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A theoretical consideration of the radiative two-electron transitions in semiconductors is given. The

expressions for the matrix elements are derived by means of perturbation theory, Also, possible enhancement

mechanisms of the two-electron transitions in semiconductors with direct band gaps are discussed.

In a series of experimental works on the lumin-
escence of the highly excited indirect-gap semicon-
ductors Si and Qe Betzler, Conradt, Weller, and
Zeh' ' have observed a new luminescence line at
frequencies v= 2E, where E, is the band gap of
the semiconductors. This line is the result of the
recombination of two electron-hole pairs into a
photon. In this note we consider some general
properties of the matrix elements and of the lum-
inescence spectra of the recombination of two elec-
trons and two holes into a photon in semiconductors
with both direct and indirect band gaps.

In Refs. 1 and 5 it was noted that in the frame-
work of perturbation theory the recombination
of two electron-hole pairs into a photon is a pro-
cess of first order with respect to the interaction
of the electromagnetic field with the charge car-
riers, and of first order with respect to their
Coulomb interactions. However, the Coulomb in-
teraction is a consequence of the exchange of the
virtual scalar photons, but these photons are not
the unique particles which mediate the interactions
between the charge carriers; there may be other
virtual particles: spin-1 photons, phonons, etc.
We shall obtain the matrix elements of the radia-
tive two-electron transition processes taking into
account the electromagnetic interaction of elec-
trons and holes in its general form, and also the
electron-phonon interaction. We denote the energy
bands, spin projections, momenta and energies of,
electrons by c„s'„P„and E'„where i =1, 2 and
those of the unoccupied electron states which are
considered as the holes by v~, s&, q~, and E~. We
note that due to the requirement of Fermi statistics
the matrix element of any process with two elec-
trons and two holes in the initial state is of the
form

where
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is some function of the momenta p, , q~.

We shall consider the interaction of charge car-
riers with the quantized electromagnetic field and
the electron-phonon interaction in the lowest order
of perturbation theory. The corresponding Feyn-
man diagrams are given in Fig. 1 (when only
electromagnetic interaction is taken into account)
and Fig. 2 (contributions of the electron-phonon in-
teraction}. In this order we have
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FIG. 1. Feynman diagrams with photon exchange:
electron-hole line (solid line); spin-1 photon line (wavey
line)", scalar photon line (dashed line).
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where

(4a)

(4c)

(4d )

(4e)

(4f)

(4g)
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where n=1, 2, 3 is the vector index, $„ is the unit intraband ones, g„„. Their values as well as the

vector describing the photon polarization, e is the vertex functions depend essentially on the crystal
electronic charge, (d is the photon angular fre- structure and on the mechanism of the electron-
quency, e is the static dielectric constant of the lattice interaction (see Refs. 7 and 8).
semiconductor, E"(p) denotes the energy of the Note that if we omit the amplitudes E$ J."2 E3 Ee,
electron with momentum p in the energy band n, F„and approximate the scalar photon propagator
m is the electron mass, (vs"ql cs'p) and
(vs"qlI'"I cs'p) denote the integrals on the element-
ary ee11 V„where

(vs"q I
cs' p) = — %t„,v, (r)*u„c~(r)d'r,

0 Vo

(vs"qll "Ics'p)

%L„, ,(r)* —x V 'a„~(r) d'r, (5)
0 '

V0

the%, „,~(r) are the periodic factors of the Bloch
wave functions of electrons, Q(k) is the energy of
the phonon with momentum k, the g„„,are the elec-
tron-phonon interaction constants with the initial
and final electrons belonging to the energy band n

and n', and A.(nsp, n's'p') are the corresponding
vertex functions. Here we use the unit system with

5 = q = 1, The interband electron-phonon interact'on
constants g„„,, ngn', are usually smaller than t e
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FIG. 2. Feynman diagrams with phonon exchange:
electron-hole line (solid line); spin-1 photon line (wavey
line); phonon line (double-dashed line).

neglecting the retardation effect in the propagation
of the interaction, we obtain the same matrix ele-
ments as those for the case when only the Coulomb
interaction between the charge carriers is taken
into account together with their interaction with the

light.
The expression (4a)-(4g) of the amplitudes E,

are valid for semiconductors with both direct and

indirect band gaps, if we consider only the lowest
order of perturbation theory. In the case of direct-
band-gap semiconductors the denominator of the
photon propagator vanishes at the values of the
momenta satisfying the condition

~[E'(P)- E"(q) 1' = (P —q)',

and the integrals in the expressions of the transi-
tion rates will be divergent if we use Exls. (4a)-(4g)
for F, . To avoid this difficulty we must also take
into account the higher-order terms of the perturb-
ation series.

In semiconductors with direct band gaps the top
of the valence band and the bottom of the conduc-
tion band are located at the same point in the Bril-
louin zone. The momenta p, and q, in the matrix
element
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(v, s,'q2I c2s2P, )

of Eqs. (4c) and (4d) are almost equal, and this
matrix element (with p, = q, ) vanishes, being the
scalar product of two wave functions of electrons
in two different stationary states. Therefore in
semiconductors with direct band gaps and with al-
lowed electrical dipole transitions only Feynman
diagrams with the exchange of a spin-I photon con-
tribute to the matrix elemerit,

W'hen the higher-order corrections are taken into
account we have the following expression for the
propagator of the spin-1 photon:

&na

~[E'(P) —E"(q)]' —(P q)'+ fX—

Here the imaginary part y of the denominator is
proportional to e' and determines the absorption
rate for a photon with momentum k =p —q, the
electron momenta p and q satisfying condition (6).
Instead of the above-mentioned divergence we act-
ually have the resonance effect owing to the possi-
bility of the emission of a real photon in the re-
combination of one pair and the subsequent anti-
Stokes Raman scattering of this photon by another
pair. The resonance region in which the denomin-
ator of the photon propagator is very small will
give the main contributions to the transition rates.
After integration over p, and q, in this resonance
region there arises a new factor y

' in the expres-
sions of the total probabilities. Since y is propor-

tional to e2 the transition rates will be proportional
to e =e, but not to e', although the amplitudes
contain e'. This means that when the semiconduc-
tors with direct band gaps are highly excited there
exists a new enhancement mechanism due to the
resonance connected with the possibility of the ex-
change of a real photon by two electron-hole pairs
in the transitions of these charge carriers.

It is important to remark that if instead of the
electromagnetic interaction between the charge
carriers considered in the framework of quantum
field theory we consider only their Coulomb inter-
action, i.e., if we take into account only the two
amplitudes I"

4 and I, and omit the energy differ-
ence in the denominator of the scalar photon prop-

. agator,

~[E'(P)-E"(q)]' —(p- q)' (p- q)' '

we shall lose the resonance effect.
For semiconductors with indirect band gaps the

energy difference in the denominator of the photon
propagator is negligible in comparison with the
momentum difference

~[E'(p) —E"(q) ]' «( P —q)

There will be no resonance in the corresponding
transition amplitudes.

Finally we note that in the matrix elements of the
Feynmen diagram s with phonon exchange there
may also be the enhancement mechanism due to the
presence of the phonon propagator.
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