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Contribution of the electron redistribution effect to the piezoelectric constant due to the bond
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The electron-cloud distortion of GaAs and ZnSe under uniaxial stress is discussed using the Chadi-Cohen
empirical linear-combination-of-atomic-orbitals band theory. The electron localizability X = (a ' —b )/(a '+ b '),
where a is the weight of the anion atomic wave function and b is that of the cation atomic wave function in
the valence-state wave function Q„= e l|I'+ bQs, changes with the bond bending of the tetrahedral structure
induced by [111]-directional external stress. This electron redistribution effect gives a large contribution to
the piezoelectric constant. e i, /eo is 0.32 for GaAs and 0.27 for ZnSe, e „being the effective charge due to
the bond-bending effect.

I. INTRODUCTION g changes with the lattice vibration as

g'„= ag" + bg, P,'= bg —aP (2)

where g and Ps are the atomic wave functions of
the anion and cation in tetrahedral compounds,
respectively, and a and 6 are the weights of them.
Then, the electron localizability A. is defined
naturally as

lt = (a' —b')/(a'+ b') .

The piezoelectric constant is one of the most
important parameters of lattice dynamics. The
most striking aspect of the piezoelectric constant
of zinc-blende-type crystals is that its sign re-
verses on going from III-V compounds to II-VI
compounds.

Martin' gave the theory of the piezoelectric ef-
fective charge e,*„. it is the sum of e$ and Q,
where e$ is transverse optical charge and Q is the
quadrupole moment of the unit cell under stress.
For the definition of e,*, and Q, refer to Martin' s
paper. Several authors' ' asserted that the ion-
icity change, or the electron redistribution effect,
due to the external strain, contributes to the piezo-
electric constant. The idea of an electron redis-
tribution effect seems to be consistent with Mar-
tin's theory, as discussed below. Bennett and
Maradudin, and Lennoo and Decarpigny calcu-
lated the e~~ values for tetrahedral crystals. The
electron-cloud distortion due to the lattice vibra-
tion is given from

lq„& = lq'„&+ [ll[,'&&q,'I vip'„&/(E, —&„)l,

where lP„'& and lg,'& are the wave functions of the
valence and excited states, respectively. E, and
E„are their energy levels, Vis the interaction
operator between the lattice vibration and the
electron (deformation potential). The superscript
0 shows nonperturbed states. We assume that

~X =lt -lt, = 2Z/(1+ b'/a'),

using Eqs. (1) and (2), where A., is the electron
localizability of the unperturbed state and J
=(P,'I Vlf'„&/(E, —E„). The electron-cloud distor-
tion in e~ is described by the change in A. . The
change of A. contributes to the piezoelectric con-
stant through e~~. Moreover, it is expected that
the quadrupole moment Q of Martin includes the
effect of the electron-cloud distortion due to the
lattice distortion.

Harrison' discussed the effect of the change in
electron polarity due to the external stress on the
piezoelectric constant. He assumed that the elec-
tron-cloud-distortion effect is due only to the
change in bond length. In general, the distortion
Ap of the electron distribution p induced by the
external strain 5 given in Fig. 1 is

Bp Bdo Bp 88&

ed ea ee eg
(4)

where d, is the bond length and 6l, is the bond angle
defined in Fig. 1(a). The first term of Eq. (4)
represents the bond-stretching effect, and the
second term the bond-bending effect. Harrison
treated only the first term. No clear reasons
exist that allow us to ignore the second term of
Eq. (4). The bond-bending effect may correspond
to the quadrupole moment Q because the cations
(indicated by P in Fig. 1) move along with the
plane perpendicular to the direction of the exter-
nal stress.

In this paper, we discuss the effect of the change
in the electron localizability X due to bond-bending,
using the empirical linear-combination-of-atomic-
orbitals (ELCAO) band theory developed by Chadi
and Cohen. '
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FIG. l. (a) Unit tetrahedron and the strain 6 induced
by [111]directional uniaxial stress. e stands for anion
and P for cation. 8& is the bond angle. (b) Positions of
respective atoms in the unit cell of zinc-blende struc-
ture under strain.

II. ELCAO BAND THEORY AND THE ELECTRON
LOCALIZABILITY UNDER STRESS

In this section, we calculate A. under stress using
the ELCAO band method. The definition of A. is
similar to that of Harrison's n~.

' However, the
calculation method is different from his; we use
A. independently. The reason we use the linear-
combination-of-atomic-orbitals (LCAO) method
is that the value of A. and its change with stress
are deduced directly rather than through another
band-calculation method such as the pseudopoten-
tial band theory. In the simplest LCAO method,
we use eight atomic wave functions s, p„,p, , p, ,
s8, p„s, p, , and P,8 as basis functions. a stands
for anion and p for cation. Also, we consider only
the nearest-neighbor atoms interactions in the
eight-by-eight eigenvalue problem. ' For details
refer to Ref. V.

The stress is applied along the [111]axis, as in
Fig. 1. The strain 5 is defined as in Fig. 1(a).
We assume that the bond lengths do not change
under stress; only the bond angle 8~ is assumed
to change. Kleinman's f is assumed to be unity
for the value of the second term in Eq. (4). Fig.
l(b) shows the atomic positions with strain 5 along
the [111]direction. These atomic positions are
deduced easily by a simple geometrical considera-
tion, the details of which are omitted foe simplici-
ty. The off-diagonal elements in the eigenvalue
problem, under stress, are given as follows. For
example, (s" Ik Ip„s") between the anion and the pll
cation in Fig. 2(b) is

&s "~k
~
p„"'& = sptr[(I —&)/W3]e" '

x[(1—5)k, + (1 —5)k, + (-1—26)k, ]a, ,

(5)

where sp6/~3 is the energy parameter between

(b)

FIG. 2. (a) Simplified Brillouin zone of zinc-blende-
type crystals under [111]-directional strain 6. The
Brillouin zone expands by 1+6 in the [111]direction, and
it contracts by 1-2 I5 along the axis perpendicular to the
[111]axis. e is the direction of the k vector. 8& is the
bond angle. (b) Valence-band structure of GaAs. The
dashed lines show the change under the strain 6. The
X& state is split into two levels. The L3 state is also
split at the L' point (see text). I'~& is slightly leveled
down. L2 is slightly leveled up. The s-like deep band
g, &-1 &-X&) scarcely changes.

s and p„s" in Fig. 1, without distortion. spv rep-
resents the a bondirig of s- and p„-type wave. func-
tions. The factor of (1-5) in EII. (5) arises from
the change in the s -p„"interaction under the dis-
tortion 6. The change in the matrix elements of
the secular equation is assumed to be caused by
the change in bond angle only. The details are
given by Slater and Koster, ' arid we omit them.

The Brillouiri zone of the crystal under stress
is also distorted. A simplified picture of it is
shown in Fig. 2(a). In the [111]direction, the
Brillouin zone is expanded by 1/(1 —5) =1+5 be-
cause the lattice constant in this direction is con-
tracted to 1 —5. In the direction perpendicular to
the [111]axis, the Brillouin zone is contracted to
1 ——,5 because the lattice constant in ihi. s direction
is expanded to 1+~5. The Poisson's ratio ls as-
sumed to be 2.0, in agreement with the assumption
& = 1. In an arbitrary direction indicated by 9 in
Fig. 2(a), the Brillouin-zone boundary changes
by

1+5 cos'9 ——,'5 sin 0,
times the original boundary size.

Now we calculate the valence band X of Etl. (3)
using the Chadi-Cohen parameters. ' The results
for the band energy is shown in Fig. 2(b). Table
I gives the weights of the respective atomic wave
functions in the respective valence-band positions
for GaAs. a„b„g&,and b~ are, respectively, the
factors of the anion s-type, cation s-type, anion
p-type wave functions. a~ and b~ are calculated
from g'=g' +a' +g' and 5'=5' +5' +5' in the
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TABLE I. Weights of the atomic wave functions at the
respective points of the Brillouin zone of GaAs. The
definition of a~2, etc. is given in Sec. II. &, and A~ are
the weighted averages of A. for s-type and P-type valence-
state wave functions. 6 = 0.

Point as2 b2 a&
2

TABLE II. Weights of atomic wave functions of ZnSe,
with 6=0.

Point

I'( "

I'~s

X|
X3
X)
Lg

L3

2as

0.543
0
0.792
0.002
0
0,653
0.067
0

0.457
0
0,003
0.776
0
0.238
0.446
0

X =0.028

2
a& b2

0 0
0.96 0.04
0 0.204
0.22 0.001
0,712 0,289
0 0.108
0.343 0.144
0.808 0.192

&p-—0.466

I'(
I'()
Xg
X3
X5
Lg
L2
L3

0.789
0
0.915
0
0
0.869
0.014
0

0.211
0
0
0.521
0
0.074
0.361
0

& =0.345

0 0
0.984 0.016
0 0.085
0.479 0
0.82 0.18.
0 0.055
0.544 0.081
0.905 0.095

Xp
——0.744

respective valence wave function

P„=a,s + a~,p „+a~„p, + a~,P,"

+ b,s + b~p„+ b~,p, + bop, .
The X's of s-type and p-type wave functions at the
respective Brillouin-zone points are defined as

X, = (a, —b', ) /(a, + b,), A. = (a —5') /(a + b ) .
(8)

These are given in Table I for nondistorted GaAs,
independently of the respective Brillouin-zone
points. We emphasize the fact that the respective
valence states each have a different A. value. This
had not been recognized yet. The averages 4,
andM~ over the Brillouin zone are assumed to be
the weighted averages over all I', X, and I. points
in a unit Brillouin zone. There are six X points
and eight L, points, However, the zone boundary
of an unit Brillouin zone belongs commonly to the
next-nearest-neighbor Brillouin zone. Hence the
weights of X and I. points are, respectively, three
and four times larger than for the I' point. Al-
together, the electron localizabilities X, and X~ are
0.028 and 0.466, respectively. We further empha-
size that the localizability of the s-type wave
function is different from that of the p-type wave
function. Table II shows values for ZnSe without
distortions. Tetrahedral crystals have sp' bonding
wave functions along the respective bonds in Fig.
1. The bond-electron localizability A., is defined
as 4X, + 4X~, which is 0.357 for GaAs and 0.644 for
ZnSe, without distortion. The factors 4 and 4 are
the weights of s-type and p-type wave functions
in the sp' bonding wave functions.

For the distorted state, the electron localizabili-
ties~ andM~ are also calculated as in Tables III
and IV. The lattice distortion 5 is assumed 0.05
for sample computer calculations. The dashed

TABLE III. Weights of atomic wave functions of GaAs
under uniaxial stress in the [111]direction. The strain
6 in the [111]direction is assumed to be 0.05. The Xs
and 1.3 states are split into two levels, respectively.
indicates the L point on the [111]axis (parallel) and L

the L point on the [111]axis, etc. (perpendicular).

Point 2as bs2 b2

X5

Lg

L2

L3'

LII

LJ.
2

LL
3

LJ.

0.543

0.01

0.79

0.004

0.650

0.067

0.651

0.076

0.456

0.007

0.003

0.775

0.258

0.416

0.236

0.457

0

0.972

0.001

0.220

0.696

0.732

0.357

0.792

0.791

0.338

0.792

0.800

0.011

0.206

0.001

0.306

0.269

0.092

0.160

0.208

0.209

0.112

0.138

0.208

0.200

~s—-0.027 Xp= 0.500

lines in Fig. 2(b) show the valence-band energy
change with 5. The I'," energy scarcely changes.
The F,", point is slightly leveled down with very
small splitting. The changes in Xy and X", are
very small, and the X," state is split into two levels
under [111]strain. For the [100]direction, cosO
= 1Q& so that the Brillouin-zone boundary does
not change from Eq. (6). Also, the axes K, Y, and
Z are equivalent to each other for [111]direction-
al stress; all six X points in the Brillouin zone
are equivalent.

Among the I, points of the Brillouin zone, the
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TABLE IV. Weights of atomic wave functions of ZnSe
under uniaxia1 stress. The strain 6 is 0.05.

Point 2
Qs bs2 a&

2
bp

X3

0.787

0.006

0.916

0.213

0.011

0.52

0.977

0.48

0.006

0.084

X(

X5

LL
2

3

Ll
3

0

0,876

0.011

0.076

0.334

0.865

0.018

0.075

0.373

~s= 0.343

0.803

. 0.841

0.560

0.892

0.892

0.538

0.898

0.197

0.159

0.049

0.094

0.103

0.103

0.060

0.071

0.102

0.891 0.108

&&= 0.764

point 111 is not equal to 111 (or 111and 111). The
Brillouin-zone boundary in the [111]direction is
expanded 1+b times, and in the [111]direction
is reduced (1——,'b) times because cose= —,

' for the
[11T]direction. We should calculate the 111point
and others such as the 111 point independently.
The [111]-directional L point is named L (paral-
lel) and the others L,

' (perpendicular). The
changes of I.-point valence bands under the strain
b are also shown in Fig. 2(b). The point I.," changes
sca,rcely. The point L,," is slightly leveled up
(equally for the parallel and perpendicular). L~~ is
leveled down (no splitting) and L,,' is split into two
states. 1., and L,,' are independently calculated.
X, andT~ are the weighted averages over all F, X,
and I.points. Table III gives the results for Gahs
and Table IV the results for ZnSe. X, is scarcely
changed with b, andM~ is V% larger than that of the
undistorted state. The fact that the deep valence
band is not perturbed by the stress seems very
reasonable in terms of Eq. (1). No theories pub-
lished already have explained this situation.

With the strain 5 of Fig. 1, the X, F, and Z direc-
tions are equivalent to each other. The p~„, a~„
and a~, values in Eq. (7) are equal. Also b~, b~„,
and b~, are equal. Thus, X~ for the [111]-direction-
al bond is equal to that for perpendicular bonds
such as the [111]bond.

For distorted crystals under [111]-directional
stress, sp' hybridization is destroyed because
the bond angle 8, in Fig. 1(a) no longer has the
ideal value 109.5'. This situation is shown in Fig.
3. Figure 3(b) shows the structure under extreme-
ly high pressure (sp' wave function). The s-p hy-
brid ratios of the respective bonds in the distorted
crystal are no longer equal to that of the ideal
structure. With the 5 =0.05 strain in Fig. 1, the
respective bond localizabilities are given by

A, ~
= 0.152M+ 0.848Xp,

(9)
Z,
' = 0.283m, + 0.717m,

where A., is the bond localizability of the parallel
([ill] directional) bond, and X,

' is that of the per-
pendicular ([111]directional) bond. The factors
of 0.152, etc. , in Eq. (9) are deduced in the Ap-
pendix; namely, the localizability of the respective
bonds changes with the change in s-p hybrid ratio.
For GaAs one obtains X~ =0.428 and X~ =0.366 with
5 =0.05 strain. Also for ZnSe, A.~=0.699 and A.,
= 0.644. We emphasize the fact that the bond-
electron localizability is anisotropic under exter-
nal stress even if we assume that the bond length
d, does not change. The anisotropy in the bond
localizability A.,—A., is 0.062 for GaAs and 0.055
for ZnSe.

When X, and A., change, there appears electronic
polarization in the unit tetrahedron. Figure 4
shows the electron-cloud motion with change in

We first consider the [111](parallel) bond.
For the A., = 0 bond (perfectly covalent), the elec-
tron cloud stands midway of the anion to cation
bond. When X, is increased, the electrons are
localized at the anion site. Thus, for M~= 1.0
(strictly covalent to strictly ionic), the electron
cloud moves from the bond center to the anion-

1

III. CONTRIBUTION OF LOCALIZABILITY CHANGE
TO PIEZOELECTRIC CONSTANT

Now we discuss the effect due to the change in
A. under extei.nal stress upon the piezoelectric
constant. We only discuss the second term of Eq.
(4) in Sec. I. t =1 is assumed for this reason.

Sp~ Sp2

(a) (b)
FIG. 3. (a) sp3 wave function. (b) gp wave function.
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of ef is demonstrated as follows: For the [111]-
directional distortion 5 in Fig. 4, we chose that
three cations move to the negative [111]direction.
The negative [111]-directional-cation movement
stimulates the increase of A, The electron cloud
(negative charge) moves to the positiue [111]di-
rection with the same 5. Thus, the dipole mo-
ment induced with Mb has the same sign as the
dipole moment of the cation (plus charge) motion.

The normalized (dimensionless) piezoelectric
charge g'e„, where a is the cube size, ' may be
given as

FIG. 4. Electron-cloud motion (~) with strain ~. The
cross-hatched circles represent the valence-electron
cloud. They are midway for Xb-—0, and are localized at
the anion site &or Xq= 1.0. ~( indicates the bond parallel to
the fill]-directional stress, and & indicates the bond
perpendicular to it.

core position. ~A.,' shows the change of A. b with the
distortion. The electronic dipole moment gener-
ated together with M, is then

2(0.75/2)m, '= 0.75'&,", (10)

e~~ = —,
' [0.756k.," —3 (0.25 —5) AX~](5, (12)

in units of the elementary charge e,. For GaAs,
e,* is 0.32 and for ZnSe it is 0.27. The plus sign

where the first factor of 2 shows the electron num-
ber per one bond, the factor 0.75(2 means that
the bond size is 0.75 (the unit cell is shown in Fig.
1) and the 2 in the denominator means that the
electron-cloud moves a half of the bond length
with ~&b = 1.0. Moreover, for the perpendicular
bond the generated dipole moment is

2[3(0.25 —5P)]~;,
where the minus sign means. that the effect due to
the perpendicular bond is opposite to that due to
the parallel bond. The factor of 3 shown that there
are three perpendicular bonds in the unit tetrahe-
dron. The number of moving atoms under [111]-
directional stress is three (Fig. 1); the effective
charge e„* due to the bond bending for each moved
atom, which corresponds to the second term in
Eq. (4), is

a e„=Z*+ peg + (g —1)e$,
where Z*= 4k. —AZ is the rigid-ion charge without
electron-cloud distortion. AZ is the valence-
number difference (1 for GaAs and 2 for ZnSe).
The last term in Eq. (13) represents the bond-
stretching effect. It appears with the motion of
the anion in Fig. 1 with relation to the cation sub-
lattice. g =1 denotes that the anion in Fig. 1 is
perfectly stable, so that the bond stretching effect
does not appear. For & = 0, the effect due to the
anion movement contributes to e„fully with sign
opposite to that of Z*. All values in Eq. (13) are
listed in Table V. A. and e,* are calculated in this
paper. g and e~~ are the experimental values. The
correlation between theoretical, and experimental
values is given in Fig 5

IV. DISCUSSION AND SUMMARY

The coincidence between theory and experiment
for e„is not so perfect. There are several rea-
sons for this situation. First, the estimation of A.

is not so obvious. Our electron localizability A. ,
based on the Chadi-Cohen parameters, is nearly
in agreement with Phillip s ionicity, ' whereas
Pauling's ionicity, "which is strongly related to
the dipole moment of two-atom molecules, is not
correlated to our A. . Second, the values & and e~~

are not so clearly established yet. The last term
is the largest of all terms in Eq. (13). Small er-
rors in g or e~ cause a large error in e„. A more
accurate estimate of & and e~ is welcome.

We use the experimental e~ in this paper; there-

TABLE g. Parameters for the calculation of the dimentionless piezoelectric constant a e~4. ~ is the electron localiz-
abQity, AZ is the valence-number difference, Z is the rigid-ion charge, & is Kleinman's internal displacement pa-
rameter, e& is the transverse optical charge, and the last column gives the experimental a e&4 values {Ref. 1).

Crystal 6Z ez Z + eb + (& —1)ez a'e 14

GaAs
ZnSe

0.357
0.644

0.428
0.576

0.60
0.72

0.32
0.27

2.16
2.03

-0.864
-0.562

-0.116
+0.284

-0.32
+0.10

'Richard M. Martin, Phys. Bev, B 1, 4005 (1970). "Reference 1.
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2

FIG. 5. Experimental piezoelectric charge a e&4 (Ref.
1.) and calculated values for GaAs and ZnSe. o shows ours
and (3 shows Harrison's a& (Ref. 4).

fore the treatment of the piezoelectric constant
in this paper is semiernpi~i caL Theoretical cal-
culation of e~~ by the EI CAO method will be sub-
mitted in the future.

The Chadi-Coht. n model used in this paper is
insufficient because of the lack of all second-
nearest-neighbor interactions in the LCAO secu-
lar equation. Second-nearest-neighbor interacti. on
means the interaction between the PI and / II ca.-
tions in Fig. 1(b). The physical importance of the
second-nearest-neighbor interaction is as follows:
The magnitude of the second-nearest-neighbor in-
teraction is about one order of magnitude smaller
than the nearest-neighbor interaction. However,
the number of second-nearest-neighbor interac-
tions in the unit cell is three times larger than the
number of nearest-neighbor interactions. In Fig.
1 we see that an anion is enclosed by four nearest-
neighbor cations, and that one cation is enclosed
by 12 cations at the second-nearest-neighbor po-
sitions. Second, the change of the second-nearest-
neighbor interaction with strain 5 may be one
order of magnitude larger than the change in the
nearest-neighbor interaction. "Altogether, the
effect of the second-nearest-neighbor interaction
may be of the same order as that of the nearest-
neighbor interaction.

It is desirable to obtain other lattice-dynamical
values such as the shear moduli' using the ELCAO
method. However, in GaAs and ZnSe, the ionic
energy affects more or less the elastic shear
moduli, in contrast to the case of C, Si, and Ge.'
To obtain the shear moduli of partly ionic crys-
tals, we have to calculate them accurately, which

is not the aim of this paper.
In summary, the main results of this paper are

as follows. First, we calculated the valence-band
energy and the electron localizability, using the
LCAO method, at the representative points 1", X,
and L,. X~ of the p-like (upper valence) band is
different from X, of the s-like (lower valence)
band. Second, we conclude that the change of X~

(for the p-like band) is larger than that of A., (for
the s-like band). This was first pointed out in
this paper. Third, the difference of the bond lo-
calizability of the parallel bond (to external stress)
from that of the perpendicular bond is due to the
difference of the s-p hybrid ratio in the respec-
tive bonds. The sp hybridization is destroyed
under external stress. The bond bending charge
e,* is of the same order as the piezoelectric con-
stant e,4 itself.

A recent theoretical treatment" of the second-
order nonlinear optical susceptibilities x,",.~ of
distorted wurtzite-type crystals such as BeO
shows that the electron localizability of the 'z bond
(parallel to the c axis of the wurtzite structure)
is different from that of the x bond (perpendicular
to the c axis). hf, =f,„-f,„w. .hich m.ay correspond
to A., —A, in this paper, is proportional to the
spontaneous distortion h(c/a). r f,./A(c/a) has the
same sign and magnitude as (A., -A, ,')/5 in this
paper.

1
Ill& =

(1+ 2)zy2 ((P &+mls&)

(Al)

where pis the sp hybrid ratio. Since ipse has a
sin8 dependence and ~p,& has a cos8 dependence
in Fig. 1(a), the 8-dependent pa, rt of P„, P„(8), is

p, (8) =~2 sin8+M&»~, (-pcos8) .1
(A2)

P„(8) has a maximum amplitude in the bond-angle
direction; sp„(8)/88= 0 leads to ~2 cos8, +
(I/M3) [I/(I + g )'~'] sin8, = 0. After some calcula-
tions )

p' = 2/(tan'8, —2) (A3)

is obtained. When 8, = 109.5' (nondistorted value)
is inserted, g= I/~3 is obtained (sp hybridiza-

APPENDIX

The s-p hybrid ratio for a distorted tetrahedron
is calculated. For simplicity, in Fig. 1(a) we re-
define the axis [111]as the Z axis and the axis
at 90' perpendicular to the [111]axis as the X
axis (in this Appendix only). Then, the bond wave
functions P, and Q„are
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tion). When 8, =90'is assumed, one deduces @=0
(sp' hybridization).

The weight of the p-type wave function in P, is
1((1+p,') and that of the s-type one is p'((1+ p').
Therefore, the localizability of the state P, may
be defined as

is obtained for P„.
b. 8 = 8, —8, = M25 is easily deduced using simple

geometrical considerations in Fig. i. 5 = 0.05
(our sample calculation) leads to 68=4.05', and

p -0.7195:

.x, i+1++ 1+/
and also

1 , X, ~+ —+

(A4)

(A5)

A»' =0.152k, i+ 0.848'X»i,

A. »
= 0.283 L, I

+ 0.717y i,

with distortion 5 = 0.05.

(A6)
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