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Low-frequency modes in rare-earth magnets with degenerate crystal-field levels
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We develop a general theory of the low-frequency spin dynamics in rare-earth magnets with degenerate
/

crystal-field levels. The analysis applies to the paramagnetic phase of those systems which have a well-

defined separation between high- and low-frequency response. We calculate the low-frequency part of the
zone-center dynamic susceptibility. - Treating the static correlations in the molecular-field approximation we
use the theory to interpret electron-paramagnetic-resonance studies of TbP. Critical anomalies in the electron
paramagnetic resonance in singlet-ground-state ferromagnets are pointed'out. The temperature dependence of
the intensity and width of the central peak in Pr3Tl is calculated assuming the broadening comes from the
first-order interaction with the conduction electrons. Con'tact is made with other treatments of the low-

frequency dynamics.

I. INTRODUCTION

The dynamical behavior of rare-earth magnets
is a challenging problem. The existence of excited
crystal-field levels at energies which can be com-
parable to the exchange interactions between the
ions makes the problem much more complicated
than the analysis of,Heisenberg magnets such as
RbMnF3, where only the lowest crystal-field mani-
fold is important. Because of -the calculational
difficulties associated with crystal-field effects it
is important to identity features which can be ana-
lyzed &n some detail without having to obtain a .

complete solution to the problem. In the charac-
terization of dynamical effects in strongly inter-
acting systems a separation into high- and low-
frequency modes is sometimes possible. The
latter are often associated with the long-wavelength
fluctuations of conserved variables or critical var-
iables if the system is near a second-order phase
transition. If there is a separation into high- and
low-frequency modes a "hydrodynamic" theory can
be developed for the low-frequency response. In
such a theory the characteristic frequencies are
expressed in terms of the static correlation func-
tions of the low-frequency variables while the line-
widths are written as integra1. s of the correspond-
ing dynamic corr elation functions. '

In the case of rare=earth systems, a separation
into high- and low-frequency modes is often possi-
ble if (i) the crystal-field symmetry is sufficiently
high so that there are degenerate crystal-field
levels or (ii) the ions in question have odd numbers
of electrons and hence display Kramers degenera-
cy. The low-frequency modes are then associated
with transitions between levels belonging to the
same crystal-field manifold, while the high-fre-
quency modes are intermanifold transitions. The
separation into high- and low-frequency modes is

precise only in the limit where the interaction be-
tween the ions ls zero. As the interactions in-
crease in strength both the low- and high-frequen-
cy modes broaden; For sufficiently strong inter-
actions the two sets of resonances overlap and the
distinction between high- and low-frequency re-
sponse disappears. It, should be noted that the ex-
tent of the broadening and overlap will in general
depend on the wavelength of the modes in question.
It can happen (e.g. , TbSb) that the low-frequency
modes at the center of the Brillouin zone are
weakly damped while the corresponding modes at
the zone boundary overlap the intermanifold ex-
citations.

In this paper we develop a hydrodynamic theory
for the low-frequency modes in rare-earth mag-
nets with degenerate crystal-field levels. We cal-
culate the frequency and linewidth of the modes
and their contribution to the dynamic susceptibility.
Since we do not deal with the intermanifold transi-
tions we cannot put precise bounds on the range
of applicability of the theory. These can only be
defined operationally in the sense that the theory
is appropriate whenever there is a mell-defined
separation in the dynamic susceptibility between
the high- and low-frequency response; Our calcu-
lations are restricted to the paramagnetic phase,
with the major focus on cubic systems having singlet
ground states which undergo ferromagnetic or
antiferromagnet";c ordering. The detailed analysis
is limited to the center of the zone (q =0). How-
ever the theory can be applied to other points in
the zone. We make contact with experiment in two
types of studies: electron paramagnetic resonance
(EPR) and inelastic neutron scattering. In the
former case we interpret the F,"' EPB in the
singlet ground-state antiferromagnet TbP.' We
also calculate the linewidth and intensity of the
central peak associated with the low-frequency
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modes in Pr, Tl, which is observed in inelastic neu=
iron scattering. ' In addition to reproducing the
qualitative, and to some extent, quantitative fea-
tures of the experimental studies the theory also
predicts anomalous behavior in the EPR in singlet
ground-state systems undergoing ferromagnetic
transitio»s.

Earlier studies of low-frequency modes in

strongly coupled rare-earth systems have been
carried out by Cheung, by Lines, ' and by Buyers. '
KVe obtain Buyers's result for the relative weight
of the low-frequency modes when me treat the
static correlations in the mean-field approxima-
tion. Also, Cooper, Fedder, and Schumacher'
have studied the influence of the exchange interac-
tion on the effective g factor in rare-earth para-
magnets. We recover their expressions in the
weak coupling limit. Recently Becker, Fulde, and
Keller' investigated the linewidths of crystal-field
excitations in metallic rare-earth systems using
an approach mhich has some points in common with

our omn. Their mork mill also be discussed.
The remainder of the paper is divided i.nto four

sections. In Sec. II me outline the general theory
for the lorn-frequency modes using the formalism
developed by Mori in Ref. 1. The theory presented
in Sec. II is rigorous but involves many unknown

functions. In order to bring the theory to the point
where it can be utilized in the interpretation of ex-
perimental data it is necessary to introduce a num-
ber of approximations. These are discussed in
See. III. In Sec. IV me analyze the EPB and neu-
tron- scattering experiments. We summarize our
work in Sec. P a,nd comment on its rela, tion to the
theory developed in Ref. 8.

II. GENERAL THEORY

In developing the general theory for the low-fre-
quency modes, we postulate a Hamiltonian of the
fol m

1(;=- Q V,.'+ g J„J;' J&+gz»», ~II g J . (2.1)

Here V,. is the crystal-field Hamiltonian associ-
ated with the ith ion, J,.„, is the exchange integral
coupling ions i and j, J,. is the angular momentum
of the ith ion. , g~ is the Lande g factor, p, ~ is the

. Bohr magneton, and FI is the applied field. Our
main interest is in non-Kramers systems mhich

have cubic symmetry both with respect to the local
crystalline field and the lattice of rare-earth ions.
As a consequence V,.' is interpreted as a cubic
crystalline field operator mith manifolds labeled
according to the irreducible representations of the
cubic group, i.e., F„.. . , I",. In addition, the ex-
change interaction is taken to be isotropic, a re-
sult also consistent with cubic symmetry. It is

important to note that in most. metallic rare-earth
systems the exchange interaction is associated
with the polarization of the conduction. electrons
due to s fc-oupling. We .have not explicitly. in-
cluded conduction-electron terms in the Harnilto-
nian at this point. Homever, we will introduce
them later in connection with the calculation of
the damping.

We will be studying the behavior of the zone-cen-
ter dynamic susceptibility X~~(~) associated with

various components of the total angular momentum

Jr =Z,.J,. whose imaginary part (in units of g~'t»s')
is given by an integral of the form'

dte '"'(Jr (t), Zrt) dt . (2.2)

(2.3

for operators A and B. In this expression, we
have P =llkT, T being the temperature, while the
angular brackets denote a thermal average.

The essential step in developing quasihydrody-
namic theories such as the one outlined here is to
identify the slowly varying variables. As noted in
Sec. I the slowly varying variables in the rare-
earth problem are associated with transitions be-
tween degenerate crystal-field levels. In order to
make this more precise me utilize the standard-
basis-operator formalism introduced by Haley and
Erdos. ' We introduce the standard-basis-opera-
tor I ' „associated with the n and P levels of V,.'.
These operators obey the commutation relations

(L„',„L', ~, ) =5,,(5,~L„',, -5 ~,L~, ,), (2.4)

with the consequence that L'
z can be interpreted

as an operator taking the ith ion from level P to
level n. Any operator can be written as a linear
combination of the L'

~ since they form a complete
set. In particular the s component of the total an-
gular momentum takes the form

i +yB

(2.5)

where &o.
~
J'~ p) denotes the matrix element of J',.

between levels n and P of V'. . It is assumed to be
the same for all. sites.

As mentioned above the lorn-frequency modes in

the dynamic susceptibility are associated with
transitions between degenerate crystal-field lev-
els. This suggests that an appropriate choice for
the slowly varying variables will involve the L'

&

Here Re means real part, the dagger denotes ad-
joint, and (A(t), I»} is a relaxation function defined

by

0
dy(elxe»xt~e »xte x-xII)-
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(2.6b)

where p, &, p, X refer. to sublevels of the p, th mani-
fold.

Having identified the relevant variables for the
susceptibility calculation we can begin to develop
the Mori formalism. We introduce the projection
operators for the low-frequency modes by means
of the equation'

[[)SA P (A Yst) ($-1) Ys (2.7)

with n and P referring to the same crystal-field
manifold. The latter can be either I's or I', (I',
does not appear since all matrix elements of J be-
tween states of this symmetry are zero). We des-
ignate the slowly varying variables associated with
the i(th manifold as Y„' (s =x,y, s). They are de-
fined by

(2.6a)
(2.11)

temporarily suppressing the z, +, —notation.
The B~„are solutions to the exact equation'

g [i(d&,„-iA,„+I;,(ur)]R„,(~) = &„, (2.i2)

Here Q„„denotes the first moment frequency ma-
trix

Q, „=-iQ (Y„Y'„)($')„,
with ~ =dA/dt, etc. , while I'„,(co) is the damping
matrix which is defined by

(2.13)

opment of the theory. The first term in (2.10)
comes from the low-frequency modes. It is seen
to depend on the one-sided Fourier transforM of
relaxation functions of the type (Y'„(f), 1 ) (for
X~,z,) or (YR (t), Y„), where Y' = Y„" +ii'„', etc. (for
Xq.q-). We denote these transforms by

where the sum on p, and p is over the N 1"4 and I',
manifolds and S"' denotes the inverse of the sus-
ceptibility matrix whose p, v element is given by

$ dX(s)(KYss )LRYs't) p (Ys)(YR'))
Q

(2.6)

Note that ~e have dropped the explicit dependence
on s in the definition of S since all equal time cor-
relation functions are to be evaluated in the zero- .

field limit where the x, y, and s directions (which
are assumed to coincide with the cubic axes) are
equivalent. Our next step is to write J~ in the
form

Jsr =ssJrs'+ (1 —(Ps)Jrs . (2.9)

The first term in (2.9) is the low-frequency pro-
jection of the total angular momentum; the re-
mainder is associated with high-frequency transi-
tions.

We are interested in both zero-field spin dynam-
ics and EPR. The former is characterized by the
susceptibility X~ z ((d), the latter by X~++-((d)(J'

+Ji )J. In both cases the susceptibility takes
the form4~".

tt", t(te}=teRe f ttte'. '(tee (t), t)epftlett), (p. tp)
0

where the function f((d), which we do not calculate,
is assumed to have negligible spectral weight in
the region where the first term on the right-hand
side of (2.10) is significant. This assumption is
extremely important. Were it not the case there
would be no clear-cut separation into high- and
low-frequency modes as hypothesized in the devel-

[Y„,Y;]=6„[Y„,Y;]=0.

In the case of the+- component the first-moment
matrix differs from zero only in a finite field. To
see this we note that 0„'"„involves commutators of
the form

[Y;,Y;]=6.,[Y:,Y„-]. (2.17)

From their definition (2.6), it can be established
that variables belonging to either the 1"4 or F,
manifolds obey angular-momentumlike commuta-
tion relations, i,e.,

[Y„',Y„]=2C„Ys, (2.16)

where the constant C„ is connected with the crys-
tal-field-only g factor for the p. th manifold, g',
through the equation

g~ =gg C~ . (2.i9)

where 2 denotes the Liouville operator.
Equations (2.6)-(2.14) give the complete solution

to the problem of characterizing the low-frequency
part of Xzz((0). There are a number of general
statements that can be made about the solution.
First, the first moment frequency matrix associ-
ated with the zz component of the susceptibility,
0"„, is identically zero. This can be seen by mak-
ing use of the identity

(A, B)= -i([A, B]), (2.15)

along with the commutation relations
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As a result we have

n„„=--(g„'/g,)(Y„)(S')„„, (2.2o)

correlation functions in the zero-field limit where
we have

0„'„=g„'p H(Y', J')(S ') „. (2.22)

where (S ') „ is given by (2.8) with s =s.
Since Y' transforms like an axial vector (Y„'& will
be zero when Ii=0. For small fields, which is the
only case being considered, we can use thermody-
namic perturbation theory to obtain

&Y:&=-g,~.if(Y„',~;), (2.21)

where it is understood that the correlation function
(Y»', JT) is evaluated in zero field. Using (2.21)
we can rewrite (2.20) in the form

(z;,z;) =.'(z-,",r,') = (z-„z,), (3.1)

(Y„',JTI) = F (Y„',ZT ) = (Y,JT), (3.2)

(Y„', Y„)=-.'(Y„', Y„)
-=(Y„,Y„) . (3.3)

We use the mean-field'approximation (MFA) for
the correlation functions (3.11)-(3.3). In the MFA,
we have

XJJ( )MFA ( Ti T)MFA XJ'J/(I ~px J'J') I

(Y, ~ JT)MFA Nx»J-/(1 gpx-'JJ)

=~x„'„/(I -e.x'„),
We wil) see later that the 0'„are connected with
the EPR frequencies.

A second point concerns the relative weight of
the low-frequency modes, designated by N, , which
we define as the integral over all frequencies of
the low-frequency part of X'JJ(0)/F &X«(0):

1 00 OO

d&[He dte '"'((PJT(t), d'Zf)), (2 23)XJJ(o) -- 0

S»» = (Y» Y» )MFA

t' 0 0 0
p ~px» JX» J IX»+ o

0)OX JJ I
0

=, ,"'„; fl -~.(x'„-x,', )),
0 JJ

and for p. & p

(3.8)

where XJJ(0), equal to (Jf,Z f), is t,he static sus-
ceptibility (in units of g2J p, 2F). It is related to
XJJ(to) through the Kramers-Kronig relation

=».x,'„x,'„/(I -a,x'„) . (3.7)

Here 40 denotes the total exchange,

(2.24)

If the high-frequency term in (2.10) were absent,
we would have 8=1, i.e., all the spectral weight
would be in the low-frequency modes. However,
in general this is not the case and we find

(3.8)

and W is the number of rare-earth ions. The sym-
bols XJJ Xtt J and p„denote singl e- ion sus cepti-
bilities calculated in the absence of exchange in-
teractions, i.e.,

tR=XJ J(0) '(PETI, (P Jgr),

which reduces to

(2.25) ep(sa S,)
x'JJ=& ' ge" l&~l&'I&&l'

a, g a P

tit=x (0) ' Q (&', Y„')(S ')»„(Y„',J'), (2.28)
P ~ IJ

in light of Eq. (2.7) and the fact that Y„' and Z~T are
Her mitian operator s.

Although providing the general solution to the
problem of the low-frequency modes, the equations
developed in this section are largely of formal
value. In order to make contact with experiment
it is necessary to introduce a number of approxi-
mations. These are discussed in Sec. III.

III. APPROXIMATIONS

When applying the theory developed in Sec. II
we are forced to make a number of approximations.
These fall into two categories depending on whether
they pertain to the static or the dynamic correla-
tion functions. We consider the static problem
first. As noted previously, we calculate all static

where Z =Z exp(-PE ) and n and P refer to eigen-
states of V'. In the ease of the other correlation
functions we have

x'„,=& ' Pe ' (o'l g(p5l~'l5p&L„, „,lP&

(s.lo)

Since the standard basis operators have the prop-
erty L»p ly& =50, ln) the sum in (3.10) collapses to
a sum over the levels of the p. th manifold, and we
have the result

x.'J=(»@'e '" g l&&5I~'I5v&l'=X.'„,' (3.11)

which has been anticipated in obtaining the last
lires of Eqs. (3.5)—(3.7).

It is difficult to establish the extent of the errors
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(3.12)

Equation (3.12) is identical to an expression de-
rived by Buyers' in a, hybrid random-phase mean-
field calculation. It has the property that (B.= 1
whenever g,y« ——1. Since the latter equation de-
termines the transition temperature in the MFA
treatmen, t. of a ferromagnet we conclude that there
is a large increase in the intensity of the low-fre-
quency modes near the Curie point.

The paramagnetic resonance is described by the
transverse susceptibility X~.~ (v). Whenever the
linewidth is small in comparison with the reso-
nance frequency we can use (2.12) with I"„,set
equal to zero to calculate the resonance spectrum.
The frequencies are the eigenvalues of the first-
moment frequency matrix, while the intensities of
the resonances are determined by the correspond-
ing eigenvectors. , The general solution involves
standard numerical and algebraic techniques.
However, there are two limiting cases which have
simple solutions. The first corresponds to a, situ-
ation where ~g, I X««1. In this limit the mani-
folds become decoupled from one another. The
effective g factors are then given by

(3.13)

and the relative weights by Xo„,/X«. Equation
(3.13) is the same as a result obtained earlier by
Cooper et al. in a first-order calcula. tion. .' The
other case corresponds to having-only one popu-
lated degenerate level. In this situation, where
the system can be described by a, singlet-triplet
model, we have"

A 1 Al tl ~0(XZJ' Xll) ~ (3.14)

(3.15)

The damping of the low-frequency modes is a

introduced in making the mean-field approximation.
It appears to work quite well for many rare-earth
systems presumably because of the. long-range in-
teractions. However, the MFA does breakdown
nea. r the ordering temperature. Even -here in the
case of antiferromagnets the approximation may
not be too bad for our purposes since we are
carrying out calculations a,t the center of the
Brillouin zone, where the susceptibility remains
finite, as opposed to the antiferromagnetic super-
lattice point where the susceptibility diverges.

Using the expressions given in Eqs. (3.4)-(3.7)
we can obtain the MFA approximation for the rela-
tive weight of the low-frequency modes [Eq. (2.26)].
As shown in the Appendix we have

complicated problem. In the a,nalysis of relaxation
effects it is important to distinguish between in-
trinsic and extrinsic damping. Intrinsic damping,
which is associated with Hamiltonians of the type
given by (2. 1), arises from interactions among the
spin fluctuations. Extrinsic damping -comes from
direct interactions between the spin fluctuations
and the conduction electrons a.nd phonons. In sys-
tems with direct or superexchange intrinsic re-
laxation usually dominates if the exchange inter-
action is strong enough to induce a pha, se transi-
tion. However, in systems with indirect exchange,
extrinsic damping coming from first-order inter-
.actions with the conduction electrons is frequently
the most important relaxa, tion mecha. nism. " Since
we are primarily iriterested in metallic rare-earth
systems with indirect exchange interactions we
will ma, inly consi. der extrinsic damping.

We introduce extrinsic damping using an approx-
imation which is similar in spirit to the MFA. The
integral in the equation for I'„„(2.14) is evaluated
treating the ions as independent, while the matrix
.8 is calculated in the MFA, We obtain the result

(3.16)

where X'„„ is given by (3.11) and (S ')M~~" by Eq.
(A9) in the Appendix. Here the symbol y,', denotes
the low-frequency limit of the single-ion linewidth
associated with the p, th manifold. (Note that as
8,-0, S,„-&6~X'„sothat I',„-6 y„',.) Since a
general formula for y,'„has been given earlier"
we will not discuss it in any detail.

The appearance of the single-ion linewidth in

(3.16) is indicative of the fact'that we have tacitly
a,ssumed that the fluctuations of the conduction-
electron. polarization at different sites are uncor-
related so that each ion con. tributes independently
to. the integral in (2.14). Moreover, we have also
a,ssumed that the, fluctuations in the polarizati. on.

have a decay rate which is large in comparison
with the relaxation rates of the low-frequen. cy
modes. We have also omitted off-diagonal single-
ion da,mping associated with time-dependent corre-
lations involving I, and V„, an approximation which
is consistent with the vanishing of the static corre-
lation function (Y„Y„)(lj, c v) when g, = 0.

The ca.lcula. ti.on of the low-frequency pa, rt of
X" (&u) in zero-field involves the solution of (2. 12)
with Q = 0 and I"„,approximated as shown in
(3.16). As in the resonance problem the modes
become decoupled when ~g, ~x««1. The low-fre-
quency part becomes a sum of Lorentzians with
widths y

' and relative weights X'„„/X~&. The other
simple case corresponds to the singlet-triplet
model. Here the low-frequency term consists of
a single Lorentzikn with a, width given. -by
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(3.17)

and relative weight by (3.15).
It is beyond the scope of this paper to discuss

intrinsic damping in any detail. However, there is
one aspect of the problem that deserves comment.
The damping matrix involves correlations of Y'
which is identified with i(Y„,K) with X given by
(2. 1). If the exchange interaction is written in
terms of standard basis operators two types of
terms can be recognized as possible contributors
to Y'„ those involving operators L „, ,~ which are
associated with transitions within the p, th mani-
fold and terms involving L,, ~, where P is any
level outside the p, th manifold. It can be shown
that the terms with L & „~ do not contribute to Y'
when the exchange interaction is isotropic. The
reason is that the Y'„act like (total) pseudospin
operators with respect to the pth manifold IEq.
(2.18)]. If the exchange interaction is isotropic
that part of the Hamiltonian which refers entirely
to the pth manifold can be written as a combination
of scalar products of pseudospin operators and
hence commutes with Y',. Since only the inter-
manifold terms contribute to Y the intrinsic
damping of the 1.ow-frequency modes at the center
of the zone will be ver'y small when the crystal-
field splittings are large in comparison with the
exchange splitting. This of course is the situation
in many 3d insulators. Here the intermanifold
contribution to the damping is negligible so that
the EPR linewidth comes from the anisotropic
terms in. the Hamiltonian. It should be noted that
because of dispersion or "soft-mode" effects, in
some systems the en. ergy of the crystal-field ex-
citons can be much less than the corresponding
single- ion crystal-field splittings. Such a situa-
tion is likely to lead to an enhan. cement of the in-
termanifold damping over what one would calcu-
late using single- ion levels.

Having developed the general theory and appro-
priate first approximations, we. are in a position
to carry out detailed calculations for specific sys-
tems. The results of these calculations are dis-
cussed in Sec. IV.

IV. APPLICATIONS

In this section we discuss several applications of
the theory. We begin with the EPR in TbP. Ter-
bium phosphide is a singlet ground-state antiferro-
magnet which orders at 8 K. Despjte the fact that
the magnetic excitations near the superlattice point
are probably overdampled as is the case for
TbSb,"where EPR is also observed, ' the. EPR of
the F~+' triplet in TbP is detectable down to tem-
peratures on.the order of 10 K indicating that there

.is relatively weak damping of the low-frequency
modes at the center of the zone. Huang et al. '
have reported measurements of the intensity, line-
width, and g factor of the F,"' resonance in the
range 10-50 K. They find that the intensity is
quite wel described by the single-ion expression
e "~r/TZ corresponding to an energy gap of 35 K
between the 1,"' manifold and the ground state.
The linewidth is observed to increase with temper-
ature from 200 G(10 K) to 800 G(50 K). They also
report an anomalous increase in the g factor near
the ordering temperature. However, the anomaly
is now believed to be an artifact of their criterion
for determining the resonance field. "

Perhaps the most unusual feature of the data for
TbP is the applicability of the single-ion expres-
sion for the intensity in a system where the ions
interact strongly enough to bring about a phase
transition. The explanation lies in the small value
of the paramagnetic Curie temperature, 1 K, re-
ported by Busch et al." From the paramagnetic
Curie temperature, T„we infer a value of g,
[=3kT /J(J+ I) ] equal to 0.2 K. As is evident in
Sec. III the relative importance of the effects of
the exchange interaction on the dynamics of low-
frequency modes at the center of the zone is deter-
mined by the value of ~g, ~

)f«. In the case of TbP,
we have ~A, ~ gzz & 0.1 throughout the entire para-
magnetic region. As a consequence the exchange
interaction has only a weak effect on the X',"' reso-
nance so that the g factor is adequately approxi-
mated by (3.13) and the intensity by y. r „."

The behavior seen in TbP contrasts strongly with
what we predict for the EPR in singlet ground-
state ferromagnets; Near the Curie point the ex-
change interaction has a strong effect on the reso-
nance. This is evident from the fact that 4, g J' J'

reaches a maximum value of unity at the mean-
field transition temperature. We have calculated
the g factors and spectral weights [in )f~~ (~)/&u]
of the EPR modes in the singlet ground-state ferro-
magnet Pr, Tl. A fourth-order crystal field was
assumed with E~ -Er, = 77 K. We also took 40
= 5.8 K corresponding to a mean-field transition
temperature of 16 K." Omitting damping, we ob-
tain results for the g factors and weights which are
shown in Figs. 1 and 2, respectively. For T&100 K
the two g factors approach the crystal-field-only
values of 2.0 and 0.4. Below 40 K both g,'"(T) and
g2f'(T) increase rapidly. Although g', "&@2"'for all
T& Tc the spectral weight of resonance (2) equals
that of (1) at 35 K; below this temperature the
spectrum is increasingly dominated by the (2) res-
onance whose g factor approaches a limiting value
=300 at the (MFA) Tc.

While it is clear that not too much quantitative
significance can be attached to predictions of crit-
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l6—
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ing temperature. We find
0 0gr~gr,

A r4~0 X r5&5(Tc) +&r5~0 X r4 r 4 (Tc)
(4.1)

8—

I I

Tc 20
I

40 60.
T(K)

I

80
I l

100

FIG. 1. Effective g factors in Pr3T1 vs temperature.
The arrows indicate the values in the absence of the ex-
change interaction, where (1) and (2) are identified with
the I'5 and:I'4 crystal-field multiplets, respectively.
T~ denotes the mean-field Curie temperature.

ical anomalies in ferromagnets which are based on
mean-field approximations we expect the qualitative
features of Figs. (1) and (2) to be preserved in
more realistic calculations. We are also led to
predict critical anomalies in the g factors of other
singlet ground-state ferromagnets provided the
resonances are not overdamped (as may actually
be the case" in Pr, T1).

Although not obvious in Figs. 1 and 2, there is
another feature of the EPR which deserves men-
tion. The exchange interaction induces a coupling
between the crystal-field resonances so that the
EPR modes are no longer purely 1"4 or I",. This
is evidence in the limiting expression for the g
factor of the (2) resonance at the mean-field order-

Equation (4.1) formally treats the I', and I", levels
on an equal footing, although in Pr,Tl we have
X'„„(T,)» X'„,„,(T, ) so that g,"'(T,) =g'„,l
(g, Xor, r, (Tc). It should be pointed out that the (1)
resonance has a g factor which is infinite at T~.
However, its intensity is finite at the critical point
whereas the intensity of resonance (2) diverges.

We have also studied the low-frequency modes
in Pr, Tl in zero field assuming extrinsic damping
due to interactions with conduction electrons. The
damping matrix was calculated using Eq. (3.16) to-
gether with the results for the single-ion damping
rate given in Ref. 14. Since the s fexchange-in-
tegral is not known for this material, our widths
are calculated only to within an overall multiplica-
tive factor. In Fig. 3(a) we show the temperature
dependence of the half-width at half-height of the
central peak in the dynamic structure factor of
Pr, Tl, while in 3(b) we display our results for the
relative intensity of the central peak as given by

Eq. (3.12). For T & 40K the half-width varies ap-
proximately as a+ bT as might be expected for a
single ion. Below 20K critical effects set in. The
linewidth drops to zero at T~ while the relative in-
tensity rapidly increases to unity.

Just as in the case of the EPR modes the relax-
ational modes characterizing the dynamics in zero
field are a combination of modes associated with
the X'4 and I', manifolds. At high temperatures,
where g0g J' J «1 the two manifolds contribute
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Note that the sum of the two fractional weights is equal
to unity.

independently to the response. However, as the
temperature decreases the coupling between the
manifolds becomes stronger. In the limit T- T~
the response is dominated by the mode with the
smallest relaxation rate, I',„, which is found to
vary as

~rcr4~r5r5(1 ~oXzz)

Ir4r4~o ~ r5 r5+ ~ rsr 5~ o ~ r4r 4

(4.2)

for T=Tc. Note that as T approaches the (mean-
field) transition temperature the linewidth vanishes
as (l-~oX~~), i.e. , as the inverse of the static
susceptibility. The latter behavior is character-
istic of "conventional critical slowing down" and is
likely to be modifiedby nonlinear interactions among
the 7 ." In contrast, the linewidth of the fast relaxihg
mode remains finite at T~. However, its relative
intensity goes to zero so it makes no contribution
to the response. This behavior is illustrated in

Fig. 4 where we show the linewidths and fractional
intensities of the two modes contributing to the
central peak whose overall half-width and relative
intensity are displayed in Fig. 3. In addition to
the critical anomalies we note the interference
effects associated with the anticrossing at 48 K.

Recently, inelastic neutron scattering studies of
the central peak in Pr, 'Il have been reported by
Als-Nielsen et al. ' Their experiments show an
increase in the intensity near T~, as predicted by
(3.12). Unfortunately there is insufficient data. in

the paramagnetic phase to make a comparison with
the linewidth curve in Fig. 3.

V. DISCUSSION

There are a number of additional points to be
made in connection with the theory outlined in Sec.
II. First, although the analysis we have given is
for J~ it could equally well have been given for the
Fourier transform J(q) = P„exp(iq r„)J„in which
case the operators Y', would become Y'„;=Q„
x exp(iq r„)Y'„(n) with corresponding changes in
the definitions of the susceptibilities, relaxation
functions, : etc. Second, despite being developed
for non-Kramers ions the formalism carries over
almost intact to Kramers ions. The only compli-
cation that arises is in connection with the behav-
ior of the I', manifold in an external field. In sorrie
cases, e.g. , J= —, and +, the F'„associated with
this manifold do not obey angular momentumlike
commutation relations [Eq. (2.17) ]. When this
situation occurs the 1", manifold has multiple reso-
nance frequencies rather than a single resonance
frequency as is always the case for the I', and 1,
manifolds. The multiplicity of resonances leads
to an increase in the dimensionality of Eq. (2.12)
since each of the modes has to be treated separate-
ly.

One of the most important questions to be ad-
dressed concerns the:applicability of the theory to
metallic systems where the rare-earth ions inter-
act indirectly through the conduction electrons.
Becker et al. ' have argued that the response of the
conduction-electrons cannot be neglected in cal-
culating the rare-earth dynamic susceptibility. In
the case of the singlet-triplet system they obtain
an expression for the dynamic susceptibility which
has two low-frequency poles, one of which is as-
sociated with the crystal field excitations and cor-
responds to what we would obtain using the formal-
ism of Secs. II and III. The other pole is associat-
ed with the conduction electrons and describes
paramagnon excitations. It is important to note
that their results were obtained at finite wave vec-
tor using an expression for the dynamic suscepti-
bility of the conduction electrons which is valid
only when ql »1, where I is the electron mean free
path. As pointed out by Fulde and Peschel" the
character of the susceptibility changes in the small
momentum range, ql «1. In this regime in zero-
field we have

1/7'+ Dq'
'1/r+ Dq'+i(u '

where g, is the static susceptibility, D is the dif-
fusion const'ant, and 3/47' is the rate for the spin-
flip scattering of the conduction electrons by the
rare-earth ions. The essential point is the rela-
tive magnitude of 1/7' in comparison with' the relax-
ation rates of the low-frequency rare-earth modes.
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We can obtain a rough estimate of this ratio from
the detailed balance relation for the rare-earth-
conduction- electron system":

yRET = 3kTX,'/NZ(J +1), (5 2)

where y~E is the rare-earth relaxation rate due to
conduction electron scattering and X,'is in units of
g', p» g, being the electronic g factor. Equation
(5.2) is obtained from a theory which omits crys-
tal-field effects. However, the single-ion relaxa-
tion rates in the presence of the cubic crystalline
field are usually of the order of magnitude (g0„/
gz)2yRE. Since X,' is approximately 3N, /2EF,
where N, is number of conduction electrons and
E„ is the Fermi energy we have

Huang for many helpful comments and K. M. I eung
for computing the curves shown in Figs. 3 and 4.

APPENDIX

In this Appendix, we outline the proof of Eq.
(3.12). In the MFA, the general expression for
the relative intensity, (2.26), can be written

NY6t- Q 00 ($1)M FA lou

XJ z(0) 0Xzz "" I-g0Xzz

(A1)

where the matrix Z has elements

(A2)
9kTN~ 1

RE =
I 2N~(J+1)EF (5.3) with

In the case of concentrated systems N, =N so that
y - (kT/E )I/2. «1/7

Since the relaxation rates for the low-frequency
modes are likely to be much less than 1/F we be-
lieve we are justified in approximating X,(q, &0) by

g,' in calculating the effective interaction between
the rare-earth ions in the low-frequency-long-
wavelength regime. When this is done we are left
with an expression for the low-frequency part of
X J z(01 ) which has only crystal-field poles. On the
basis of this argument we conclude that as long as
ql «1 our theory which is based on the Hamilton-
ian (2.1) with extrinsic damping introduced through
Eq. (3.16), is a valid approach for characterizing
the low-frequency relaxation modes in metallic
rare-earth systems.

In summary, we have developed a general theory
for the low-frequency modes in rare-ea, rth systems
with degenerate crystal-field levels. From a com-
parison with experimental data we conclude that
the theory is successful in explaining the qualita-
tive features of the results. However additional
work is needed. It is important to go beyond mean-
field theory in obtaining approximations for the
static correlation functions. Further studies of
the linewidth mechanisms are also called for. In
particular, one would like to know the limitations
of the approximate treatment of extrinsic damp-
ing. On the experimental side, additional mea-
surements of the linewidths and g factors in well-
character ized systems are needed. Paramagnetic
resonance studies in singlet ground-state ferro-
magnets could be an important test of the validity
of the coupled-mode picture.
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We write Z as the sum of two matrices:

(A3)

(A4)

where A is a diagonal matrix with elements A„
whil. e B has all elements equal to unity. The in-
verse of Z is then given by the equation

1 g g ling 1+g2g 1E+ ling 1 ~

upon iteration. As a, direct consequence of the
properties of A. and 8 we obtain the result

(A5)

y, PEAL

+ TrA '- q, (TrA. ').'+g', (TrA ')' ~ ~ ~,

TrA '
1+&,TrA, ' '

where Tr denotes the trace operation

TrA '= Q A„' =(1—g0X0~~) ' Q X0„.

Using (AV), we can rewrite (A6)

(A7)

(A8)

80 . (AQ)
N(S -l)MFA —XO -1 6

XO

(Z ')„„= 0"

which is equivalent to (3.12).
Essentially the same arguments can be used to

evaluate S ' in the MFA. We find
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