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It is demonstrated that a model which has been proposed by Honda and Kato shows that a

liquid can be ferromagnetic. The melting temperature and Curie temperature of a system of spins

are calculated in the mean-field approximation. The possible correlation between the magnetiza-

tion and translation order parameter was included, but was not found to be too significant. It is

shown that one must choose certain solutions for the magnetization and translation order parame-

ter to minimize the free energy.

I. INTRODUCTION

The possibility of a liquid ferromagnet has been in-

vestigated by several authors. ' The controversial ex-
perimental investigations' have led to theoretical
analyses in terms of very crude models. ' ' The com-
plexity of the problem makes it necessary to use very
simple models and even these simple models can only
be solved approximately. We examine the possibility
of ferromagnetism in liquids by using a model which
was proposed by Honda and Kato' and based on a

model due to Nakano. Using their model, Honda
and Kato made some mean-field theory calculations
and concluded that a ferromagnetic liquid state is un-

likely. We will show in this paper that the model does
exhibit liquid ferromagnetism if one includes some
terms which are neglected by Honda and Kato and
considers the minimization of the free energy in

choosing the solutions of the equations for the mag-

netization and translational order parameter. We have
also included the possibility of correlations between
the spin variable o-; and the variable associated with

the translational order parameter p, .

Following Honda and Kato, we consider a system of
%atoms in a volume V. The system is divided into W

unit cells of volume v = V/W, which each contain one

atom. Each cell is divided into a central region of
volume v', centered about the lattice site, and an
outskirt region of volume v —v'. The atoms each pos-
sess a spin a „capable of taking the values + I (the
Ising model is assumed). The interaction between the
i th and j th atoms is assumed to have the form
—U(r„) —J(r;, ) a;a;, whe. re r;, is the distance between
the i th and j th atoms. Then the Hamiltonian of the
system will be given by

H = —$ (U(r;, ) +J(rj) a, a,], -

where the sum is over all nearest-neighbor pairs of
atoms. We assume that there is an interaction only
between nearest neighbors. To simplify the calcula-
tion, the interactions U(r;, ) and J(r;,) are approximat-
ed by averaged values for various ranges of interparti-
cle separation, r;, . If the i th and j th atoms are both
in central regions, the interactions U(r;, ) and J(r„)
are approximated by 4U] and 4J], respectively. If the
i th and j th atoms are in diff'erent regions, the in-
teractions are approximated by 4U2 and 4J2. Finally,
if the i th and j th atoms are both in outskirt regions, the
interactions are approximated by 4U3 and 4J3. We
define the variable p, to be +1 when the i th atom is
in a central region and —1 when the atom is in an
outskirt region. Then Hamiltonian given by Eq. (I)
can be written

H = $ [ ( U& + 2 U3 + U3) + ( Uj 2 U3 + U3) p, pj + (Uj —U3) (p, + p;)
&i~)

+ (J3 +2J3 + J3)a''0'J + (J/ 2J3 + J3) j jpjpj ( ] 3)rrjaj(pj +pj)]'
III. CALCULATION

We will now calculate the averages of 0.;, p;, and o-;p, in the above system. To simplify the calculations, we use
the mean-field approximation. To do this, we focus our attention on the i th atom, which interacts with its neigh-

bors via the single-particle Hamiltonian
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y
H' $[ (U] +2 U2 + U3) + (Ut —2 U2 + U3) p p, + (Ut —U3) (p; + p)

+(J)+2 J2+J3)(T,aj +(J] 2J2+J3)a;o,p p, +(J&+J3)o;a;(p;+p,)] .

The mean-field approximation consists of replacing the spin operators on the neighboring sites j by their average
values. We thus replace o, by (a;), p, by (p, ), and a, p, by (o,p, ). Since these averages are independent of the
lattice site j, we will drop the subscript and write them as (o.), (p), and (o p), in order to simplify the notation.
Then the approximate single-particle Hamiltonian becomes

H, = —y[(U~+2U2+ U3) +(U~ —2U2+ U3)p;(p) +(U~ —U3)(p;+ (p)) +(J~+2J2+J3)a;(o)

+ (J~ —2J2 + J3)a;p; (crp) + (J& —J3)a;p; (a) + (J& —J3)a; (ap) ] . (4)

X P(p)e

Now (o.) can be calculated from the expression

(a) = X X P, (p,)o,e (5)
g ~+] p ~wi

I I
g ~~/ pi

where P=l/kTand

p if p;=1,
P;(;) ='

q ifp;= —1 (6)

Similarly, we may calculate (p) and (a.p) as follows:

&p)= X X P(p)pe
g ~w] p ~wi

I I

and p = v/v' and q =1 —p. This factor is necessary
because the central and outskirt regions have dift'erent
volumes.

If we define the quantities A, 8, C, and D by

A =py[(U(+2U2+ U3) +(Ug —U3) (p)], (7)

8 = py[(U~ —2U2+ U3) (p) +(U~ —U3)], (s)

C =Py[(J(+2J2+ J3) (a) + (J( —J3) (ap)], (9)

&r.=+I p.=+[
I

P( )
PH—

(15)

The calculation is exactly like that for (a) and yields

tanh(8 +- lnp/q) +tanhC tanhD
&p)

=
1 + tanh(8 + —, lnp/q) tanhC tanhD

Finally, we obtain (op) as

and

D =Py[(J) —2J2+ J3) (ap) + (J) —J3) (o)] (10)

tanh (8 + —, lnp/q) tanh C + tanhD
(ap)-

1 + tanh(8 + —lnp/q) tanh C tanhD

then 0; can be written

H; —P 'iA +8p;+ Ccr; +Do;p;i .

Equation (5) for (o.) becomes

(o) = $ XP;(p;) a, e
g' ~ p.

1

X
A +8 p. tC Ir . I-Dp. tr .p(~ )~~

tr p.
I I

Performing the sums over o; and p;, we find

pe sinh(C+D) +qe ssinh(C D)—
pe cosh(C +D) +qe scosh(C D)—

which may be rewritten as

tanhC+tanh(8+
2

lnp/q)tanhD

1 + tanh (8 +
2

lnp /q )tanh C tanhD
(14)

Since the three quantities (o), (p), and (ap) are cou-
pled we must solve the three equations (14), (16),
and (17) self-consistently. In general these equations
have more than one solution, the physically stable
solution being the set of numbers for (a), (p), and
(o.p) which minimize the free energy.

The free energy may be calculated from the parti-
tion function Z, defined by

Z= $ P((p, ])e e",
I~, ) Ip;

~here the summations are over all possible
configurations of a; and p;. The function P( [p, ]) is
simply a product of N factors of p or q arid depends on
the configuration of p;. When p; =1, we include a
factor of p and when p; = —1, we include a factor of q.

Using the mean-Seld approximation, replacing o; by
(a), p, by (p), and o;p, by (o p), the Hamiltonian of
Eq. (2) becomes
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N

H = — $ [(Ut+2J2 —U3) +(Ut —2U2+ Ui) p;(p) + (Ut —Ui)(p;+ (p)) +(Jt+2J2+ J3) &r;(&r)
i 1

+ (Jt
—2J2 +J3)o;p; (o'p) + (Jt —Ji) (o ) a;p; + (Ji —J3)a; (a p) ],

which may be written

p
—1 W N jV

H- —— NA +8 $p;+C go;+D Xo;p;
2 i-1 i-I i-1

(20)

where A, 8, C, and D are defined in Eqs. (7)—(10). Now we may write the partition function as

Z =e~"~' X P([p;]) +exp[ —,
' (Bp;+Co;+Dp;a';)] .

{a) {p, i 1

(21)

(22)
p

We may separate Eq. (21) into. a product of N one-particle partition functions and the partition function becomes
IN

Z =e""" g X P, (p, )exp[-,'(Bpt+Cat+D&rtpi)]

Evaluating Eq. (22) yields

Z =2+[pe "+s cosh —(C+D) +qe" s cosh —(C —D)]+.
2 2

Substituting the expressions for A, 8, C, and D in Eq. (23), we obtain
t

Z =2" p exp (1+ (p)) + (1 —(p)) cosh ((o) + (a p)) + ((&r) —(&rp))
kT kT I T kT

(23)

+q exp (1+ (p)) + (1 —(p)) cosh ((a) + (op)) ((&r) —(&rp))
yU2 yU, yJ3
kT kT kT kT

(24)

The free energy F may oe calculated from the partition function,

F = —kTlnZ . (25)

We obtain
r

F = NkTln2 —NkT1—n p exp (1+ (p)) + — (1 —(p)) cosh ((&r) + (&rp)) + ((&r) —(&rp))
kT kT kT kT

+ q exp (1+ (p)) + (1 —(p)) cosh ((a) + (o.p)) + ((&r) —(o p))
(26)

We assume that the materials which we are consider-

ing have a stable, ferromagnetic solid phase at low

temperatures. Then U3 & U2 and U2 & U~. The en-

ergy U~ corresponds to the binding energy, which is of
the order of 1 eV. The exchange energy is usually of
the order of 10 ' eV. The parameter p represents the
fraction of the volume available to an atom just before
melting and thus corresponds to X in the Lindemann
melting formula. ' Here X' is the ratio of the root-
mean-square displacement of an atom from equilibri-
um at the melting temperature to the mean radius of a
unit cell. In most materials, 0.2 & X & 0.2S 'so p will

be in the range from 0.008 to 0.016. Under these
conditions, it is easily seen that the free energy is a

decreasing function of (o.), (p), and (o p). (We use
the non-negative solution for (o.).) Thus, the stable
solutions for (a), (p), and (a p) are the largest solu-
tions, for these will yield the lowest free energy.

IV. DISCUSSION

We can now solve the coupled equations for (&r),

(p), and (o.p) numerically to obtain their temperature
dependence. Choosing the largest solutions (those
which minimize the free energy, as described above),
we obtain the results shown in Figs. I and 2. In both
figures, p =0.01, U2= U3=0.9U], and J2= J3=0.9l].
In Fig. I, the ratio U&/J& has the value 100. In this
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FIG. l. (o), (p), and (o p) as functions of temperature
with U2 = U3 =0.9 U~, J2 = J3 =0.9J~, p 0.01, and

U)/J) =100.

FIG. 3. Melting temperature and Curie temperature as

functions of U&/J ~ with U2 = U3 =0.9U~, J2 =J3 =0, and

p =0.01.

case, the magnetization vanishes at a temperature
which is below the melting temperature. %e interpret
the temperature at which the translational order

p trameter (p) jumps discontinuously as the melting
temperature T„,. The Curie temperature Tq. is that
temperature at which the magnetization (o.) becomes
zero. ln Fig. 2, in which the ratio U~/J, is 50, the
C'uric temperature is greater than the melting tem-
perature. The magnetization decreases to zero as the
temperature increases, but the magnetization de-
creases discontinuously at the melting point, as we

would expect, since the melting point is ~ first-order

ph use transition.
In Fig. 3, the melting temperature and Curie tem-

perature are shown as functions of Ut/Jt. Here
U2 U3 -0.9 U~, J2 = J3 =0, and p =0.01. %e see
that, in this case, the melting temperature is always
greater than the Curie temperature for any value of
Ut/Jt. As J2 and J3 are increased, as shown in Fig. 4,

in which U2= U3=0.9U~, J2= J3=0.9J~, and

p =0.01, the melting temperature is less than the Cu-
rie temperature for the values of Ut/Jt, smaller than
certain value. Thus we conclude that this model .

might possibly be a crude explanation of the observed
ferromagnetism in liquid Au-Co alloys.

In some preliminary calculations which we per-
formed, ' we neglected any correlations between o.;
and p; and only calculated (o) and (p) for the above
model, i.e., (o.p) = (o.) (p). The differences between
the results we obtained in this calculation which in-
clude the correlation function (o p) and those of pre-
vious calculation are only about 1%, which is negligi-
ble compared with the inherent inaccuracy associated
with the crudeness of the model. The good agreement
between the results of these two calculations is not
surprising because the correlation function (o p) is al-

most equal to the product of (o) and (p) shown in

Figs. 1 and 2.
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FIG. 2. (~), (p), and (op) as functions of temperature

with U2= U3=0.9U~, J~=J, =0.9J~, p 0.01, and

U)/J) =50.

FIG. 4. Melting temperature and Curie temperature as
functions of U)/J) with U2- U3=0.9U), J2= J3=0.9J), and

p =0,01.
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