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Piezobirefringence above the fundamental edge in Si

Meera Chandrasekhar, M. H. Grimsditch, and M. Cardona
Max Plan-ck Insti-tut fiir Festkorperforschung, 7 Stuttgart 80, Federal Republic of Germany

(Received 21 February 1978)

We report measurements of stress-induced birefringence in silicon in a spectral region (1.65 to 3.4 eV)
where the material is opaque. A new technique that employs Raman scattering is used to extend the range of
previous-measurements performed in the transparent region below 1.2 eV. Theoretical fits to the data are
made by considering the contributions to piezobirefringence due to the E&, E& + h, &, and E2 transitions under
nniaxial stresses along the [001] and [111)directions.

I. INTRODUCTION

Stress-induced birefringence in cubic semicon-
ductors that are optically isotropic if unstressed
has been studied in a variety of materials". near
and below the fundamental edge. Conventional
techniques' ' employ transmission of light through
the sample, and are consequently limited to a fre-
quency region where the material is transparent.
In the opaque region above the fundamental edge
1imited success has been reported in obtaining
relative values of the piezo-optical constants in
silicon using data obtained from piezoreflec-
tan0e." These difficulties have been overcome
with a new technique that employs Raman scat-
tering': using this method we have already re-
ported' measurements of the magnitudes of the
piezo-optical constants n„—g„and n44 at 1.92 eV,
mell- above the fundamental gap of 1.1 eV. In this
paper we present measurements of the piezo-op-
tical constants in the energy range from 1.65 to
3.4 eV, a region easily accessible to conventional
lasers.

Previous measurements' of piezobirefringence
in silicon in the transparent region between 0.6
and 1.2 eV exhibit little dispersion near the fun-
damental edge. This is a consequence of the in-
direct nature of the fundamental edge in this ma-
terial, which is too weak to contribute significant-
ly to the real part of the dielectric constant. The
present measurements approach the direct gap
in Si (-3.3 eV) and show a strong dispersion near
this gap similar to the results obtained for the
direct gaps of Ge and GaAs. ' We calculate the
contribution to the piezobirefringence due to the

Ej + 6i gaps, which provide the main disper-
sive terms around 3.3 eV, while the E, gap at 4.4
eV contributes only a slowly varying term in the
region of interest. The contribution from the E,'
gap, also near 3.3 eV, is neglected owing to its
small oscillator strength. The calculations are
compared with experiment, and good agreement
is obtained using the deformation potentials of
the E„E,+ 6, transitions and the magnitude of

the contribution from the E, gap as adjustable
parameters. The deformation potentials used
agree with previous measurements of these quan-
tities to within a factor of 2, which may be a re-
sult of the simple model we have used to fit the
experimental data.

Pure Si (carrier concentration 10"cm ') was
used in our experiments in order to eliminate
any free-carrier effects. All experiments were
performed at room temperature. Uniaxial stress
was applied along the [100j and [110]directions to
determine m„' —p„and n 44, respectively.

The experimental details are described in Sec.
II; Section III presents the experimental results
and their analysis, while Sec. IV provides a dis-
cussion and theoretical interpretation of the ex-
perimental results. Section V reviews the main
conclusions of the work.

II. EXPERIMENTAL DETAII,S

Raman measurements were performed in the
back-scattering geometry standard for opaque
materials. Ar' and Kr' lasers were used to ob-
tain the exciting radiation, the polarization of
which was turned with a polarization rotator to
obtain light linearly polarized at 45 to the stress
axis. The scattered light was analyzed with a
sheet polarizer. Standard polarization rotators
and analysers could not be used in the ultraviolet
at 3638 A; therefore, a combination of a 3600-A
quarter-wave plate and a Babinet compensator
were used to rotate the polarization of the inci-
dent light, and a Glah Thomson prism ws used
as an analyzer. The detection system consisted
of a double monochromator with holographic
gratings, a cooled photomultiplier equipped with
photon-counting electronics, and a multichannel
analyzer for data storage. The stress apparatus
equipped with digital readout has been described
previously in the literature. ' Compressive stres-
ses up to a maximum of 22 kbar were applied to
the samples that had a typical cross section of
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1.3x 1.3 mm'. The samples were cut and x-ray
oriented to within 1', and the face used for scat-
tering was polished with 0.3-p, m alumina and
polish etched with Syton' for 10 min.

HI. EXPERIMENTAL RESULTS AND ANALYSIS

When a uniaxial stress is applied to a cubic
crystal, the crystal becomes birefringent, and a
phase difference is induced between the compo-
nents of light polarized parallel and perpendicular
to the stress axis. This stress-induced birefrin-
gence causes a depolarization of the incident and
scattered radiation within the crystal in a manner
similar to that observed in light-scattering ex-
periments in birefringent materials. This de-
polarization is used to measure the stress-in-
duced birefringence coefficients (piezo-optical
constants). The method' is as follows: Raman
scattering is observed in a back-scattering ge-
ometry standard for opaque materials. A Raman-
active structure and a sample orientation are
chosen such that in a configuration with light po-
larized and analyzed at 45 to the stress direction,
the structure under consideration (a phonon or an
overtone) has zero Raman intensity at zero stress.
When a stress is applied, the intensity increases
from zero due to the stress-induced birefringence
which changes the polarization of the incident and
scattered fields within the crystal. Likewise the
same phonon or overtone in a different polariza-
tion configuration (also at 45' to the stress direc-
tion) that has maximum Raman intensity at zero
stress, decreases in intensity on the application
of stress. The ratio of the two intensities as a
function of stress is used to determine the abso-
lute values of the piezo-optical constants ~yy 7Ty2

and v44. No information is obtained on the hydro-
static piezo-optical constant 77yy+ 277]2 since the
bi.refringence is induced by the shear component
of the stress.

Details of the theoretical analysis have been
published elsewhere. ' A brief description follows.
To describe the scattering geometry, a coordinate
system is chosen such that the z axis is perpen-
dicular to the scattering face. The stress direc-
tion is chosen to be (I/v 2 )(x+y), while (I/v 2 )(x
-y) is perpendicular to both z and the stress di-
rection. .The stress is chosen along either [100]
or [110]crystal directions, z being along either
[001] or [110]for each stress direction. On the
application of stress, a phase difference P is in-
duced between the electric vectors of the radia-
tion polarized parallel and perpendicular to the
stress, for both the incident and scattered light.

For incident or scattered polarizations of light
along x or y" (at 45' to the stress axis) the elec-

tric vectors will be

e =-,'[(x+y)+ (x-y)e'~],

e, =-,'[(x+y) —(x-y)e'~],
respectively, where P is the phase difference at
a depth l within the crystal, and is given by

y(2~/~)(n, —n„)I, (2)

where n~~ and n~ are the refractive indices for
light polarized parallel and perpendicular to the
stress direction; the difference n~~

—n, is linear
in stress and depends on the sample orientation.
A. is the wavelength of the incident or scattered
radiation, which are taken to be equal owing to
the small frequency of the phonon as compared
with that of the incident or scattered radiation.

At a depth I within the crystal, the intensity of
the incident light is attenuated by a factor e
where n,. is the absorption coefficient at the in-
cident frequency. The scattered light is similarly
attenuated with an absorption coefficient n, . Using
the electric vectors in Eq. (1) and the Raman ten-
sor A,. of the phonon (j labels degenerate phonons)
the total intensity due to a phonon observed in a
given polarization configuration, say e(xx)z, can
be calculated to be

P ~
e„R„. e„~'e '"~' ~s" dl (3a)

and similarly for the z(xy)Z configuration

I = e„R. e 'e 'i s''dl,
0 j

(3b)

where factors common to Eqs. (3a) and (3b) have
been dropped. The standard notation for scat-
tering geometries is used, i.e. , e(xy)Z denotes that
the incident and scattered wave vectors are along
z and z, while x and y denote the polarizations of
the incident and scattered radiation, respectively.

The scattering face and stress direction are
chosen such that one of the intensities I„,or I„,
for the chosen phonon is zero and the other non-
zero at zero stress. The intensity ratio P
= I„„/I„,or I„/I,„is defined so that P= 0 at zero
stress, and is obtained from Eqs. (3) as a func-
tion of stress. For a given sample orientation P
is related through n~~

—n~ to the piezo-optical con-
stants. Several combinations of.phonons and sam-
ple orientations can be used to determine the mag-
nitude (not the sign) of n» —w» and w«. Six pos-
sible combinations are summarized in Table I.

'In each case we list the stress direction (column
1), scattering face (column 2), the electric vectors
e„and e, in terms of the crystallographic direc-
tions (column 3), the intensities of the I', and I'»,
components of the Raman tensor seen in the (xx)
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TABLE I. Six configurations for measuring the piezo-optical constants.

(1)
Stress

Case direction

(3) (4)
(2) Electric vectors of Components of the

Scattering- incident and scattered Raman tensor in
face radiation the z(xx)z and z(gy)z

z e„e, configurations ~

(5) (6) (7)
Phonon Intensity Piezo-optical

chosen and ratio P coefficient
its symmetry given by measured

(a) [110]

(b) [ooll

[ool]

[100]

[100] [010]

[110] [110] ri+ r»

o(I), r», Eq. (4)

2 TA+), r, ii i2

(c}

(d) [110]

[iio]

fooi]

[ooi] biol

[100] [010]

r»l

o(r), r» Eq. (7)

2 TA(X), r, Eq. (8)

ll 44

(e) [001] [100] [110] [110] ri+ r» o(r), r» Eq. (9)

{f) [110] [110] [llv 2] [llv 2 ]
ri+4r»
4r»

2 TAX) ri Eq (10) 2 ( ii — i2+ 44)

The ri2 component has been omitted since both the O(r) and 2 TA(X) phonons have negligible intensity in this 'compo-
nent.

and (xy) polarization configurations at zero stress
(column 4), the phonon chosen and its symmetry
[the zone-center phonon O(I') has I'», symmetry,
while the second-order acoustic phonon 2TA(X)
has mainly I', symmetry] (column 5), the inten-
sity ratio p for the chosen phonon as a function
of stress (column 6), and the piezo-optical con-
stant measured in that configuration (column 7).
The direction of applied stress and the face used
determines which piezo-optical constant is mea-
sured, "independent of the phonon used. The func-
tional form of P, however, is dependent on both
the sample orientation and the phonon symmetry.
Of the six cases listed in Table I, we chose two
simple cases (a) and (b) to measure m» —n» and

@44 as a function of incident frequency. The four
others were used as confirming checks.

Careful alignment of the polarizer and ana, lyzer
at zero stress was necessary in order to obtain
the best extinction ratio between the nonallowed
and allowed configurations for the chosen phonon.
Although one expects P=0 at zero stress, small
misalignments of the sample and possible leakage
through the polarization rotator and analyzer are
believed to be the main cause of the small inten-
sity seen in a forbidden configuration at zero
stress. This leakage was observed to increase
with increasing exciting energy, varying after the
background was subtracted, from 1/q at 1.65 eV
to 5/o at 3.4 eV for the zone-center phonon, with

similar numbers for 2TA(X) scattering. Part of
this leakage is, of course, due to the finite angle
of incidence (~30') used in the experiments, which
in itself rotates the direction of polarization in
the unstressed crystal by -2 . We corrected for
this effect by slightly rotating the polarizer and
analyzer to make sure that we were at the maxi-
mum or minimum of scattered intensity, as re-
quired. The increase in "leakage" with increasing
photon energy mentioned above ma, y be due to the
increasing extinction coefficient which results, for
non-normal incidence, in elliptically polarized
light inside the unstressed sample and thus makes
extinction by readjusting polarizers impossible.

Case (a). Stress X Ii[110], scattering from a
&001) face produced by the zone-center optical
phonon O(I') of 1"„,(T~) symmetry at a frequency
of 520 cm . It has zero intensity in the z(xx)Z,
and a maximum intensity in the z(xy)Z configura-
tion at zero stress where xis [100]andy" is [010]
(Table I).

The intensity ratio is therefore defined as P
=I„„/I„„,which is zero at zero stress. Upon the
application of stress, the intensity of the zone-
center phonon in the (xx) configuration grows at
the expense of that in the (xy) configuration. In
Fig. 1 we plot the data obtained for the zone-cen-
ter phonon in the (xx) and (xy) configurations at
zero and 20 kbar for an exciting wavelength of
7525 A. The intensity. of the (xx) mode is 1%
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FIG. l. Birefringence-
induced changes in the in-
tensity of the optical pho-
non for stress X~~ [110),
measured with an exciting
wavelength of 7525 L. The
intensity ratio P grows
from 1 at zero stress to
about 70$ at 20 kbar.
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that of the (xy) mode at zero stress, and the ratio
grows to about VO%%uo at 20 kbar. The calculated
intensity ratio as a function of stress, obtained
by substituting the appropriate Raman tensor"
and integrating Eg. (3), is

Si 0(l )

X II [1103
1

I„, 1+1/2(A~)' '

where X is the applied stress and

A = sn,'s„/X(o. , + o.,)

(4a)

(4b)

0.7-

0.6-

is obtained by substituting the relation for nii —n~
for this sample orientation" in Eq. (2), a 0.5—

1 3
n)) n~ g n0p44X, (4c)

where X is negative for the compressive stresses
used in our experiments, and n, is the refractive
index at zero stress.

In Fig. 2 we plot the intensity ratio P versus
stress X for several exciting wavelengths. The
solid lines are fits to experimental data using
Eq. (4a). The best fits were achieved by shifting
the zero on the P axis by a small constant to take
care of the leakage at zero stress. We note in
Fig. 2 that the variation of P with stress depends
strongly on the exciting frequency. The largest
change in P with stress occurs at the longest wave-
length, 7525 A, where the penetration depth
[-,'(o, + a,)] ' is the largest (approximately 7 x10
A), while the smallest change is observed at 3638
A, where the penetration depth is about 125 A.
From the best fits to the data we obtain the pa-
rameter A. and hence the magnitude of n44 for each
wavelength. The values found are listed in Table
II.

G4-
I
V)

QJ 03

K

ji

I

0 5
. I I I

10 15 20
STRESS I (kbar}

FIG. 2. - Intensity ratio P vs stress X for the zone-
center optical phonon under [110] stress [case (a)].
The experimental results for five different exciting
wavelengths (marked in the figure) are fit using Eq.
(4). The best fits obtained are indicated by the solid
lines.
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TABLE II. Magnitudes of the piezo-optical constants obtained for different exciting frequen-
cies. The signs of r&& —&&2 and &44 can be inferred to be negative from comparison with long-
wavelength data from Ref. 1. The superscripts a-f refer to the various scattering geometries
given in Table I.

Exciting
wavelength 7t fg 7[f2

{10 ~4 cm~/dyn)
+44

{10 4 cm2/dyn)
, (7t„-X„+X44)

{10 44 cm~/dyn)

3638
4579
5145
6471

7525

5.9+0.7'
8.1 + 0.7
9.3+0.6

32.3 + 5.5
10.5 + 0.7
8.6 + 0.5
6.9 ~0.5'
7.5 + 0.5
77 +05
7.25 + 0.3

8.8 +0.5

Igy 1

I„„1+1/2(BX)' (5a)

Case (6). Stress Xll[001], (100) face: The sec-
ond-order acoustical phonon 2TA(X) at a frequen-
cy of approximately 300 cm ' has mainly I", (A, )
symmetry. It ha, s zero intensity (Table I) in the
z(xy)z configuration and a nonzero intensity in
the z(xx)Z configuration, where x and y are defined
in Table I. Hence P = I„,/I„„, and the stress de-
pendence is given by

A, could not be conveniently used for the 2TA(X)
owing to the lower available laser power (1,50 mW

as against 500 mW for the 4579, 5145, and 6471 A

lines) and consequent low signal for 2TA(X) scat-
tering.

The two cases discussed above are sufficient to
obtain m» —n» and m44. The following four cases
were measured for a single wavelength (6471 A)
in order to check the self-consistency of the anal-
ysis of the experimental data.

Case (c). Stress X Il [111],(110) face. The zone-

B=wn,'( „z-n„)/1(a, +o.,). (5b)

1 3n„—n, ——,n, (m„—w„)X. (5c)

The piezo-optical coefficient ll» p, 2 obtained
in this configuration is related to n]] —e~ through"

06—

Si 2 TA (X)

I II [001)
The same functional form for P is found as for the
optical phonon in case (a); in Fig. 3 we plot P vs
X in this configuration for different exciting fre-
quencies. The solid lines are fits to the experi-
mental points using Eq. (5a). The uncertainties
in these fits are somewhat larger than for the
O(I') optical phonon since the 2TA(X') mode is
weaker than the optical phonon. 'The'intensities
I„„and I„,were obtained by tuning the monochro-
mator to the peak of the 2TA(X) structure and
countirig the number of scattered photons in a 5-
min interval. Contrary to the case of the O(I')
optical phonon, it was not necessary to scan the
monochromator or to retune it after stress was
applied because of the sinall shift of the 2TA(X)
structure with stress (approximately 0.15
cm '/kbar of uniaxial stress") as compared with

its large linewidth. Since good resolution was not
required, wide slits were used to eliminate any
errors introduced by not scanning the monochro-
mater. Values of 7f» 77]2 obtained in this con-
figuration are listed in Table II. Two of the wave-
lengths used for the optical phonon, 7525 and 3638

m. Q5

I
G3

2'.
lU

Q2

0.)

5 10 )5
STRESSX {kbar)

20

FIG. 3. Intensity ratio P vs stress X for the second-
order acoustical phonori 2TA(X) under [100] unaxial
stress. The experimental data for three exciting wave-
lengths are fit using Eq. (5) (solid lines).
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1
e„,=—([111]—[112je'e),

u, , = (2[111]+[112]s").
3 2

(6)

I„,„, and I„,„,are defined in a manner similar to
Eq. (3). P is obtained to be

16(AX)'[1+2(AX)']
I„, 9+ 33(AX)'+20(AX)' (7)

and A is defined in Eq. (4b). In Fig. (4a) we plot
P vs X in this configuration for an exciting wave-
length of 6471 A. The fit (solid line) to Eq. (7)
gives the parameter A and therefore m, 4, which is
found, within experimental error, to be the same

61LiCON 6I 71 A

o(r)
X II t111l (110) face

2 TA(X)

I II [110) (001) face

0.5

Q4

center optical phonon has zero intensity in the
z(x'x')z configuration and a nonzero intensity in
the z(x'y ')Z configuration (Table I), where x' is
[001]andy' is [110].

The electric vectors given in Eq. (1) are easily
rewritten to account for the fact that the polariza-
tions are not at 45 to the stress: since the [112]
direction is at 90 to both the normal to the scat-
tering face and the stress direction,

as that obtained in case (a) (Table II).
Case (d). Stress XiI[110], (001) face: the sec-

ond order acoustical phonon 2TA(X) was used to
obtain v« in a manner similar to case (a). P
=I„,/I„„and is given as a function of stress by

~I, 1
I„„1+1/'2(AX)' ' (8)

a functional form identical to Eq. (4a) in case (a).
The experimental data obtained and the fit to

Eq. (8) are shown in Fig. (4b). The value of P at
zero stress is seen to be quite large (=10/g) in
this configuration. This is explained by the fact
that a small component (=5/q-10/q) of the intensity
of the 2TA(X) scattering appears in I'», , symme-
try, "while the rest appears in I', symmetry. At
zero stress the component of I'» symmetry is
allowed in the (xy) configuration, while that of
I', symmetry appears in the (xx) configuration
(Table I) so that at zero stress P is not zero but
the ratio of the intensities of the I'„, and I', com-
ponents of the 2TA(X) (plus the leakage). Since
the I'», component of the 2TA(X) is small, we
neglect any changes due to stress, and fit the ex-
perimental data with Eq. (8) by shifting the zero
on the P axis as in the other cases. The value of
v«obtained is in agreement with cases (a) and

(c) within experimental error (Table II).
Case (e). Stress X iI[001], (100) face. The op-

tical phonon O(I') is observed (Table I) in the
z(xx)z configuration but not in the z(xy)z configura-
tion. Equations (3) yield for this case

Ivy=—=0

Q3

(c)
0.2—

0 Q1

I—

0 (r)
~ 0.4 X II L001l (100) face
X
UJ~ Q3—
2.'

2 TA(X)

I li [1101 (1)Q)~ face

a,s a function of stress. The experimental inten-
sity ratio shown in Fig. (4c) also remains un-
changed under stress and is equal to the leakage
at zero stress. This configuration provides a
useful check on our theoretical analysis of inten-
sity ratios.

Case (f). Stress X l! [110], (110) face. The major
(I',) component of the 2TA(X) scattering has non-
zero intensity in the z(xx)Z configuration and zero
intensity in the z(xy)z configuration (Table I). P
as a function of stress is

0.1—

BL

5

a
T I . i

10 15 0 5 10

STRESS X ( kbar)

I

15 20 where

I~y 1
I„„ 1+1/2(CX)' '

C = vn,'(v„—w„+ v«) /2Z (a, + n.,) .

(10a)

(10b)
FIG. 4. Intensity ratios P vs stress X for an exciting

wavelength of 6471 A. The filled circles are experimen-
tal points. The solid lines are fits using the appropri-
ate expressions given in the text: (a) represents case
(c), (b) represents case (d), (c) represents case {e),
and (d) represents case (f) (Table I).

Figure 4(d) shows experimental data and the fit
to Eq. (10a), from which we obtain —,'(v» —v»+ v«).
The result agrees with values obtained for Qyy

—v» and «viunsg cases (a)-(d) for the same ex-
citing wavelength of 6471 A (Table II). We note
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again that the experiments yield only the absolute
value of the corresponding piezo-optical coeffi-
cients. Their sign must: be determined by eRra-
polation to long wavelengths and comparison with
the sign obtained in the classical stress-induced
birefringence measurements performed in the
region of transparency. ' Equation (10b), however,
enables us to determine the relative sign of n»

7Tj 2 and n 44 once their magnitudes have been
found from the other experimental configurations:
they are found to have the same sign (Table II), in
agreement with the negative signs found for both
piezo-optical constants at long wavelengths' (Sec.
IV).

The values of p]y py2 and 7744 obtained from these
experiments are summarized in Table II. A wide
spectrum of available laser lines, from 7525 to
3638 A, were used. The values of the average
refractive index no and the absorption coefficient
—,'(o. , + a,) (averaged between incident and scattered
frequencies for both 2TA(X) and O(I') phonons' )
are listed in Table III. In Fig. 5 we plot the values
obtained for the piezo-optical constants 7Tyy Fy2

(triangles) and v«(circles) as a function of ener-
gy. In the figure we include the piezo-optica, l con-
stants obtained from the data of Higginbotham et
al.' in the energy region below 1.2 eV. The solid
lines are theoretical fits to be discussed in Sec.
IV.

In calculating the contribution to the stress-in-
duced birefringence from microscopic theory,
one obtains directly the difference between the
dielectric constants parallel and perpendicular
to the stress direction cII —~„which is related to

,
,

—e,. = 2n, ( —,) . (11b)

A piezo-optical constant, for example m, 4, is then
related to e~~-e, by [Eq. (4c)]

II

44
~o X XII t.ZZz]

(11c)

w» —'n» is related in a similar manner to (et~-e,)/X for a stress parallel to [001].
In order to directly compare experiment with

theory we plot in Fig. 6 the experimental values
of (e „—~,)/X for stress X II [001] (triangles) ob-
tained from our data in case (b) (Fig. 3) and from
Ref. 1 for the energy range from 0.6 to 1.2 eV. For
stress X 1! [110](e,~- e i)/X is plotted in Fig. I
(circles) using data from case (a) (Fig. 2) and the
data between 0.6 and 1.2 eV for stress X Ii[111]
in Ref. 1. (The piezo-optical coefficient obtained
is w« in both cases. ) The solid lines in Figs. 6
and 7 are theoretical fits and the squares are
scaled values from piezoreflectance data; both
will be discussed in Sec. IV.

IV. THEORY AND DISCUSSION

The band structure of silicon is well known from
a variety of calculations and experiments. ""

the quantity n~~
—n, in Eq. (2) through the standard

relation

(11a)

%e neglect the imaginary parts of the dielectric
constant and the refractive index, which should
be a, fairly good approximation below the Eo and
E„E,+6, gaps (below 3.3 eV). Then

C

'U

E 3.0—
U

~~ 2.0-

& +1) Tt l2

0 TKgg

n

Flo. 5. Expe rimentally
obtained values of the
piezo-optical constants
x~q- g j2 (triangles) and

x44 {circles) as a function of
energy. The data below 1.5
are obtained from Ref. 1 and
those above 1.5 eV from
present investigations.
The solid lines are theo-
retically calculated values
obtained from the best fits
to (III 6z )/X in Figs . 6
aIld 7 ~

I

1.0 29
ENERGY (eV)

3.0
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Exciting
wavelength

(A)

O(I )

+&(0.; + G,,)

np (cm

2 TA(X)
&(o., + e,)

(cm ~)Pl
p

TABLE III. Values of the refractive index &p and ab-
sorption coefficient ~(o.;+ n, ) (averaged between incident
and scattered frequencies) used for the optical phonon and
the second-order acoustical phonon in calculating m f j 7l f2
and n44 (from Ref. 14).

6.0

C4

~ 4.0
C)

Si X II [110]

3638
4579
5145
6471
7525

6.75
4.51
4.17
3.83
3.70

6.36 x105
2.14 xl04
9.75 x103
3.01 x10'
1.28 x103

4.53 2.21.x104
4.18 1.0 x104
3.82 3.09 x10'

QADI

2.0
4~i

I

The lowest direct transitions occur at an energy
of about 3.3 eV. The major contribution to the
dielectric constant arises from the Ey Ey+
transitions along the (111)directions, and a con-
tribution with low oscillator strength E,' arises
from transitions at the center of the Brillouin
zone. The next direct gap E, is at approximately
4.4 eV. Not many details are known about this
gap; the corresponding transitions are believed to
spread over a large region around the X point in
the Brillouin zone. We calculate contributions to
piezobirefringence from the E„E,+ 6, and E,
transitions, neglecting the E,' gap due to its low
oscillator strength. The E„E,+ Ay transitions
provide a strong dispersive term close to 3.3 eV,
while the E, gap provides a background term in

s ~ I

1.0 2.0
ENERGY IeV }

3.0

the energy region studied in our experiments
(1.65-3.4 eV).

FIG. 7. (e, I

—e, )/X as a function of energy for stress
along [1101. The experimental data (circles) were
obtained from Ref. 1 (below 1.5 eV) and present experi-
ments (above 1.5 eV). The filled circles are plotted on
the scale indicated in the figure, while the open circles
are replots of the same values on an expanded (10 x)
scale. The squares are scaled values obtained from
Ref. 5. The solid lines are the fits using Eq. (21),
corresponding to D~+2v 2D3 —-40.6 eV and C2=-1.3
x10" ' cm /dyn. The dashed lines are obtained for Dg~

+ 2v 2 Ds= 22.3 eV and C2 = 0.

40—

a
E 30-

g II Looi]

A. Contribution from the E&, E& + h,
&

gaps

The E„E,+ 6, transitions arise from critical
points along all the equivalent (111) directions. "
The contribution to the real part of the dielectric
constant from the E, critical points can be writ-
ten as'"

2.0—
I~

4l
I 1.0—

4l

e, (&u) —1 = —(()P ~) (', —
2 ln(1- x,'), (12a)

—B 2 1 1
Ggg Xg

where

.I

1.0
I

3.0
4v3 ~m+jB-

Qo
(12b)

ENERGY (eY}

FIG. 6. (GII E'j )/X as a function of energy for stress
along [001). The experimental data (triangles) were ob-
tained from Ref. 1 (below 1.5 eV) and present measure-
ments (above 1.5 eV). The solid line is the best fit using
Eq. (20), obtained with D3=- 1.8 eV and C2= 2.27 x10 "
cm /dyn. The dashed line, which coincides with the
solid line at low energies is obtained for D3-—-4 eV and
C2= 2.8 x10 cm /dyn. The squares are scaled values
obtained from Ref. 7.

(in atomic units). In Eq. (12b) m is the effective
mass perpendicular to the t111]direction and a,
the lattice constant, l(Ip I) I' is the square of the
transition matrix element between valence and
conduction bands, co, the energy of the E, transi-
tion, and x, = &c(tc,. A similar expression can be
written for the E, + 6, transition substituting
cc„=(u, + a, for (u, and x„=(u/(u„ for x,.

The birefringence induced in the material upon
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the application of a uniaxial stress is discussed
in Ref. 19. Two types of contributions have to be
considered: those arising from stress induced
changes in matrix elements and those due to the
splitting of the various equivalent (ill) gape in-
duced by the stress. Stress-induced changes in
m* are neglected because they give a less dis-
persive contribution to the piezobirefringence
than the changes in gap and matrix element. For
the purpose of a fit to the experimental data this
contribution can be considered to be included in
the weakly dispersive contribution due to the E,
gap to be discussed later. For a [100] stress the
(111)gaps remain equivalent. Thus only changes
in matrix elements due to a stress-induced cou-
pling between the spin-orbit split valence bands
contribute to the piezobirefringence. Following
Ref. 19 we find

EOO1]

~, )
—e~ 16' 2 D,'(S„—S„)
X ~ g +g 3 ao+(d1

1 1

+, ln 1 —x,', (13)

Equation (13) is identical to Eq. (91') of Ref. 19
except for the correction of two misprints and
for having expressed Bc', in terms of the defor-
mation potential D,' as given in Ref. 20,

5+, = (2~2/~3)D', (S„—S„)X.
For a [111]stress both energy splittings of the
(ill) gaps and matrix element changes contribute
to the piezobirefringence. The net effect is given
by [see Eq. (96) of Ref. 19]

16& 2 S44D', — 1, ln(1 — 2) +' 1
ln(1 — 2

)
D~S44

9 Qo+ 1P1 X 1 Q)1 X 1 9 Qo 1 1 Q 1 (4) 1 ) 1 Q 1

(15)

Throughout this work the compressive stresses
applied in our experiments are assumed to be
negative. The first term in the right-hand side of
Eq. (15), analogous to Eq. (13), is due to changes
in matrix elements produced by the stress-in-
duced intravalence band splitting 6~, of Ref. 19
expressed in terms of the deformation potential"
D5

3

6(u, =
~ v —, D', S44X. (16)

The second term on the right-hand side of Eq. (15)
represents the effect of the stress-induced split-
tings of the (111) gaps. The deformation poten-
tial g, of Ref. 19 has been expressed in terms of
D,' of Ref. 20.

8, = (W3/2)D', . (1V)

Although the second term in Eq. (15) is in prin-
ciple more dispersive than the first one, in the
limit of small spin.-orbit splitting (a condition
that holds in silicon since 6, =0.04 eV and ~, =3.3
eV) the difference between the logarithmic terms
also tends to a singularity of the type (1 —x,') ',
plus another less dispersive term. We shall as-
sume that these less dispersive terms are in-
cluded in the contribution due to the E, gap and
in this approximation we can write

(
E111] 8 $", (D,'+ 2M2D', )z, s +& 9 ao1I 1 1

601 1
(818 1 X ls

It is obvious from this expression that no infor-

mation on the relative magnitudes of D,' and D',

can be obtained from a fit to the experimental re-
sults.

B. Contribution from the E2 gap

Owing to lack of information on the nature of
the E, gap, contributions to piezobirefringence
are approximated by a constant" or a harmonic
oscillator dispersion. ' We use the harmonic os-
cillator approximation to fit our data; however,
the difference between using a harmonic oscil-
lator and a constant is not found to be critical
since the energy region of interest is sufficiently
far from this gap, which is at 4.4 eV. The con-
tribution to piezobirefringence from this gap is
written as'

[(e ii
-~.)/Xlz 1+2x' (19)

where x, =~/&u„and ~, is the energy of the E,
gap. Equation (19) was derived under the assump-
tion of an effect due only to stress induced changes.
in the gap. If the effect is due mainly to changes
in matrix elements, the factor of 2 in front of the
x', term Eq. (19) would have to be removed. We
have tried to use this factor as a fitting parameter
without any significant improvement in the fits
to experimental data. We therefore use a factor
of 2 throughout the discussion.

The total contribution from both E„E,+ 6, and
E, gape for [001] stress therefore is
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+, ln(1- x„)&u, i 1

1s +1s

+ C, (1+2x', )

and for [111]stress
t ll13

J. 44 (D5+ 2~2D5)X 9 QOQ)j

(20)

1
1 —x, &„1—x

+ C,'(1+ 2x', ) . (21)

In Fig. 6 we plot the experimental points (tri-
angles) obtained for (e,

~

—e~)/X with X ii[001]. The
points above 1.5 eV were obtained in this work
and those below 1.5 eV from Ref. 1. Using Eq.
(20), &u, = 3.3 eV, ~„=3.344 eV, and &u, = 4.4 eV,
and using the elastic compliance constants of
Ref. 21, we obtained the best fit for D3=-1.8 eV
and C, =2.27x10 "cm'/dyn (solid line). Pre-
vious measurements of D,' indicate a value close
to -4 eV."'" For comparison, we plot the fit
obtained for this value of D3 with C, = 2.8 @10 "
cm'/dyn (Fig. 6, da. shed lines). We also plot in
Fig. 6 (e,

~

—e~}/X obtained from the Kramers-
Kronig analysis' of the data of Ref. 4 (squares).
Since only relative values as a function of energy
are obtained in the work of Ref. 4 we have scaled
the results to compare them with ours. The agree-
ment between this data (after scaling), our ex-
perimental values and the fit for D,'=-1.8 eV is
good, particularly around the energy at which
(e „—e ~)/X drops to zero (antiresonance), which
is independent of the scaling of the results of
Refs. 4 and 5.

In Fig. 7 we plot (e „—e,)/X versus energy for
[110]stress and a (001) scattering face. The
circles indicate experimental points, those below
1.5 eV obtained from Ref. 1 and those above 1.5
eV from present experiments. (The filled circles
are plotted on the scale marked in figure, the open
circles on a 10x expanded scale. ) The best fit of
Eq. (21) to experiment, using C,' and D,'+2& 2D,'
as adjustable parameters is indicated by the
solid line, obtained for C,' = -1.3 x 10 "cm'/dyn
and D,'+2v 2D,'=40.6 eV. The transition energies
used were ~, =3.3 eV, ~„=3.344 eV, and e,
=4.4 eV. Though the fit is very good, the
deformation potential D,'+ 2W2D,' needed is about
a factor of 2 larger than previously measured
values. "" Using the most favorable values

from Ref. 16, D,'+2@ 2D', =22.3 eV, (corres-
ponding to D,'= ll eV and D,'=4 eV) we plot in
Fig. 7 (e„-e,)/X from Eq. (21) for C,'= 0 (dashed
lines). Agreement with experiment is seen to be
worse. We also plot in Fig. 7 the scaled values
obtained from Kramers-Kronig analysis of piezo-
reflectance data" (squares); they agree quite
well with present experiments and the solid-line
fit, 'as was the case for a [001]stress. The high-
est experimental point was obtained with our
technique at &u = 3.36 eV for a [110]stress, as
indicated in Fig. 7. Due to the lack of points at
intermediate frequencies we are not able to infer
the sign of the effect at & =3.38 eV. The theory
is not expected to be sufficiently accurate at this
frequency. In the frequency region close to the
gap real transitions occur and the exact linewidth
(not only the form of the singularity), including
the imaginary part of the stress induced dielectric
constant, is required for an accurate description.
A second complication arises from the fact that
the energy of the E, gap increases under uniaxial
stress so that the energies of the incident and
scattered light lie in the region of a singularity
that is shifting as stress is applied. In fact, we
observed a resonance enhancement of the inten-
sity of the phonon as the gap reached the energy
of the scattered radiation. As such, the mea-
surement of z«at this energy is representative
only of the approximate magnitude, and indicates
the limit at which the present method can be used
to measure the piezo-optical constants in silicon.
The large experimental error in the result at
3.38 eV arises from the small change in the in-
tensity ratio P (Fig. 2) as a function of stress,
which in turn is due to the small penetration depth.

As already mentioned, discrepancies of factors
of 2 appear between previous determinations of
D,' and D,'+2M2D', and the present values obtained
from our fits to 7Tyy p] and z„. The previously
determined values are higher than the present
one for D', and lower for D,'+2~2D', . This fact
excludes the possibility of correcting the dis-
crepancy by changing the oscillator strength of
the E, transitions [Eqs. (12)]. The discrepancy
may lie in the simplicity of our model, but it
should also be noted that experimental determina-
tions differ considerably among themselves. "
Previous values were determined by tracking the
frequency dependence of a rather broad reflectiv-
ity peak which may not adequately represent the
critical energy E, which enters into Eqs. (12).

While our measurements alone do not allow us
to determine the sign of (c„—c )/X and therefore
those of the piezo-optical constants or deforma-
tion potentials, by extrapolating our results to
long wavelengths so that they are compatible with
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those of Higginbotham et al. ,
' we obtain ~ t]

—e, to
be negative for compressive stresses (Xnegative)
along [001]and [111]at energies far from the gap,
so that the piezo-optical constants m„—z„and m„
are negative [Eg. (11c)]in this region. Upon ap-
proaching the Z, gap, (e,

~

—e,)(Xfor [001) stress
(Fig. 6) approaches zero close to 3 eV and is ex-
pected to change sign and become negative [Eq.
(20)] between 3 eV and the energy of the E, gap:
in this region the dominant term in Eq. (20) is
the one that contains D'„so we conclude that D,'
is negative. By a similar argument, for X II [111],
(Ep'E') t X remains positive from low energies up
to the region below the E, gap (Fig. 7), so that
D,'+2~2D', is positive. In order to obtain the best
possible agreement between previous determina-
tions of the deformation potentials" and the pre-
sent ones, we conclude that both Dy and D', must
have the same sign, i.e., positive. Earlier
work"'" yielded only the magnitudes of D', and
D', but not their signs. The sign of D,' can, how-
ever, be inferred from Refs. 18 and 22 to be posi-
tive as well. A positive sign for D,' has also been
found for Ge, GaAs, ' Ga,Sb, and InSb. '

ton energy in the region 1.65-3.4 eV where the
material is opaque. A technique based on the de-
polariztion of Raman structures upon application
of uniaxial stress was used. %e found the mag-
nitude of the piezo-optical constant Fyy py2 to
decrease with increasing frequency reversing
sign (antiresonance) at about 3.0 eV, while that of
z,4 was found to increase strongly without revers-
ing sign. This dispersion of piezobirefringence
was fitted with a theory based on a two-dimen-
sional critical point model of the E, gap.

From this fit the sign and magnitude of three
deformation potentials related to the E, gap were, .

determined. They agree to within a factor of 2
with determinations based on different experi-
mental techniques,

Note added in proof. Contrary to the statements
made in the text, it has been found that the sign of
the elasto-optical constants can be determined by
inserting a Babinet compensator in the incident
beam and determining if it enhances or decreases
the observed depolarization of the scattered light.
If the fast and slow axes of the compensator are
known, the sign of the m, &

can be deduced.

V. CONCLUSIONS

Two combinations of piezo-optical constants of
silicon have been measured as a function of pho-
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