electron surface states
result in the expulsion of the states from the band

gap region. This effect offers a plausible explan-
ation of the absence of band gap states on reduced
or doped samples of SrTiO, and TiO, as reported
by Powell and Spicer" and by Henrich et al."

For the insulating state (Fermi level at midgap)
surface bands may exist deeper in the band gay
than for the reduced state (Fermi level near the
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conduction-band edge). It may be possible to lo-
cate the position of band gap states for insulating
SrTi03 or TiO, if optical, "photoemission, "or elec-
tron-energy-loss experiments capable of detecting
empty final states could be performed.

Our model also suggests that the valence-band
LDS of both cations and anions is strongly depen-
dent on the position of the band-gap surface states.
Thus one would expect the valence-band structure
to change substantially in photoemission or elec-
tron-energy-loss experiments as the sample is
changed from an insulator to the highly reduced
state. Further calculations including the 0 bands
are needed in order to be able to utilize this effect
in a quantitative manner.

The results of our model are strongly dependent
on the shift in the diagonal energy gq, and there-
fore upon the relative of importance of intra-
atomic Coulomb repulsion compared with the in-
teratomic Madelung potentials. In the examples
presented here the Coulomb repulsion among ex-
cess electrons on cation sites is dominant. This
seems to be a reasonable assumption since other-
wise the compound could not possess ionic char-
acter.

On the other hand, surface reconstruction or the
presence of surface vacancies can substantially al-
ter the balance between intra and interatomic Cou-
lomb effects. A surface oxygen vacancy will con-
tribute an attractive term to the Madelung poten-
tial of first-, second-, and third-nearest-neigh-
bor surface cations of (e/a) q,«, (e/(5} a) q,ff and

(e/3) q,«, respectively, where q,« is the effective
charge on the oxygen ions and a is the cation-
anion distance. Even with q,ff l, (e/a) q,« 'I 4 eV,
(e/(5)'~'a) q«=3. 3 eV and (e/3«) q~=2. 5 eV. The
existence of surface vacancies in the concentra-
tions of 3% or 4% of the oxygen per surface unit
cell would be sufficient to compensete intra-atomic
Coulomb repulsion and stabilize the occurrence of
surface states in the band gap similar to those of
Fig. 9(g) with excess electrons in surface d orbit-
als for charge neutrality.

Surface states in the band gap of Sr TiO, and

TiO, have been observed by Henrich et al."when

the sample surface has been chemically processed
or subjected to Ar'-ion bombardment. It is be-
lieved that such surfaces, although welk ordered
as evidenced by LEED patterns, have a higher-
surface oxygen vacancy concentration than vacuum
cleaved or fractured surfaces.

In their study of TiO» Henrich et a/. indicate
that three regions occur as a function of increas-
ing Ar'-ion bombardment. Region I corresponds
to small concentrations of oxygen vacancies. They
suggested that at the higher concentrations in re-
gions Q and III the surface gradually becomes re-

constructed from one characteristic of TiO, to one
characteristic of Ti,O,. Our band theory results
should apply qualitatively to region I, but not to
regions II and III.

The model explains most of the experimentally
observed results cited in the introduction if it is
assumed that cut and chemically processed sur-
faces of Sr TiO, or ion-bombarded surfaces of
SrTiO, and TiO, have an abundance of surface oxy-
gen vacancies, while vacuum-fractured surfaces do
not. This leaves unexplained the absence of band-
gap surface states on chemically prepared TiO,
samples. We may only speculate that the chemical
effect of etching on Sr TiO, differs from that of
TiO, because of the difference in crystal struc-
tures. The model also does not explain the.poor
LEED patterns observed on vacuum fractured sur-
faces, but does assume that the origin of the ap-
parent disorder is not oxygen vacancies.

In conducting materials such as Ti,O3, the intra-
atomic Coulomb integral p„ is likely to be much
smaller because the energy difference between
relevant Ti-ion ionization states is smaller and
also because there are ample conduction electrons
to provide screening. The concept of point ion
Madelung potentials is also inapplicable. However,
the basic idea that the increase in intra-atomic
Coulomb energy is opposed to the corresponding
decrease- in interatomic Coulomb energy remains
valid. A more careful study of this problem is
required in order to arrive at qualitative conclu-
sion. However, it wouM not be surprising if band-
gap surface states were stable in Ti,O, without
oxygen vacancies.

It is emphasized that even though the self-con-
sistent surface-state solutions are forced to lie
near to the conduction band edge they nevertheless
are still highly localized and possess the same
symmetry properties as a surface band lying deep-
er in the band gap. Consequently, one may expect
that these surface states will be of importance in
the surface chemistry of the oxides as previously
suggested 8 x'
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APPENDIX A: EVALUATION OF g, (0,0)

The infinite-bulk Green's function for n =n' = 0
and I =V is given from Eg. (3.13) by

g, (0, 0) =-
2g. sme '
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where 8(&o, K) and e are defined in Eqs. (3.16) and
(3.17), respectively, as

vanish at the top of the valence w band.

-2 cos8 =2 cosK+& (A2)
APPENDIx B: EvALUATIoN oF 8 (0,0)

Setti ngn=n'=0 and I=I'=0 in Eq. (3.12), we
obtain

e = ((d —f~ ) ((d —eg ) —4 ~ (A3)

If we call t—= -cos8=cosK+-,'e, then Eq. (Al) takes
the form

x (1 —,' e + t)—] 'i', (A4)

which can be expressed in terms of the complete
elliptic functions of the first kind. " For different
values of g one finds:

g, (0, 0) =(1/2w) g 'K(g ') for
I ql)4, (A5)

g, (0, 0) =(1l2~) [sgn(()K(h) —fK'(h) l «r Ie I
&4

(A6)

where

&'=(-'e)' K'(() =K(~') =K((1 —~')'")
We note that when the real part of g, (0, 0) has a
jump discontinuity at an energy +, , then the im-
aginary part of g, (0, 0) has a logarithmic singular-
ity at that energy e„and vice versa. Moreover,
both the real and the imaginary parts of g, (0, 0)
are symmetric with respect to the midgap, i.e.,
u, =-,'(e, +e,). The above are also true for 9(0, 0)
when Ae, =o, but if ~&, go then the surface states
are produced and the symmetry is broken. In the
calculation of the LDS for infinite bulk and perfect
surface with ~&, =Q we lose the symmetry because
of the factor (~ —e, ) which causes the density to

9(0, 0) =G, +G, ,

where

G, =
' 1 —(x+2&)' "' dx

2~ m, 1-x' 0+x

(B2)

(B3)

The minus sign in front of G, is used when 0& -1,
where the substitution of x = cosK is made in ob-
taining Eq. (B2) from (B1) and 0 is defined in Eq.
(3.28).

G, can be solved easily in terms of 0 and L@ and
given by

[(~P' -1)i2~P](I~' - 1) "'1
(B6)

and using standard tables, "G, can be evaluated
in terms of the complete elliptic integrals of the
third kind as

s(o, 0) =-' J' (B1)
0

with the condition that 8(~,K) changes sign when
cos8&-1, where bP(v) and 8(&u, K) are defined in

Eqs. (3.14) and (3.15), respectively. Multiplying
the numerator and the denominator of the integrand
in Eq. (Bl) by (bP —e'e), we can separate 9(0, 0)
into two terms as:

and

G, =(»2~)(1+(2& )(1+&)[«(-~&,
I & I) —11(-&, I& l)~& «rl» I'4 (B6a)

G, =[(1+vV»pl sgn«)[«(-8~,
I ~i) —~(-n,

I ~I)~+ sgnb')G. (~q/. ~ )[pn(n(1+ g), I
g'I) - ~(1+~

I
~'I)~

«r l~ 1&4, (B6b)

with

n = (~+ 1)'l (II+ 1), P = (~ —I)'~(I~+ 1),
(BV)y=(~'-1)l~, n'=I n', n=&'-=

where
a/2 d&

rr&n' u&=
(1 —n' sin28)(1 —k' sin'8)'

(B6)

When surface bands are formed, both G, and G,

have square-root Van Hove singularities in their
real and imaginary parts at the surface state band
edges. The density corresponding to the bulklike
states of the finite solid arises from branch-cut
contributions to G, .

APPENDIX C: SPECIAL CASE: ~ = 1

For the special case n, e, =0, from Eq. (3.14), we
have

gp =1.
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Then, from Eq. (3.12) or (B1), we get

9,(0, 0) =—
0

or
1' i 1 —2C —X9,(0, 0) —— 1 —— dx (, )(,)

(C2)

surface anion and P- and d-orbital LDS functions at
inner layers one needs to utilize the function

F„(rd) = 9(2n, 0) —g, (2n, 0) +g, (0, 0),
as in Eqs. (3.11) and (3.37). Equation (D1) can be
expressed in terms of lower-order Green's func-
tions 9(m, l) and g, (m, l) with the help of two re-
currence relations:

we get

(cs)

Similarly,
and

~ps(m, I) =9(m -1,I)+I(m, l), (D2)

9 (0, 0) = —' —(1/2rr)(1 —
g )K(l g l) for l «f &4,

(C4}

9,(0, 0}= -,' + (1/27r) (1- g) [sgn(() K( l g f ) - i K' ( l g f )]

for l «l (4, (C5)

where $ = —,
'

«,

I(m, l) =g, (m +1, l) -g, (m —1, l),
where 9(m, l) and g, (m, l) are defined in Eqs.
(3.12)—(3.17) and

1
I(m I) eim8 i!KdK

'tr

(Ds)

(D4)

K'(I &f) =K((1 —&')'").
The same result can be obtained by taking the lim-
its of the results in Appendix B as zp approaches
unity.

APPENDIX D: OTHER USEFUL GREEN'S FUNCTIONS

In the evaluation of P-orbital LDS functions at a

Exact, analytical expressions for 9(0, 0) and

g, (0, 0) are given in Appendices A-C, hence in
order to calculate 9(m, o) and g, (m, o) one only
needs the solutions for I (m, 0). In what follows we
will present the exact solutions for I(m, 0) with
m =1 and 2 which are needed for the p-orbital sur-
face states:

--.'«[I- (2/v)E(k)], k =4/ f« f,
--,'«+ (2/rr)(sgn(«)[E(k) —k"K(k)]+i[E'(k) —k'K'(k)]}, k = —,

'
f« f, (D5)

—,'«'([1 —(2/rr)E(k)] —(1/m[E(k) —k "K(k)]}, k = 4/
f
« f,

«(—,'« —(2/7T) sgn(«) gE(k) + [E(k) —k "K(k)]}+(2/rr)i (2[K'(k) —E'(k)] —[E'(k) —k "K'(k)]}), k = g
f
« f,

(De)

where «(e) is given by Eq. (3.17). Thus the LDS function for the p electrons on an anion site at the surface

is given, from Eq. (3.21), by -1/rr times the imaginary part of the Green's function

(G,(O) = (~ «, n«, )9(0, 0)+ (rd -«,) '[1+F,(~) —9(1,o)],
.or

G (O)=(& «, ~«, )9(0, 0)+(~-«,) '[l-i(1, 0)+(I/g)i(2, 0)+[(1-a)/4'][9(0, o}+ (1,o}]}, (D8)

where we made the use of Eqs. (3.21) and (D1)-
(Ds).

Within the approximation we have assumed to be-
gin with that the oxygen-oxygen interactions (ppw)
negligible with respect to the transition metal-
oxygen interactions (Pdrr); the nonbonding bands

are flat and the LDS for them are just & functions
at ~ =&, with strengths being equal to one for the
x-y-plane solution (parallel to the surface) and to
the real part of the second term in Eq. (D8) at
(d = E for each of the x-z- and y-g-plane solutions:

1 , for n=xy,

Re(l -I(1,0) + (1/~)i(2, 0) + [(1—~)/%'][9(0, o) +I(1,0}l}f

(Ds)
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This can be calculated easily, since ~ = 1 at &

=a, from Eq. (3.14) and e=-4 at ~=a, from Eq.
(3.17); therefore, Eq. (D9) gives for n =x, g or

late the LDS function for a d electron on a cation
site at the layer next to the surface into the bulk
using Eqs. (3.3), (3.11), and (D1)-(D3) as

and

C = Re[1 -I(1,O) +I(2, 0)1
~ .

=1+(4- 12/v) —(1 - 2/~) = 2(2 —5/~),

(D1o)

p,",'(~) = (1/~) imG„, (1, O;1, O)

= —(1/w) ((o —e,) ImI, ((u),

with

(D12)

thus, the total strength of the & function which

describes the nonbonding LDS in this model is
E,((o) = (1/bP') [9(0,0) +I(2, 0)]

+ [(1 4))/4))I(1, 0), (D13)

Q C = 1+4(2 —5/m) = 9 —20/m = 2.634 . (D11)

%ith the present knowledge one can also calcu-

where 8(0, 0), I(1,0), I(2, 0), and ~ are given by
Eqs. (B6a) and (B6b), (D5), (D6), and (3.14), re-
spectively.
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