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The problem of Alfven-wave oscillations in an anisotropic sphere is studied, and two solutions are
presented. One solution is exact, involving an expansion of the current inside the sphere in a series of
orthonormal modes. The second is approximate, based on a perturbation expansion of the induced fields and
currents in powers of the sphere radius. The approximate solution can be applied to a material having a completely
general conductivity tensor, while the exact solution is restricted to situations of high symmetry. As an
illustration of these solutions, the resonant power absorption by electron-hole droplets in Ge is calculated
explicitly. Size-dependent resonances, for which the resonant field increases with the drop radius, have been
observed experimentally. The present calculation shows that such resonances occur both in the magnetic- and
electric-dipole absorption, with the magnetic-dipole absorption being most intense for the drop sizes and
frequencies under consideration, particularly for small drops. From the approximate solution, it is found that
certain of the resonances can have a very strong dependence on the orientation of the magnetic field with

respect to the crystal axes, similar to cyclotron resonance of an electron in Ge. As a second application of
these results, the transition from Alfven waves (in a material having equal numbers of electrons and holes) to
helicon waves (only one-carrier type) is studied, using the approximate solution only. The "elimination" of
one-carrier type can be accomplished by increasing its mass, decreasing its concentration, or increasing its
collision rate. The Alfven-to-helicon transitions are quite different in each of these three cases, and examples
of intermediate states are presented.

I. INTRODUCTION

A. Scattering of waves by a sphere

Electromagnetic waves have long been a valuable
probe of the properties of free carriers in solids.
A particularly important technique in semicon-
ductors has been cyclotron resonance': this gives
the effective mass m and (using circularly polar-
ized waves) the sign of the charge for each type
of carrier in the material. From the linewidths,
information can be found concerning collision
processes of the. carriers. Unfortunately, this
technique can generally only be used when the
number of carriers is small. ' A high density n
of carriers screens out low-frequency electric
fields, and shifts the cyclotron resonance to fre-
quencies near the plasma frequency'

~ = (4wne'/e~m)'~',

where E~ is the dielectric constant of the medium.
This plasma shift may move the resonance to such
high frequencies and fields that experimental
studies are more difficult to carry out.

However, at such high carrier densities a new
type of resonance can be observed in a magnetic
field; whereas in zero field, waves can propagate
inside a plasma only if their frequency ~ exceeds
the plasma frequency, this is changed in a finite
magnetic field. Certain low-frequency waves can
propagate if their frequency is less than the cyclo-
tron frequency

(u, =ea/me.

The nature of these waves depends sensitively on
the types of carriers in the material. 4 For a ma-
terial with a single type of carrier, the propaga-
ting waves, called helicons, have one sign of
circular polarization (depending on the sign of
the carrier's charge) and are highly dispersive,
g ~ u'~', where 0 = 2w/X is the wave number, and
X is the wavelength in the medium. If there are
equal numbers of electrons (negatively charged
carriers) and holes (positively charged), both
having high mobility, then dispersionless linearly
polarized waves can propagate. These are called
Alfven waves.

Such propagating waves can be conveniently
studied using "dimensional resonance" techniques:
by matching the linear dimension of a sample to
the wavelength of the propagating wave, it is
possible to excite a normal mode oscillation
inside the solid, for which the absorption of the
wave is greatly enhanced. This absorption is
resonant in the wavelength of the wave (or the
length of the sample). The technique therefore
allows a precise measurement of the wavelength
inside the sample, from which the properties of
the carriers can be determined. The resonance
condition is most easily visualized in a flat plate:
the thickness of the plate t must be equal to an
integral number j of half-wavelengths: t =

&j&.
Such resonances are'by no means confined to flat
plates. Figure 1 schematically shows the field
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FIG. 1, Magnetic-dipole resonant field distributions.
Electric and magnetic fields induced in a sphere by the
frequency-dependent field 8& in the presence of a static
field &0 for the transverse case B&l 330 are shown. The
field distribution is actually calculated for an isotropic
sphere, and it is hypothesized that {for a smaQ enough
sphere) this distribution is not changed greatly by the
static field B~ FieMs near the two lowest dipole reso-
nances are shown. l3elow each sphere is shown the in-
tensity and direction of the induced electric field along
a diagonal of the sphere perpendicular to &f From
this, the concept of fitting one {or two) wavelengths in-
side the sphere should be clear.

distributions in a sphere near the lowest two
(dipole) dimensional resonances. The field distr i-
butions are actually taken from Mie theory, and
assume an isotropic conductivity tensor. However,
Pryce' has studied the magnetic field distributions
at dimensional resonance for the helicon case (one-
carrier type) in the "infinite- conductivity" limit:
that is ~,7-~, while v, remains finite. [Here 7

is the carrier collision time and cr, is the zero-
field conductivity, Eq. (13).j The fields he finds
do not differ significantly from those of Fig. 1.

Below the spheres are shown the intensity of
the electric fields at different points along the
sphere diameter. The sinusoidal pattern clearly
indicates what is meant by fitting one (or two)
wavelengths inside the sphere. For a sphere of
radius a, the resonance condition can be written
2na=y, , X, or

Qa pgy e

Here the y,&'s are a series of constants which, for
the slab, would be mj. For the sphere, these con-
stants are to be found by solving the electromag-
netic boundary value problem for absorption by a
sphere. This difficult problem is the central topic
of this paper.

In a magnetic field, ~ is a function of B, so that
the absorption is also resonant in B. As 8 is var-
ied, a series of resonances will appear, different
resonances associated with different normal modes
(y, ~). When a is varied, the peaks of these res-
onances B„shift in a characteristic manner which
is different from helicon waves (B„~a') and Alfven
waves (B„~a). This is discussed further in Sec.
II.

If the conductivity of the sphere is an isotropic
scalar, then the problem reduces to Mie scatter-
ing, ' for which the solutions are well known, and
serve in this paper as a guide to the more general
problem. Unfortunately, in the problems of inter-
est, the magnetic field breaks the spherical. sym-
metry and introduces a tensor conductivity. The
problem of electromagnetic scattering in this
case remained unsolved for almost 50 years. Re-
cently, Ford and sterner' presented a formally
exact numerical technique to calculate the mag-
netic-dipole absorption in this problem, in the
special case in which there is a single-carrier
type with scalar mass. A generalization of their
solution to the Alfven problem —with several. car-
rier types —is given in Sec. III.

It is important to realize that this theory is not
a complete theory of scattering by an anisotropic
sphere. In contrast to Mie theory, which is valid
for scattering by plane waves of arbitrary wave-
length,

' this theory places a limit on the radius
of the sphere: the sphere must be small. compared
to the wavelength outside the sphere. In this case
the incident fields can be considered as spatially
uniform and oscillating in time (the scattered
fields can still have a complicated spatial. varia-
tion). This will be called dipole scattering: only
the electric and magnetic dipole modes of the
sphere are excited. This dipole-limit theory is,
however, a significant extension beyond earlier
Rayleigh-limit theories of scattering. In the Ray-
leigh limit, the sphere radius must be small com-
pared to the wavelength both inside and outside
the sphere. ' In contrast, the dipole theory is
valid for arbitrary wavelength inside the sphere.
The wavelength inside the sphere is reduced by
~e, where e is the effective dielectric constant of
the medium [given, e.g. , by Eq. (6)]. For a good
conductor in a magnetic field, this reduction can
be of the order of 100. In the specific example
of this paper —electron-hole drops in Ge—the
drops were probed with K-band microwaves, so
that the wavelength outside the drop is Smm —much
larger than the largest drops observed.

B. Electron-hole drops in Ge

In a recent series of experiments, '" such di-
mensional resonances have been observed in
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microwave absorption by electron-hole drops
(EHD) in Ge." These drops are produced by con-
densation of excitons at low temperatures, and
in unstrained Ge form small (a-2-10 pm) (Ref. 12)
metallic spheres, having equal numbers of elec-
trons and holes, and a pair density of about 2.3
0&10" cm '. From an approximate theory of the
dimensional resonances"" ~" (briefly described
in Sec. IIE), a drop radius a&100 pm was esti-
mated, suggesting that what was observed was not
the ordinary, small EHD. Subsequent experi-
ments"' '" confirmed that the sample was strained
in such a way as to produce a potential well""
inside the sample, and that the small EHD were
all attracted into the well, forming a single large
mass of electron-hole liquid (EHL) near the bottom
of the well. Because of the large strains, the
properties of this large liquid mass —called a y
drop —are quite different from the properties of
EHD in unstressed Ge. The pair density is con-
siderably lower, n = 5x10" cm ',"and consequent-
ly the recombination lifetime is over an order of
magnitude longer.

The purpose of the present paper is to extend
the calculation of Ford and Werner to account for
the dimensional resonances observed in these y
drops. The calculation is complicated because
there are several carrier types with anisotropic
masses. In unstressed Ge the conduction band
consists of four equivalent electron valleys with

ellipsoidal masses symmetric about the different
(111)axes of the crystal: m, = 1.58m„rn,
= 0.082m„' where rn, is the free-electron mass.
Under a large (111)stress (as is associated with

y drops"), three of the valleys are raised in en-

ergy and only a single one remains populated. The
valence bands consist of two warped hole bands,
which are also gradually split by a (111)stress.
Further details of these bands are presented in

Appendix A. Thus, application of (111)stress
gives rise to three distinct types of EHL:
Ge(4: 2), corresponding to very low (or zero)
stress, for which four conduction-band valleys
and two valence bands are occupied; Ge(1:2),
with one occupied conduction valley, but still
two valence bands; and Ge(l: 1), for large enough
stress that only one valence band is occupied.
The y drop corresponds to Ge(1: 2) but the form-
al solution will also be applied to Ge(4: 2) and

Ge(1:1).
In Sec. II, the electromagnetic equations are

summarized, and some simple properties of
Alfven and helicon waves are reviewed. Also a
simple theory of the dimensional resonances, due
to Cardona and Rosenblum" is presented. The
theory, based on an ad hoc application of Mie
theory to the problem, is here called the em-

pirical Mie theory (EMT). Section III presents
the generalization of the exact theory of Ford
and Werner. ' In addition to including the multi-
ple anisotropic-mass carriers of Qe, the Ray-
leigh limit (small a) is treated correctly, and
electric as well as magnetic-dipole absorption
is calculated. Section IV presents an approx-
imate analytic solution to the same problem,
based on Ref. 19. This approximate solution com-
plements the exact solution in many ways. It is
much easier to handle and, while it lacks the rich,
resonant structure of the full theory, it neverthe-
less reproduces the basic properties of the prin-
cipal resonances with a reasonable accuracy.
Furthermore, it is more versatile than the exact
solution. The exact solution can only be applied
in cases of high symmetry, when the conductivity
has a particularly simple form. For the EHL in

Ge, this means the solution can only be found when
the field lies along the stress ((111))axis, except
in unstressed Ge, where solutions can be found
if B is parallel to either a (111)or a (100) axis.
In this paper, the approximate solution is gen-
eralized to an arbitrary conductivity tensor, and
as an application the full angle dependence of the
dimensional resonances in the EHL is shown.

In Sec. V, these theories are applied to the EHL
in Ge, and a detailed comparison of the exact and
approximate theories (as well as the EMT) is car-
ried out. It is found that there is a quite complex
spectrum; while the most intense absorption is
magnetic dipole (excited by the microwave mag-
netic field), there are also electric-dipole reson-
ances which should be experimentally observable.
There are three series of magnetic resonances,
depending on the polarization of the microwave
magnetic field B, with respect to the static field
B: LM, for 5, [J5; and TM+, for transverse
fields (5, J.5) circularly polarized in opposite
senses. Correspondingly, there are three ser-
ies of electric resonances, LE and TE+. 'The

spectra are much more complicated than expected
from the EMT: the magnetic field induces a
"mode mixing" which induces a contribution to
the dipole absorption from resonances associated
with all the multipole modes of Mie theory. It
is found that these dimensional resonances can be
of great value in analyzing the properties of the
carriers: from the Rayleigh limit resonances the
effective carrier masses can be found, while the
shift of these resonances in field as a is varied
allows a determination of the carrier density.
Finally, the linewidth can be used to measure
collision rates of the carriers. In a subsequent
publication, the results of this paper will be com-
pared to the experimentally observed Alfven res-
onances in EHD.
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II. BASIC EQUATIONS

A. Electromagnetic equations

In a medium characterized by a complex tensor
conductivity g,

j =. 0 ~ E

Mmovell's equations have the form [for a plane
wave R(t) =Re '"']

(5a)V ~ K=0,

V ~ 5=0,
Vx E =i~5/c,

(5b)

(5c)

(5d)Vx5 = (4m/c) j —(i u&/c)e~R -=-(i&a/c)e ~ E,
e -=&~I- (4m/i~)o, (6)

where c~ is the lattice dielectric constant, and I
is the identity matrix. Equations (5c) and (5d) can
be combined to give the fundamental wave equation

Helicon and Alfven waves are just two limiting
cases in a spectrum of possible resonances. In
Sec. VI the transition between these two limits is
briefly explored (using the approximate theory of
Sec. IV). For convenience, the initial material
is taken to be composed of equal numbers of elec-
trons and holes, each of which has an isotropic
mass. The transition from Alfven to heliconlike
behavior is carried out in three different ways,
each time by reducing the effectiveness of the
holes as carriers. This is done by alternately
decreasing the number of holes, increasing the
hole mass, and increasing the hole scattering rate.
In each case the final state is the same: the res-
onance, due solely to the electrons, has features
entirely characteristic of helicon waves. How-
ever the nature of the transition is quite different
in the three cases, and illustrations are given of
the very different types of resonances associated
with the intermediate states (neither pure helicon
nor pure Alfven}.

carriers can be characterized by an energy-in-
dependent collision time v', the conductivity tensor
may be found more easily from an equation-of-
motion method. This derivation will be appropri-
ate for a degenerate Fermi system, for which
only the collision time at the Fermi level is im-
portant. If the current is carried by a single kind
of carrier having charge e, density n, and ef-
fective mass tensor m, then the equation for
the average carrier drift velocity v is

m ~ —+ —=e E+ —x

g=P

p ~ j = [(I/r-ie)m ~ j+(e/c)5xj]/ne .

(10a)

(10b)

For a carrier with isotropic mass K = mI, g be-
comes

g~ 0'2 0

g= -g g 0

where

0 0 g,

o, = o,(l —i(ur)/[(I —i ~~)'+ (~,r)'],
o, = —(u, ro, / [(1 —i(ur)'+ (a,r)'],
o, = o,/(I - i cur);

o, =ne'7/m, -

(12a)

(12b)

(12c)

(13)

&u, is given by Eq. (2), and the magnetic field is
taken to be along the e axis (o,}.

The above tensor may be diagonalized by going
A A A

to the complex coordinates x, =x+iy (correspond-
ing to circularly polarized plane waves). Then

g, 0 0

If the time dependence of the drift velocity is also
taken as sinusoidal with frequency ~, then the cur-
rent density j =nev can be found:

j=o ~ R,

Vx (VxE) = (uF/c')e ~ E. g= 0 g 0 (14)
In addition to satisfying Maxwell's equations in

each medium, there also exist boundary conditions
which must be satisfied at the interface between
two media. These conditions require continuity of
5, of the tangential components of E, and the nor-
mal components of T ~ X.

B. Conductivity tensor

The properties of the medium are determined by
its dielectric constant and its conductivity tensor.
The conductivity tensor is in general found by sol-
ving Boltzmann's equation, "but if the system of

with

0 0 g3~

o, = o, acr, = o,/[I —i((o+ &u,)r]. (15)

If there are several types of carriers, their
conductivities are additive. We shall be particul-
arly interested in the situation in which there are
equal numbers of electrons and holes. 'The simp-
lest example of such a "compensated plasma"
would consist of two types of carriers with iso-
tropic masses, m, and m, . Each carrier would
have a conductivity of the form of Eq. (11},and
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the total conductivity would therefore also be of
the same form.

For systems having conductivities of the form
of Eq. (11) [or, equivalently, of Eq. (14)], the
multipole absorption can be found exactly, as
is shown in Sec. III. For the EHL in Ge in an ex-
ternal magne ic field, the conductivity is more
complicated, as discussed in Sec. I and Appendix
A. The conductivity has the simple form of Eq.
(11) only if the field lies along a high symmetry
direction. For the magnetic field aligned along
other directions, the dipole absorption can be ap-
proximately found by the methods of Sec. IV.

C. Helicon and Alfven waves in an unbounded medium

Particular solutions of Eq. (7) are transverse-
polarized plane waves:

E F + j(k r"ev)
1 (16)

k ~ E, =O,

-O2E, = (uF/c2)e ~ E, .

For k in an arbitrary direction, there are two or-
thogonal solutions of Eqs. (16)-(18). The disper-
sion relation k(e), is simplest for propagation
parallel to the magnetic field, k~~ 5, . The waves
are circularly polarized, with

(18)

f2,
' = (~2/c2) (e z —4mcr, /i ~). (19)

For propagation in other directions, the waves have
a similar, but more complicated dispersion rela-
tion. In the special case of transverse waves,
ki5„one solution has E, [[%„and for this wave,
we have

tion is given by

)'2 = (re~/c)(aztec/ ~(u, ~)'~' = (I/c)(4anec(u/B)' '

(24)

These waves are highly dispersive (k/&u cconst),
and have a wavelength ~=2m/P which increases as
the square root of the magnetic field.

There is a close connection between the sign
of the circular polarization and the sign of the
electric charge of the carriers, as far as cyclo-
tron resonance or helicon wave propagation is
concerned. Cyclotron resonance is associated
with an infinity of the conductivity. From Eq.
(15), g, becomes infinite when v+ &u, =0, that is,
if the carriers have a negative charge. Similar-
ly, from Eq. (21), if ~tu, ~&v, then i'2, is real if
~,&0: in both cases, the wave associated with
0, is helicon or cyclotron acti. ve for negatively
charged particles. The opposite result holds for
the 0 wave.

In a compensated plasma, containing two types
of carriers with opposite charges and scalar ef-
fective masses, m, and m„a similar analysis
shows that

= —(6&(d/C ) [(d&1/(Cd y(d 1) + (d 2/(M + (d 2)].

Now the lowest-order term in ur/a,
&

gives a, con-
tribution which is linear in charge and independent
of effective mass, and hence vanishes in a com-
pensated plasma (n, =n, =n). Thus, to lowest non-
vanishing order,

&~~2 ~'„uP» 2 4mn,
+ - 2 2 2 @2 t 1™2

(d
~ (d~

I22, = ((u2/c2)(e~ —4vo, /i(u). (20) (26)

For a single carrier with isotropic mass, k,
is independent of magnetic field, while, for high
frequencies (~r»1),

I22, = e ~ (co2/c') [1 —cu', / ~(~ + ~,) 7, (21)

where the plasma frequency ~ is defined by Eq.
(1). In zero field, i'2„i'2, all reduce to the familiar
result for a metal

f22 =
e z(uP/c')(1 —uP/ ur') . (22)

)2,
' =- (ez (d/ C') &d~/ ( (d + (d, ) . (23)

Thus, for one sign of circular polarization, k'
&0 if ~u&, ~&&u. These propagating waves are calle6
helicon waves. For ~, » cu, their dispersion rela-

Thus for w(u, ko is imaginary, and no waves can
propagate in the medium below its plasma frequen-
cy. In a finite magnetic field, the situation is rad-
ically changed. For cu» co„~,

Thus for Alfven waves, both circular pola, rizations
are propagating and dispersionless, and X o-B.

D. Dimensional resonances

For a dielectric sphere (indeed a body of any
shape) embedded in a material of different dielec-
tric constant, there is a series of electromag-
netic "normal- mode" oscillations. If the mater-
ials were completely lossless, these modes would
be self-sustaining: once excited, they would con-
tinue to oscillate forever, with no external source.
In a real, lossy medium, the oscillations would
gradually die out. If the decay time is slow, power
may still be easily coupled into the system by
coupling to these normal modes. Since these nor-
mal modes can generally be considered as "fitting
an integral'number of wavelengths inside the
sphere" [formally, Eq. (3), i'2a=&,J must be sat-
isfied], there will be a resonant absorption of
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power as the electromagnetic wavelength is tuned
through the value necessary to couple to the mode.

For the problem of a conducting sphere in a
ma. gnetic field, Cardona and Rosenblum" gave an
approximate theory of these dimensional reson-
ances, which explicitly determines the y, , of Eq.
(3) in terms of zeroes of the spherical Bessel func-
tions. Once these y,.&

are known, an explicit form
for the wave number [e.g. , Eq. (24) or (26)] can be
used to transform the resonance condition, Eq. (3)
into an equation for the resonant magnetic field as
a function of sphere size. The resulting equations
are quite different for helicon waves

B = 4vnec~(a/cy, , )2, (27a)

and for Alfvbn waves

a= [4mn(m, + m)]'~'~a/y, , (27b)

Thus, if power absorption is plotted while the mag-
netic field is varied, the absorption will appear
as a series of resonant peaks, one for each value
of y,.&. As the size of the sphere increases, the

.resonances will shift to higher field, with Bo-a
for helicon waves, or B~a for Alfv6n waves.

E. Empirical Mie theory (EMT)

The calculations begun by Cardona and Rosen-
blum" and continued by Galeener and others" are
referred to in this paper as the empirical Mie
theory (EMT), although, strictly speaking, it is
not a rigorous theoretical approach to the prob-
lem. Instead, the EMT oversimplifies certain
aspects of the problem in order to reduce the cal-
culation to Mie theory.

Consequently, the validity of any results obtained
by this theory can only be tested by comparison to
the exact theory. However, by reducing the an-
isotropic scattering problem to a particular case
of Mie theory, analytic results are available. The
simple physical picture which these results pre-
sent can be of great value in attempting to under-
stand the complicated numerical results generated
by the exact theory. In Sec. V, the EMT will be
compared to the exact theory, "and its usefulness
demonstrated.

As seen above, a magnetic field modifies the
conductivity in two distinct manners: (i) it makes
the conductivity anisotropic; and (ii) it introduces
an explicit field dependence into certain elements
of the conductivity tensor. In practice, both ef-
fects must be taken into consideration for a rigo-
rous understanding of the phenomenon —or to be
able to compare experiment to theory. In princi-
ple, to obtain a qualitative understanding of cer-
tain general features of the resonances, it is pos-
sible to separate the two effects. The simplifica-

tion introduced by Cardona and Rosenblum was
to introduce a field-dependent (but scalar) con-
ductivity into Mie theory. There is no a pro~i
reason for choosing any particular value of o, and
Cardona and Rosenblum chose o+ (or o-) from
Eq. (14). This choice has a number of defects:
(a) while the above choices for o can be approxi-
mately related to the transverse, circularly po-
larized absorption spectra of the more rigorous
theory, there is nothing which can be associated
with the longitudinal resonances of the dipole theo-
ry; (b) in the small-sphere limit, these values for
o lead to results which do not agree with the exact
magnetic dipole absorption. In the present paper,
a somewhat different choice of 0 is made. In the
exact magnetic-dipole results for a small sphere,
the conductivity enters in the form of an effective
conductivity cr [defined as the inverse of the re-
sistivity tensor P of Eq. (76)]. If, in the EMT, o
is replaced by one of the diagonal elements of 0,
then the EMT automatically yields the correct re-
sults in the small sphere limit, and the longitudinal
cr is well defined. Since 0 enters only into the mag-
netic dipole absorption, the o+ of Eq. (14) is still
used for the electric-dipole calculation.

The normal modes of Mie theory consist of a
series of electric or magnetic multipoles. If the
conductivity in the Mie theory is taken a.s one of
the elements of the conductivity tensor appropriate
to the helicon problem (single-carrier type) the
following results are found: (i) the resonances
occur only in one of the transverse modes (o for
holes, a, for electrons); (ii) in the resonant mode
there is an infinite series of resonances, associa-
ted with the different multipole orders. Reso-
nances are associated with all multipole orders;
the most intense resonances are magnetic dipole.
Results are similar for the Alfven problem, but
now there are resonances in both transverse
modes. For large fields, these resonances satis-
fy Eq. (27), with y, , defined as follows. For each

y, , , 2 is the multipole order (i =1 for dipole, i
= 2 for quadrupole, etc.), while the j's are num-
bered in order of increasing magn. itude of y, , For
an electric 2' pole (magnetic 2'" pole) resonance,
y, , is the jth zero of the spherical Bessel function
of ith order: j,. (y, ,) =0. This quite literally cor-
responds to fitting j wavelengths inside the sphere.

Using the analytic solutions from Mie theory,
this empirical Mie theory can make some very
definite predictions about the properties of these
size resonances. For small enough spheres, the
resonant field deviates from Eq. (27), and reso-
nance occurs, co, = ap for the electric-dipole
modes, ~,=2~ for the magnetic dipole" [using
Eq. (2) for v, ]. Further, for small spheres, the
absorption intensity is predicted to increase as
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III. EXACT RESULTS FOR DIPOLE ABSORPTION

A. Solution inside the sphere

Following Ford and Werner, ' the problem is
solved by expanding the current in terms of a
complete basis set of vector functions over the
sphere

( ~
a/z

~( (q) lgf 1 A 1(q++)+ll1+,

(26)

&+1
~P(q)= 2„1 A "(q&)1'P,i"

't j./2

2E+ 1)

&t (q) =A(q&) f7, &

(29)

(30)

where the jr's are spherical Bessel functions and
the Y, „'s are vector spherical harmonics. A

summary of the properties of these vector func-
tions is given in Appendix B; the XP(q)'s and
VP(q)'s are constructed so as to be divergence-
less, while the BP(q)'s are curlless.

Rather then expanding the true current j in
terms of these functions, we expand the "pseudo-
current"

a" for a magnetic 2' pole resonance, or asa""for an electric 2' pole. The width hB of the
resonance is proportional to the collision rate
r ', and, if 7 is independent of magnetic field, AJ3

is field independent for helicon waves, but prop-
ortional to B for Alfvbn waves. " These general
features are confirmed by the exact analysis, as
will be shown in Sec. V. (It should be stressed
that the EMT is entirely qualitative —if any result
of the EMT disagrees with either of the more
rigorous theories developed in this paper, then the
EMT is wrong. However, the present author feels
that the EMT has a heuristic value in trying to
understand the extremely complicated results of
the more exact theory. )

J=Q G,X, , (34)

where the 6, are determined by boundary condi-
tions at the surface of the sphere.

The matrix equation, presented in Appendix C
must be evaluated numerically, but certain sim
plifying features are evident from its general
form. In the first place, the equations do not mix
different values of m. This simplification is made
possible by the special form of the conductivity
tensor, Eq. (11)—any more general v would lead
to a mixing of m values. [This can be seen by
analysis of Eq. (B13).] Furthermore, the equa-
tions do not mix parity. The functions VP, AP„,
BP„,all have parity (-1)', so that the coefficients
can be divided into two series: (a,„,c,„,a,„,. . .],
and (c, , a, , c,„,.. .f, of which the first series
hap even parity and the second odd. Only the even
series couples to an electric dipole field, whereas
the odd series couples only to the magnetic-dipole
field.

For a given q, the electric field is found to be
e

E.= ~ 2 I, +Cfog BP
r

(35)

Eq. (C5)]. Since XP, BP, and VP form a complete
set of functions, the operations Vx, zx, and M
applied to these functions can be expressed as
linear combinations of these functions (see Ap-
pendix B), so that the differential equation (33) is
transformed into an algebraic equations linear
in AP and VP. Since these functions are orthogonal
over a sphere, the coefficients of each function
must vanish separately. This leads to a system
of coupled linear equations, Eg. (C6), in the co-
efficients ir, cr, in which q enters as a parame-
ter. This eigenvalue equation has solutions only
for particular values of q. For each eigenvalue

q, the eigenvectors a,„(q), c, (q) define a particu-
lar pseudocurrent J„which is a particular solu-
tion of Maxwell's equations inside the sphere.
The total current X must be a linear combination
of these values

J =1 —(sloe g/4F)E ~ (31)
where the ff„are defined in Eq. (C12).

&, = Q ~i.(q)~g (q)+c&.(q)&P(q)
r, m

If the conductivity tensor o has the form (11), Eg.
(7) may be rewritten in terms of J:.

(32)

vx[Vx(J+zzz J+ Wz xZ)]=q', J,
where y, 8", and q', are constants defined in terms
of the conductivity tensor elements [Appendix C,

By Eg. (5d), this pseudocurrent is divergenceless,
so that the BP(q)'s do not appear in its expansion

B. Solution outside the sphere

Outside of the sphere, the electromagnetic fields
also satisfy Eqs. (4)-(7), but with o = 0 and the
.dielectric constant e~ appropriate to the medium
outside the sphere. Now for a good conductor e~
« ic I, where e is a typical value of 4' [Eq. (6)],
the dielectric constant tensor inside the sphere.
Thus there can be a large frequency range co

where kpQ«1 even though ka»1, where k,
=~&~ +/c is the wave vector outside the sphere, and
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k is the wave vector inside the sphere [e.g. , Eq.
(24) or -(26)].

In this frequency r'ange, the field equations sim-
plify considerably. The total field can be sepa-
rated into two parts: an electric part, for which
the electric field satisfies

V.E =0, VxE =0,

with a magnetic field defined by

(36)

V xB =-(ia&/c)e~E;

and a magnetic part, for which

v i=0, vxB=O,

and

p xE = (i(d/c)B

(3'I)

(38)

(39)

E = I'~)K) r (40)

The solution to Eq. (35) can be written as a sum of
electric-multipole fields

a radius ~ 300 ym. Yet the frequency, ~/2z =25
6Hz, corresponds to a wavelength ~=3 mm in the
Ge outside the drops. Consequently, the low-fre-
quency assumption is readily satisfied.

Since o' =0 outside the sphere, the pseudocurrent
J is givenby

f =- (i~e~/4n)E . (45)

C Boundary conditions

gy standard pill-box arguments, it is found tha.t
the boundary conditions at the surface of the
sphere are continuity of 8, of the tangential com-
ponent of E, and of the normal component of J.
Again, by using the orthogonality of the scalar and
vector spherical harmonics, these equations be-
come a matrix of linear equations, relating the co-
efficients G, , F&&, and &,", of Eqs. (34)-(35), and

Eqs. (40)-(45). These equations are, for the nor-
mal component of J,

j, (q )ai +co~ E„. '"-(" .. -4.~i (-2i, l)" -'"~ j ~

Kt ( ) = (a/K)
+

Vg g+y (4l) (46)

Similarly, the magnetic multipoles are given by

s=Z E„Kg .

for the tangential component of E,
4% (d. .(2l I) arm(q)

The coefficients I"„,&„are fixed by boundary
conditions at the surface of the sphere. In addi-
tion to the above scattered fields, there is the in-
cident field. The electric dipole radiation is ex-
cited by an electric vector which is spatially uni-
form, and polarized along the &g direction

1

E =(4 )'l' P &„*~ E,V„, (43)
m

e, =e, e„=w(xa iy)/)/2, (44)

In an analogous manner, the magnetic-dipole rad-
iation is associated with a uniform magnetic field
B„defined similarly to Eq. (43}. It should be not-
ed that, since the applied fields are time varying,
then by Maxwell's equations they must vary spati-
ally as well. The assumption that these incident
fields are uniform thus limits the validity of the
present theory to the low-frequency range. How-
ever, all that is necessary is that the sphere is
small compared to the wavelength in the medium
outside the sphere. Inside the sphere, the high-
carrier concentration and static magnetic field
combine to cause the effective wavelength to be
quite small, so that Eq. (3) can easily be satisfied.
For the specific example of EHD (Sec. V}, the
theoretical resonances are all calculated assuming

x [Ij, ,(q )- (l+],)j, , (qa)]

f' [i(l I)]'"(q }i
if' j

l
"I,2l+1

where &g& is the Kronecker delta function &~& =1 if
& =1, =0 otherwise; and

Ds„= (-', ))')'~' em*' E, . (48)

Further ~L, is the dielectric constant outside the
sphere, which may differ from &I, in the sphere.
These equations may be rewritten

Ep, =)( 3 Ds„~gg —. 0 [l(2l+ I)]' '

x p G...„(q)
' ("}, (49)

'4m)ta (. (I~))),(qa)'I)
q2 g2 +1

4vi & j,(qa)
+lf) —,«i I =3Ds 6(x

(()e~o & qa
(50)

[f) is defined by Eq. (C13)]. Similarly, continuity
of the magnetic field results in the equations
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Z &. ( ) I ) .,(d&) (d))

4n'z p c
C

(52)

(53)

The coefficients az (q) and cz (q) are assumed to be
known (Sec. IIIA). Note that Dz, „couples only to
the even-parity series (odd az, even cz ), while

D& couples to the odd-parity series. Thus, in

studying the purely electric-dipole modes of the
sphere (Ds =0), the odd-parity solutions are not
excited. The even-parity solution is found by sol-
ving the matrix equation'

Rg 'G = &D~m&z (54)

where R& is a tensor transforming vectors in 9
space into vectors in l space, which can be explic-
itly written"

4wi u& . (l+1)jz(qa)
cq '"" qa les

4)zi ) jz(qa}
55a

d „=( (j,„—,)a, „~ ', ) odd,
veg "& qa

elm p
l evenjz, (qa)

QQ
(55b)

A similar solution can be found for the magnetic-
dipole case

R, ~ G=3D, &„, (56)

where R& is defined similarly to R&, with odd and
even rows interchanged.

Once the G, 's are found by inversion of Eq. (54)
[or (56)], the entire current and field distribution
inside the sphere can be calculated. However, it is
often sufficient to calculate only the total power ab-
sorbed by the sphere, which can be found much
more easily. The power absorbed is simply P

1=~ ~1m(E z
' P) for electric-dipole absorption,

where the dipole moment P is defined by

0
(8 )z/2 g Ezz m ~

Similarly the magnetic-dipole absorption is pro-
portional to Im(B, 'M), with

1a m (58)

det(&) =+A;q cof(Az;) for any i,
we may rewrite Eq. (49) as

(60)

where Ssr~& -R~, ~, , l'41,
S „=a, j, (qa}/qa .

Similarly,

(61)

(62)

E,, = —3 [I/(2l + 1)J' 'Ds„det(Sz))/det(&zz), (63)

S», -j, , (qa)cz /qa . (64)

Formally, the matrices R and S are infinite di-
mensional, involving an infinite number of &~ 's
and c& 's. In practice the equations are truncated
at some l,„and solved numerically on a CDC 7600
computer. It is found that the resulting power ab-
sorption converges to a fixed value as E „increases
and that larger values of /m~are required as the
sphere radius a increases. Results of these nu-
merical calculations will be presented in Sec. V.

In the calculations presented here, values of
lmgx up to 24 have been used. Beyond this point,
the numerical accuracy of the calculations (single
precision was used) becomes insufficient to pro-
duce meaningful results.

The above solutions have all been dipole modes
of the sphere —that is, they are excited by spati-
ally uniform electric and magnetic fields. If the
sphere is large enough, the condition &,+«1 is no

longer well satisfied (&, is the wave number out-
side the sphere, see Sec. III 8). In this case it
should be possible to observe higher multipole
resonances of the sphere. The calculations of this
section can be extended to describe these. Ref-
erence 6 has an example of the calculation of mag-
netic-quadrupole resonances, and Ref. 26 presents
a formal solution to the full Mie theory for an an-
isotropic sphere, including all multipole modes.

Thus, by Cramer's rule, "the solution to Eq. (54)
is given by

G, = 3Ds cof(&zz, ,)/det(&s) (59)

where det(A) is the determinant of the matrix A,
while cof(A, &) is the cofactor of the &J th element of
the matrix A; that is, cof(A;, ) is the determinant
of the reduced matrix formed from X by deleting
theith row andjth column. "UsingEq. (59), andthe
result"

Thus all that is required is the calculation of the
coefficients &„, &„. These can be found much
more simply, using formal matrix manipulation.

IV. APPROXIMATE SOLUTION

InRef. 19, Ford, Furdyna, and Werner presented
an alternative, but approximate, solution to the
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problem of helicon waves in a sphere. This solu-
tion is much easier to handle than the exact solu-
tion and can readily be used to analyze experi-
mental data. While this solution is incomplete and
does not show as rich a spectrum of resonances as
the exact solution, it has 'the advantage that it may
be generalized for a sphere with an arbitrary con-
ductivity tensor, as will now be shown. Hence it
provides new information not readily avai. lable. from
the exact solution. As an illustration, in Sec. V
the angle dependence of the principal Alfven res-
onances will be derived for EHD in both strained
and unstrained Ge.

The approximation scheme involves a perturba-
tion expansion of the internal fields in powers of
the radius of the sphere. Hence the resulting ab-
sorption agrees with the exact calculation in the
small-sphere limit. The perturbation expansion is
explicitly carried out to second order, and from
this result an empirical expression is formed
which agrees with the perturbation result to sec-
ond order, but gives improved agreement with
the exact result (in the cases in which this result
is known). Following Ref. 19, the pseudocurrent
J [Eq. (31)] is expanded

J (o) J(t) (65)

where J " o- +'"; similar expansions are formed
for B and E. Inside the sphere, these fields and
currents are found by solving Maxwell's equations
[Eqs. (4) and (5)] sequentially:

J "
=[&a —(i&us /4~)$] E =—g "E, (66)

V x B " = (4 v/c) J "

V xE &"+i~ = (i ~/c)B~"~ .
(67)

(68)

These equations may be solved with an arbitrary
conductivity tensor ~. For electric-dipole modes,
E ' =E, [Eq. (43)], B ' =0; for magnetic modes,
E ' =0, 8 ' =B,. Outside the sphere, the solu-
tions are simplified: for the electric-dipole
modes the magnetic field is neglected, while the
electric field is given by Eq. (36}; the boundary
conditions which are satisfied are the continuity
of the tangential component of E and of the normal
component of J. Conversely, for magnetic-dipole
fields, the external electric field is ignored, while
the magnetic field satisfies Eq. (38) outside the
sphere, and is continuous across the surface.
Again, the primary quantity of interest is the pow-
er absorbed, which can be written in terms of the
dipole moment of the sphere, as in. Eq. (57) (elec-
tric dipole}. To order E~'~, the electric-dipole
moment can be written

where

f, , =4"sir l5 .—SIC„)e„" z, , (70)

S „=B ' +B „'i (e'a'c~/5c')B„P„

=[A „—(u&'a'e~/5c')& „] ',
(71a)

(71b)

and

&mn = 6mn —(z ~~z, /2")&mn, (72)

p —= Z ' being the resistivity tensor. Equation (7la)
is the direct second-order perturbation result
(Appendix D). Equation (71b) is adapted following
Ref. 19: when expanded in powers of &', it agrees
with the perturbation result, and is chosen to give
better agreement with the exact result for larger
spheres. In an analogous fashion the magnetic-
dipole moment can be written [Eq. (58)]

1

m

/8m
(73)

~ spaz (4n(u2a'/c')n"„e„* B, ,

S"„=D ' +D„'„i (8mi&u'a'/21c')D„P„

= [D„„—(8m i v'az/21c') 6 ]

(74)

(75a)

(75b)

D..=~P..= ~[6 .»(P) —p. ].
(This form of D „was first presented in Ref. 27.)
Equation (75a) is derived in Appendix D.

The above results are applied to electron-hole
drops in Ge in Sec. V, and the results are com-
pared to the exact results of Sec. III.

V. APPLICATION: DIMENSIONAL RESONANCES IN

ELECTRON-HOLE DROPS IN Ge

A. Introduction

Dimensional resonances, of the form discussed
in Sec. IIE, have been observed in the abc)orption
of microwave power due to large electron-hole
drops (y drops) formed in nonuniformly stressed
Ge.'" In fact, the existence of these large drops
was first inferred from these resonances, and
their size estimated from the simplified theory of
Sec. IIE. The results of the previous sections can
be used to obtain a more rigorous description of
these resonances.

Due to the multivalley conduction band in Ge, the
conductivity tensor inside an EHD can be written
in the form of Eq. (9), only if the magnetic field is
aligned along a high-symmetry axis of the cry-
stal. In unstrained Qe, when all four conduction
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band valleys a,re equally populated [Ge(4:2)j, these
high-symmetry directions are along (100)and (111)
axes. However, the large p drops have only been
produced in the presence of a large (111) stress. "
This stress lowers one valley with respect to the
other three, with the result that inside the y drop
only one valley is populated by carriers, to any
significant extent. In this case the symmetry is
reduced, and the exact solution can be found only
if the field lies along the stress axis. The case in
which the field lies along other directions can be
treated approximately, as discussed in Sec. IV.

The valence band in Ge is doubly degenerate at
zero stress ("heavy" and "light" holes). This de-
generacy causes the hole bands to be warped and
greatly complicates the analysis of the hole con-
ductivity pa'rticularly in a magnetic field. The
stress acts to split these two bands, and at high
stresses all of the holes are in a single ellipsoidal
band. The stress required to depopulate one hole
band is considerably larger than that needed to
depopulate the three conduction-band valleys, and
in the experimentally observed p drops the holes
are thought to lie somewhat closer to the zero-
stress limit. The complications of the valence
band are for the most part ignored in this paper.
In zero stress the holes are treated as two de-
coupled spherical bands. " Two limiting cases will
be analyzed: (i) Ge(1:2), in which only one conduc-
tion is occupied, but the holes are treated in the
unstressed limit; and (ii) Ge(1:1), in which only a
single ellipsoidal hole band is occupied.

In summary, the exact theory can be solved in
four situations: BII (100):Ge(4:2) and Bll(111):
Ge(4:2), Ge(1:2), and Ge(1:1). The conductivity
tens ors in these four cases are der ived in Appen-
dix A. The resulting spectra are qualitatively
similar in all four cases, and only Ge(1:2) will be
analyzed in detail. This is the case which most
closely corresponds to the observed p drops.

a=200@m
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pendent resonances- occur only for the TM+ and
LM polarizations. In EHD, because there is an
equal number of electrons and holes, both trans-
verse modes are resonance active. However,
there is still a sense in which the TN- resonances
are associated with holes and the TM+ resonances
with electrons. This will be discussed further in
Sec. VC, when the Rayleigh limit is considered,
and in Sec. VI, when, by varying the material
parameters, the transition from Alfven to helicon

B. Size-dependent resonances: Magnetic dipole

I20

80
b

xlQ

x5c

Figures 2(a)-2(c) shows typical magnetic-dipole
absorption spectra, plotting microwave absorption as
a function of magnetic field for a variety of drop sizes.
The three sets of spectra correspond to the three pos-
sible polarizations of the microwave magnetic field
B„with respect to the static field B. The LM reso-
nances (longitudinal magnetic, with Bijj B)are shown
in Fig. 2 (a), while the circularly polarized TM +

(transverse B,&B) are in Figs. 2(b) and 2(c). The
signs + are defined through Eq. (44): for TM+,
B, ll~„. For helicon waves, with only one species
of carrier, one direction of circular polarization
is inactive. For example, if there are only elec-
trons (negatively charged carriers), the size-de-

40 I, b x 100

os oooo

I }

IO l5

B (kG)

Ge (I:2}
TM—

20

FIG. 2. Magnetic-dipole absorption for a sphere of
EHL tGe(1:2)] inside bulk Ge; Microwave power absorp-
tion as a function of field for several values of drop ra-
dius a, g I&111). (Top)LM: The microwave field P& is
parallel to the static field; (center) TM+ and (bottom}
TM -: the microwave field is circularly polarized per-
pendicular to B. The actual power absorbed depends on
the magnitude of 8, and can be inferred from Fig. 4.
All the spectra in Fig. 2 are drawn to a common scale
(fixed value of I &~ I ). The more intense lines of each
spectrum are labeled.
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where the properties of the two resonances are
gradually interchanged while the two resonances
never get closer in field than a certain minimum
distance. (In the EMT, no such crossing behavior
is observed. Speculations on its origin will be
given in Sec. VC.)

Such anticrossing behavior is readily apparent
in the curves of Fig. 3. Indeed, in each figure
all of the labeled curves (a-d) correspond to the
single y» resonance of EMT, crossing a series
of much weaker resonances. That this is indeed
the case should be clear from Fig. 4,"which
plots the intensities of the labeled modes as a
function of drop size. Clearly the intensity is
successively being transferred from a, b to c to d
as the drop radius increases. Such behavior is
absent both in the EMT and in the approximate
analytic theory of Sec. IV. The results of the ap-
proximate theory are presented as dashed lines
in Figs. 3 and 4. It can be seen that this theory
gives a good account of the average behavior of
the resonances (intensity and resonant field), but
does not show all the complexity introduced by the
multiple resonances and anticrossing behavior.
Finally, the results of the EMT are shown as
dotted lines, calculated as described in Sec. IIE.
While quantitatively, the resonant fields are
poorly described by this model, it does qualita-
tively show the appearance of higher dipole modes
[Eq. (77) with m & I]. (By construction, the ap-
proximate theory describes only the lowest-order
dipole resonance. ) No anticrossing behavior is
observed, and all resonances have the same Hay-
leigh- limit field.

Note in Fig. 4 that for small drops (a& 50 pm),
the absorption intensity increases as a', in accord
with the prediction of the EMT, but for larger
drops the absorption saturates, increasing ap-
proximately as a' in the largest drops. " In these
figures, what is actually plotted as y", the imag-
inary part of the magnetic susceptibility, where
M= yVB, and V is the drop volume. The absorbed
power P is equal to (&u/2) Im(M B), or

10=

X

0.1—

0.01

IO

X

O. I—

0.01—

IO

X

Ge (I:2)

(78)

Note that although y" saturates in large drops, the
integrated power per unit volume continues to
increase since the linewidth increases with field.

Figure 5 plots the linewidth (full width at half-
maximum) of the principal resonances as a func-
tion of field, comparing the exact (solid line) and

approximate (dashed line) theories. The approxi-
mate theory is seen to slightly overestimate the
linewidth. As expected from the EMT, the line-
width increases approximately linearly with B.
Note for the LM mode that above the e-d line
crossing there is evidence of further, weaker

l

10
0.01 I

I 100 1000
a pm

FIG. 4. Magnetic-dipole absorption for Ge(1:2): Ab-
sorption in.ensity vs drop radius. What is plotted is
actually the magnetic susceptibility X" defined in Eq.
(&8). The solid curves represent the labeled resonances
of the exact theory, where the labeling is the same as in
Figs. 2 and 3. The dashed lines represent the approxi-
mate theory, as in Fig. 3. The evidence of mode cross-
ing is especia11y strong here: the sum of the peak intensities
of all the labeled resonances (plotted as a short-dashed
line) is almost equal to the intensity of the single reso-
nance of the approximate theory. Note that for small
drops, X" increases as a (the absorbed power increases
Hke a').
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FIG. 5. Magnetic-dipole
absorption for Geo. :2):
Linewidth (full-width-at-
half-maximum intensity)
vs resonant fields. Again
the solid lines represent
the result of the exact
theory, and the dashed
lines represent the approx-
imate theory. While there
is much evidence of mode
crossing, the resonance
width generally increases
linearly with &, except at
the lowest fields.

anticrossing phenomena. Even though the weaker
peak cannot easily be detected directly (it occurs
more as a shoulder than a separate peak, for
&uv = 100), these phenomena can still lead to os-
cillatory structure in the peak intensity and line-
width.

Figure 6 plots the analogous peak position versus
field for the other exactly soluble cases: Ge(4:2),
B II(100) [Fig. 6(a)]; Ge(4:2), B I I(111)[Fig. 6(b)];
and Ge(1:1), B I I(111)[Fig. 6(c)]. The principa. l
difference (note scale changes) is due to the very
different pair densities in these cases: as in
Eq. (77), Bccn'~'a. In fact, all the spectra appear
quite similar if plotted' as B vs o.(Mn)' 'a Here.
M =m, +m„,"and n is a "fudge factor, " which
empirically measures the difference between the
exact theory and the EMT (for which n would be
equal to one). If n[Ge(1:2)]—= 1, then n = 1.02
[Ge(4:2),8 ll(100)], 1.13 [Ge(4:2),B Il(111)],1.12
[Ge(1:1)]. The intensities, linewidths, and anti-
crossing behavior are similar in all these cases.

C. Rayleigh limit

In the EMT it is found that as the drop radius
becomes very small (smaller than the wavelength
inside the drop), the resonances all shift to a
size-independent limiting field, at approximately
twice the cyclotron resonance field for the magne-
tic dipole absorption. awhile the most intense re-
sonances of Fig. 3 (exact theory) do have this
limiting field, some of the weaker absorption
peaks seem to be approaching higher Bayleigh-
limit fields.

A simple physical model can explain the correct
Rayleigh limit~ of the magnetic-dipole mode.
Figure 1 shows the field distribution inside a
sphere near the lowest transverse-dipole reson-
ances. The figure is schematic in that the fields
were calculated in the Mie theory for an isotropic
sphere, but should be approximately correct,
particularly in the Rayleigh limit (see Ref. 5).

The induced current approximately follows E,
and circulates in loops about the micro&eave mag-
netic field. Consequently, for the transverse
modes, the current flows half of the time along
the external field, and half perpendicular to it.
Since resistances add in series the effective con-
ductivity is o'," = —,'(o, '+o, ') '. For a simple
scalar mass carrier of mass m, g, '~m, 0, '
ccm(1+ &u, /a&),

3' so that

(o ',") ' ccm (1+ (u, /2(o) . (79)

The resonance condition, g',"-~, becomes w,
=~ 2w —that is, the resonance occurs at tzvice
the cyclotron resonance field. The arrows in
Figs. 3(b) and 3(c) show that this is indeed ap-
proximately the case. Note that for the TM-
mode, the mass associated with the resonance
is the ho)e mass (eB/&uc =2m„), while for the
TM+ mode it is the electron mass. Similar rea-
soning applied to the LM mode would suggest
o'" = (o+'+o ') ', or a resonance at a field el3/+c

2m~ y
where my mg +m g The arrow in Fig.

3(a) shows this to be the case.
The Rayleigh limit of these resonances is ana-

lyzed further in Sec. VD, in which the angle de-
pendence of the resonances is studied [Fig. 8(a)]
and in Sec. VI, in which the resonances are
studied as m~ is varied. It is seen there that the
considerations of the present section are valid
only near the Alven limit —that is, when m, and

m„have comparable magnitudes. If m„» m„ the
TM- resonance occurs near the hole cyclotron
resonance field, and not at twice that value.

From the above discussion of the Rayleigh-limit
field, it is possible to speculate on the origin of the
mode anticrossing phenomena found in the rigorous
theory. It has already been suggested that the weak
modes observed in this theory correspond to an
admixture of modes which for an isotropic sphere
could only be excited by higher multipoles. Now

in the original"'2 EMT, all of these resonances
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fan out as straight lines (when plotted as B vs
a) coming from the same origin, and no anti-
crossing behavior is expected. " However, it has
just been shown that the EMT must be modified for
magnetic-dipole modes near the Bayleight limit.
If the Rayleigh limit for higher multipoles actually
occurs at even higher fields, then the anticrossing
behavior immediately follows: the dipole field has
the highest slope (smallest yi& in the EMT) and
will gradually catch up with any higher resonances.
This is what is occurring in Fig. 3, where the b,

c, and d curves appear to have successively higher
Hayleigh-limit fields.

D. Angle dependence of the resonances

The approximate theory can be used to study the
angle dependence of these resonances. Figure 7
shows the angle dependence in a (110) plane of the
resonances for a 40-p, m radius drop for the three
cases Ge(1:2) [Fig. 7(a)]; Ge(4:2),[Fig. 7(b)], and
Ge(1:1) [Fig. 7(c)). Because there are four pop-
ulated electron valleys in Ge(4:2), the spectra
have 90' symmetry, while in the other cases
there is only 180' symmetry. In Fig. 7, the
exact resonances are also plotted along those sym-
metry directions for which the theory of Sec. III
can be applied. The agreement is quite good for
Ge(1:2) and Ge(1:1), but less so for Ge(4:2), where,
due to the higher pair density, mode anticrossing
phenomena are already important. Away from
the symmetry directions, the peaks are no longer
purely longitudinal or transverse: there are gen-
erally absorption peaks in all three modes, only
slightly shifted from one another in field, although

I

Ge (I:2)
a =40 pm8—

B (kG)

l2

B(kG) 0
l6

I I I I

0
0

lo

20

Ge (I:I)—LM--TM+

I I

40 60 80

I I ~p& I

~r ~r
rw r

l00

l2

B(kG}—

Ge (4:2)
a= 40pm

Q I I

Ge (I:I)
a = 40@m

+ +o~ ~o

B(kG)

4

B(kG)

0 I I i I I I . I I

20 40 60 80 I 00 l2 I40 I 60 l80 (5),

&I00& &II I& &Ql I& &II I& &I 00&

'0 I

50
I

IOO l 50
a (pm)

200 250

FIG. 6. Magnetic-dipole absorption. for EHD in Ge:
resonant field vs drop radius: (top) Ge(4:2), Sll (100);
(center) Ge(4:2), 5 )l (111); (bottom) Ge(1:1), 5 [I (111).
The LM resonances are indicated by solid lines, the
TM+by dashed, and the TM- by dotted lines. Only the
most intense resonances, corresponding to the labeled
resonances of Fig. 2, are shown.

FIG. 7, Angle dependence of the dimensional reso-
nances in EHD. (Top) Ge(1:2); (center) Ge(4:2); (bottom)
Ge(1:1). These resonances were calculated using the ap-
proximate theory, for a drop with a =40 p m. The field
is assumed to lie in a (011) plane, with ~ being the angle
be@veen the fieM direction and the (100) axis. The re-
sults of the exact theory are also shown along the high
symmetry of directions where this theory is applicable:
The LM resonance is indicated by z, the TM+ by a +"
sign, and the TM —by a "-".[For Ge(4:2), there are al-
ready two TM+ (TM -) resonances of comparable inten-
sity, and the fields of both are shomi].
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differing greatly in intensity. For the most part,
the lowest-lying mode is predominantly LM, with
the inost intense absorption in this branch (along
the symmetry directions it is purely LM). The
highest-field mode is predominantly TM-, and
the intermediate mode TM+.

The complex angle dependence can approximately
be understood from the simple considerations of
Sec. VC. The solid lines in Fig. 8(a) show the
Rayleigh-limit resonances for Ge(1:2) (a =1 pm).
Along with them are plotted the results expected
from the previous section: the dashed lines rep-
resent cyclotron resonance fields for carriers
with effective masses 2m, (curve 1), 2m~ (curve
2), and 2m„(curve 8). While there is much evi-
dence of interaction between the different re-
sonances, the three dashed curves give a qualita-
tive picture of the real angle dependence. As ex-
pected, the TM- mode is similar to m~, the TM
+ to m„and the LM to m„.

At higher fields, the EMT predicts an angle
dependence ~ xIM =v'm, +m„. This angle depen-
dence is plotted in Fig. 8(b), along with the angle
dependence found from the approximate theory of
Sec. IV, for a drop with 120 p, m radius. %bile
the "LM" resonance has an angle dependence

a = 200pm

160

120

.20

similar to vM, the "TM-" mode has a much
stronger variation with angle —it is quite similar
to the cyclotron resonance of the electrons [curve
1 of Fig. 8(a)].

E, Size4ependent resonances: Electric dipole

The electric dipole modes form an interesting
comparison. In the EMT these modes are weaker
than the magnetic dipole by a factor s'. (The ap-
proximate theory of Sec. IV predicts no electric-
dipole size resonances. )

This is confirmed by the results of the exact
calculation. These results are displayed in Figs.
9-13, which correspond to Figs. 2-6 for the mag-
netic modes. The dotted lines show the results
of the EMT (there are no LE resonances in the
EMT). Even for the largest drops, the reson-
ances are weak compared to the magnetic dipole
resonances and fall off faster with drop size as a
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FIG, 8. Angle dependence of the dimensional reso-
nances in Ge(1:2). Top: Hayleigh limit (a =1 pm). In
addition to the calculations of the approximate theory
(solid lines), the results of the elementary considerations
of Sec. V C are presented as dashed lines. Curve 1 re-

presents cyclotron resonance for a particle with mass
2 m~; curve 2 is for mass 2m', curve 3 for mass 2m„.
Bottom: Large drop case (a =120 pm). The dashed
curve is proportional to &m, +~q, as explained in the
text.
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FIG. 9. Electric-dipole absorption for Ge(1:2):
power absorbed versus field for several drop sizes.
All the spectra are drawn to a common scale; for easy
comparison with Fig, 2, it is assumed that )E& ) here
has the same value as (B& ) in Fig. 2.
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sonant field does change weakly with a, this is a
small effect, and the origin of these resonances
can be understood from a simple Rayleigh-limit
theory'3' of plasma- shifted cyclotron resonance.
For EHQ in unstressed Ge, these resonances have
already been discussed by several authors'~'3+
but a brief description is included here for com-
pleteness. The net field inside the sphere is the
sum df the external field plus a depolarization
field
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This is the plasma-shifted cyclotron resonance.
For w~- 0, the ordinary cyclotron resonance
co =+ oo, is recovered. If w~» ~, only the plasma-
shifted resonance rg, =+ a~a/cu is observed.

If there are several types of carriers, it is
possible that not all the resonance lines will be
shifted to the plasma frequency. Thus when

E,ff =E —L' P,
= Xo Eeff +ocr, (81)

where L is a depolarization tensor (L=-', s I for a
sphere), and )(, is the background susceptibility
in the drop: cz =1+4@'yo. If E,« is used in Eq. (8),
the resistivity tensor becomes

p„, =[p+i(T+)tL) ' L]/to=-(g, „) ', (82)

while the absorbed power is P=~E g,« 'E. If g
is written in the form (Al) (in Appendix A), this
amounts to replacing M, and M, by M,

'" =M,
-&a~a/to', where G~a=[L/(I+X+)jne'. For a single
scalar mass particle M, =m, and the longitudinal
resonance condition is &o' =+~a/m = a~a. For the
transverse case M, = m(1 —to,'/to'), while I
= —(&o/(o, )m(i —(o,'/(o'). Diagonalizing o „, , the
resonance condition is found to be M, '~M, '
= (arp/(o)-', or

I + a), /(u = (ar, /(0)'. (83)
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FIG. 13. Electric-dipole absorption for EHD in Ge:
resonant field vs drop radius. Top: Ge(4:2), $II (100);
center: Ge(4:2), BII $11).Bottom: Ge(1:1), P5II (111).
Only the most intense resonances, corresyomHng to the
labeled resonances of Fig. 9, are shown.
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there are two holes, only one resonance is plas-
ma shifted to high fields while the other, although
shifted from its low-density cyclotron field, re-
mains at a low field. " Similarly, in Ge(4:2), the
presence of several ellipsoidal conduction-band
minima leads to a number of resonances which
are not plasma shifted. For EHD in Ge,

' these
resonances can be found by using the appropriate
o in the above theory. For Ge(4:2), the angle de-
pendence of these resonances is shown in Fig. 14
(calculated from the approximate theory of Sec.
IV). All of the resonances are due to the multiple
electron valleys, except the one at 400 G, which
is due to the two-hole bands. In Ge(1:2), this is
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the only resonance which appears. For Ge(1:1),
there is only one electron valley and one hole band
populated, and consequently none of these "dielec-
tric anomaly" resonances are observed. For an
arbitrary angle, these resonances generally occur
simultaneously in all three modes, I, T+, and for
magnetic- as well as electric-dipole absorption.
Indeed the magnetic absorption is generally more
intense than the electric.

In Figs. 9(b) and 9(c), the low-field tail of the
plasma-shifted cyclotron resonance can be ob-
served for small g. These resonances will be
discussed in greater detail in a separate paper.

VI. TRANSITION FROM ALFVEN TO HELICON WAVES

Helicon and Alfven waves are bvo limiting ex-
tremes of the kinds of waves which can be ex-
pected in a material with two types of carriers.
In Alfven waves, both types of carriers have a
comparable mobility, and the number of carriers
of each type are equal. If the conductivity of one
species decreases relative to the other, the pro-
pagating electromagnetic waves of the system
gradually change from Alfven-like to heliconlike
behavior. The present theory of electromagnetic
absorption by a sphere offers a convenient means
of studying this transition.

For simplicity, the material parameters will
be chosen similar to the EHD in Ge, except that
the carriers will be assumed to have scalar
masses: the initial Alfven state is taken to have

12mo, ~~=0.Socio, ~, =~~ =5X10"cm
(dT =~7„=100. The dimensional resonances of
the system are analyzed using the approximate
theory of Sec. IV.

The transition to the helicon state can occur in

any of three essentially different ways. Either

the mass of one particle can become very large,
or its concentration quite small, or its scattering
time very short. All three of these cases lead to
the same final state. If the holes are eliminated,
then the final state has dimensional resonances
only in the TM+ case. These resonances ar' e
typically heliconlike: the resonant field increases
as a', and the linewidth of the resonance is inde-
pendent of magnetic field.

The manner in which the TM- and LM resonan-
ces disappear varies greatly in the three cases.
In each case, however, both resonances change
qualitatively in the same manner, with the TM-
resonance disappearing sooner.

— Figure 15 shows how the resonances change as
the hole mass is increased. The resonant field
is plotted versus hole mass in Fig. 15(a), for a
drop with a =1 p, m (the Rayleigh-limit spectrum).
For large enough m„, the TM- resonance occurs
slightly above the hole cyclotron-resonance field
(not at twice this field, as suggested by the dis-
cussion of Sec. VC), and the resonant field shifts
linearly with m„. The LM resonance shifts ap-
proximately like m„' —again quite a different
result from the considerations of Sec. VC—so
that, for large enough m„, it is also shifted to un-
observably high fields. A typical intermediate
situation is shown in Figs. 15(b) and 15(c) (m„
=20m, ). For low fields, the TM+ resonance is
heliconlike, shifting field as a' (the dashed line
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FIG. 14. Angular dependence of the low field, approxi-
mately size-independent resonances, Ge(4:2). The an-
gles are defined as in Figs. 7 and 8, but, because of the
symmetry in Ge(4:2), only half of the spectrum needs to
be presented. These resonances occur in both the elec-
tric- and magnetic-dipole absorption, at nearly the same
fields.

FIG. 15. Transition from Alfven to helicon resonances
by increasing the hole mass. (a) Resonant field vs mI, for
Rayleigh limit resonances (a =1 pm). (b) Resonant fields
vs drop radius for mI, =20m, . Dashed curve shows
the TM+ resonance in the helicon limit. (c) Linewidth
vs magnetic field for the TM+ resonance, m&=20m, .
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in Fig. 15(b) is the helicon limit: m„- ~), while
the linewidth [Fig. 15(c)] is independent of field.
Once the resonant field approaches the hole cyclo-
tron-resonance field, however, Alfven-like be-
havior is observed: B~a; 4B~B.

If instead, the hole density n„ is reduced, while

m„ is constant, quite different resonances are
observed. Again the TM+ resonance gradually
shifts to the helicon limit, but now the TM- and
LM resonances decrease greatly in intensity and

gradually become size-independent resonances
occurring at the cyclotron field. Figure 16 il-
lustrates an intermediate state n„=-,'n, .

Finally, if 7.„decreases, the resonances greatly
broaden out, and the TM- and LM resonances
are lost as their peak intensity goes to zero The.

resonances also shift to higher fields, but for
&y, »1, this effect is small. The TM- reson-
ance essentially vanishes as soon as ww„& 1, but
a weak broad LM resonance can still be observed
for co7.~ =0.1. At first, the TM+ resonance line-
width increases, as illustrated in Fig. 17, but
the linewidth starts to decrease again as soon as
+v~& 1, and for small enough v.~, the linewidth
depends only on z, . For wz~ ~0.1, the TM+ re-
sonant field shif ts approximately like a', but only
for aov„~ 10 is the linewidth approximately field
independent.
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APPENDIX A: EFFECTIVE MASSES AND CONDUCTIVITY
TENSOR IN Ge

Conduction band

The conduction band in Qe has four equivalent
minima, located at the L point of the Brillouin
zone (intersection of (111) direction with zone
boundary). "'" In each minimum ("valley" ), the
carrier mass is anisotropic, having one value
along its respective (111)axis, m, =1.58m„and
a much lower value perpendicular to that axis,
m, =0.082m„where mo is the free-electron mass.
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FIG. 16. Transition from Alfven to helicon resonances
by decreasing the hole concentration. Plot shows reso-

1
nant fieMs vs drop radius for nI, = a n, .

FIG. 17. Transition from Alfven to helicon resonances
by increasing the hole scattering rate. Plot shows line-
width of TM+ resonance as a function of ~7'It, for a
=20 pm.
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0, =[r,/(I —i~T,)p8 p,
where oo =He'r, and for B

~ ~
(100),

(A1)

M-, ' =m, m, /(m', m, +m, V',), .

M ,'=-m-, p, /(m', m, +m, p',), .

(A2a)

(A2b)

M, '= (m, m, + p,)/(m', m, +m2p2). {A2c)

Here Sm, =m&+2m'~ Smm=2m~+mi~ 44= —I4&eoI ~ /
(1 —i~r,), snd &u,o

= eB/c. For B )((111),

M, ' = (pn, m, /D) (m', m, + p*, [-,'(2m, +m, )]), (ASa}

M, '= -(g,m, /D)Q', m, + p2[ ,'(2m, +—m,)]}, (ASb)

M, ' =[(m2+ p, ',)/D]+, m,m, + p, ',[ (2m, +m, )]1,

For a magnetic field along any crystalline direc-
tion, the conductivity tensor of electrons in any
one valley can be found from Eq. (10). In an EHD
in unstrained Ge, all four valleys are equally
populated, and the net conductivity tensor is the
sum of the four tensors associated with the in-
dividual valleys. This procedure is carried out in
detail, e.g., in Hefs. 37 and 39. If the magnetic
field is along an arbitrary crystalline direction,
all nine components of the conductivity tensor will,
in general, be different from zero, and the exact
results found in Sec. III do not apply. However,
if the field is along an axis of at least threefold
symmetry, the conductivity tensor will have no
components linking longitudinal and transverse
directions. In this case e can be written in the
form of Eq. (11), and the calculations of Sec. III
follow. For an EHD in Qe, the threefold and four-
fold crystal axes lie along (111)and (100) direc-
tions. The o, of Kq. (11) can explicitly be written

(A5c)

Note that here m, and ns, are completely decoupled,
and M, ' is independent of the magnetic field. In
the previous cases M, goes to a constant as B be-
comes infinite, but there is a longitudinal magneto-
resistance (i.e., M~ is field dependent).

The above analysis has assumed an energy- and
magnetic-field-independent relaxation time. The
general theory is by no means limited to such
simple cases: the conductivity tensor may be de-
rived from a. detailed kinetic theory. This will
in general complicate the form of the elements
p&&, but will not usually affect the symmetry of
a —that is, whether or not it can be written in the
form, Eq. (11). If o' can be written in this form
the analysis of Sec. III can be ca.rried out.

In the EHL in Ge, the collision processes are
dominated by electron-hole collisions, with 7
-6& 10 "sec at B=O. In a large magnetic
field, there can be structure in & due to the Shub-
nikov-de Haas effect. This has been observed in
other materials as an approximately sinusoidal
(in I/8) modulat jon. superimposed on the Alfvdn
resonances. 4'~ A large magnetic field may di-
rectly affect the collision rate: when the cyclotron
radius becomes smaller than the screening length,
the effective scattering cross section may de-
crease, enhancing the collision lifetime. ~ These
effects will not be further considered further in
the present paper, and a constant relaxation rate
will be assumed. These modifications should, how-
ever, be included when the theory is compared to
experiment.

Valence bands

D =m, (m', + p', }Im', m, + p2[-,'(2m, +m, )]). (A4)

Under a large uniaxial stress along a (111) di-
rection, the electron ellipsoids are split in en-
ergy, with the ellipsoid a,ssociated with the strain
direction being lowered in energy with respect
to the other ellipsoids. It has been possible to
produce large masses of EHL in strained Qe, for
which only this one valley is occupied, "'6"and
size-dependent Alfvdn resonances have been ob-
served in the microwave absorption spectrum. "0
For this situation the conductivity tensor reduces
to that of a single valley. It can be written in the
simpler form of Eq. (11), only if the field is
parallel to the stress axis. In this case, B ~~(111),
Ge(1:2) or Ge(1:1),

The valence bands in Ge have a doubly degenerate
maximum at IT: =0 in the Brillouin zone (ignoring
spin). The degeneracy, and the resultant band

coupling, greatly complicate the analysis of the
conductivity tensor, particularly in a magnetic
field." As with the conduction band, these com-
plications are ignored in this paper, and the holes
are treated in a semiclassical approximation as
two independent particles, one with heavy mass
and one light. The band coupling is included only
in that the relaxation time is taken to be the same
for both types of holes. "

In unstressed Ge, the hole masses are treated
as scalars, but the values of the masses depend
on the field direction. ' Thus, for hea, vy holes
the conductivity tensor can always be written in
the form, Eq. (11},with

M '=m, /(m', +p')

M2'=-p, /(m', + p, ',),
(A5a)

(A5b) M 1hh mhh/( hh I &) t {A6a)
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M2»»-- p»/(m»»+ 4») ~ (A6b)

(A6c)3hh hh &

with g„=+
~

u&,0 ~ v„/(1 —i&sr») S. imilar equations
hold for the light, holes, with m» -m» . Note that
because of the opposite sign of electronic charge,
p,, and p,„have different signs.

Because of the resonant denominators in Eq.
(A6), the masses. are taken to be the cyclotron
masses for that direction of magnetic field. The
cyclotron masses are in turn found by numerical
integration over a constant energy surface, follow-
ing an approximate technique due to Shockley"
[see Eq. (l4) of Ref. I]:

This appendix is essentially a catalog of such
transformations, including results found in Refs.
7 and 19. The derivations of these formulas are
tedious but straightforward. A good reference on
these functions is the book of Edmonds. 4'

These relations are based on the following con-
ventional definition of ordinary spherical har-
monicss:

where PP(x) are the associated Legendre poly-
nomia, ls

k2 kid@
2v BE/&kq

(A7) (1 g2) m /2 d I+ m

&7(&)= 2il~ d i+ (& 1) .

where (z, p, P) form a cylindrica1 coordinate sys-
tem with the field parallel to ~. The mass pa-
rameters of Ref. 1 are chosen as A =13.30, B
=8.92, and C=11.54, to agree with the experi-
mentally observed cyclotron resonances. ~ That
Eq. (A6} is only approximate can be clearly seen
in the high-stress limit. Then the heavy-hole
mass is ellipsoidal with m, =0.04m„m& =0.13mo,
and the conductivity tensor should have the same
form as (A5). In the present approximation, M,
and M, are treated correctly, but M, =m&, not m$
as it should. Again, the present form is adequate
for exploring the structure expected for Alfvdn
resonances in a sphere, but a more detailed theory
is necessary for comparing the theory to experi-
ment.

The ratio of heavy to light hales, N»/N, „, is
found by numerical integration over the two bands,
assumiag both have the same Fermi level. In
zero stress it is simply equal to (m, »/m„, „)' '
=23.6, where m„hh =0.346rizo mp ~h

=0.042mo are
the density-of-states masses of the two bands.

For a weak (111) stress, as in Ge(1:2), the hole
masses are complicated functions of angle and
stress. " In the present paper, it wiQ be assumed
that, for Ge(1:2), the splitting of the valence band
is small. In particular, the hole masses and
heavy-to-light-hole density ratio will be taken to
be the same a.s in unstressed Ge.

APPENDIX B: VECTOR Sl"HERICAL HARMONICS

The vector spherical harmonics, Eqs. (28)-(80),
form a complete set of vector functions over the
surface of a sphere. As such, if we perform some
vector operation on one of them (V&& Y, 2z Y, etc.},
the result can be expressed in terms of other vec-
tor spherical harmonics. This is why they are
valuabl: vector and differential equations can be
transformed into matrix equations.

In most derivatibns, the following form of the
vector spherical harmonics is more convenient
than the original definition:

((l +m)(l +m +1)
I, 2(l+1)(2l+1)

X/2

~

(l m+1}(l-+m +1))~
(l +1)(2l +1) )

(l —m)(l —m +1)&~

2(l +1)(2l +1)

(l +m )(l —m + 1)
t~

2l(l +1) )

ymp(l(l+1))'"

i

(I -m)(l +m + 1)
i2l(l + 1)
i/2

((l —m)(l —m +1)l(
2l(2l + 1) )

(l-m)(l+m)
il(2l +1)

(l +m)(l +m + 1}&~'
'

2l(2l + 1) j

where the basis vectors e; are defined in Eq. (44).
These functions are orthonormal

f
2F 1r

est~nrY' n+'&' 'Yi+ q, t =, 6&g ~~m ~qn' ~

(B4)

The relations we will need are the following:
Differential: Let R(r) be any function of ~

=
~
r ( only. Then
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V (RYPi) =0i

/+1 '
1 d

(B6)

~E(E -m + 1)(l +m +1)(l' —m') l(

l(l +1)(2l + l)z )I l+y, l

~&(E
—m)(i+m+1)(P —m') ' '-

2P(l + 1)(2E+1)

I -m2 2

l(2l +1) (B8c)

1/2
l+2 mVX (RY. . .) =z

2E 1 &„d (z' R)Y&s ~

./E+I i 1
(2E+ I&

z /z

(B6)

& 'Yg, g =Op

2l + I&
(B9)

Tensorial:

~" mz & Yr+i, r l+1Yi+y, s

'E(E—E m +1)(l +m +1)
(l + 1)'(2l + 1)

l(l -m +1)(l +m +1))
(l +1)'(2l +1)

rn

l(l +1)

X/2
1+1

X Y l l 1 i
1

Y

rx yP, =i I [ YP g„+
X/2

(E+I i
+l(2E +1

Z/2
l

&~ Yi, r+g=~
2E ~1 Yr, ~ ~

(B10}

(l + 1)(l -m)(E +m)
P(2l +1) l-y, l v

(l+1)(l -m)(l +m)&(' '- „
l-l, t P(2E + I) jI l, l

Finally, we can find the action of an arbitrary
tensor element on Y(&;e& Y). If we rewrite Eq.
(BS) as

(BV) Yl+ J, l ~ ei ~ l ~l, m, g, j p (B11)

(I-nz +1}(l+ns +1)-
~+z (l y])(2E y]) +z

(l-m +1)(i+m+1) ' '-
l(l +1)'(2l +1)

X/2
(l -m +l)(l +m +1)(l'-m')

l(l + 1)(2l + 1)' 1

(B8a)

(l —m + 1)(l +m + 1) 'i' E'

l(l 1)'(2E 1) j

this can be inverted to give

e'c I ~ x r+y, s~~,m+c, J~, i ~ (B12)

~~m+)-y
& 2+g, l t,m, g, g~ t,m+i-J, V, k I l+Ej, l ~

IE

These two equations can then be combined to yield

PPg Ym
l(l +1)

( Ez m2 )1/2

i&P(E + 1)(2l + 1)) (B81)

The above relations can be rewritten in terms
of the A&, B&, C&. The most difficult is perhaps
Eq. (B8), which results in
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m' - m ((/-m+1)(i+m+1)() - ((/-m)(l+m) &' '-
l(l +1) ' [l(l +1)]' ( (2l +1)(2l+3) J

"' ((2/+1)(2l -1))
(/- m+1)(/+ m+1)(/+2)&~ - (l+m)(l -m)(l -1) '.'- „

(l +1)(2l +1)(2l +3) ) "' l(2l +1)(2l —1)

(1,'» AIi I+~2il B)I + 12ii Ci ),
s~

( — + )( + + )
i

„(((+1)(P™)
Il +1 (l +2)(2l +1)(2l +3) )I

"' l i([(2/)2 —1](/ —1))

1
~

l(l +m + 1)(l-m + 1)(l +m +2)(l -m +2)
2/ +3 ( (2/+1)(l +1)(l +2)(2/ +5)

1 (l+1)(P-m')(l +m —1)(l -m —1)
2/ —1 l(2l + l)(l —1)(2l - 3)

l2 -nz'
+2( Il( ( I 2( I ((A, +4(((+IB,)+

2( ) [( +I)IA", -&t( +I1)B",])

(B14a)

(i i'll Ai +12'll Bi + i'2'll C7) ~

—m (i+m+1)(l-m+1) l~'
'- „m ( l'-m'

(2l +1)(l +2)(2l+3) )(
'"' ~j ~((2/+1)(l -1)(2l —1))

1/2
((/+ni +1)(l -m +1)(™+2)(l +m +2) l

(2l +3)'(2l +1)(l +2)(2l + 5)

(l +m —1)(l —m —1}(l'—m')
(2l —1)'(2l + 1)(l —1}(2l—3)

) y(/+1)]' ~Amp(/+1)Bm()+ (/Bml- [/(l +1)]

(1 ill' Ai'+ 1 2ii'Bi'+ ~2(i'Ci') ~ (B14c)

APPENDIX C: DETAILS OF EXACT SOLUTION (SECTION III) and

(Ti = 0'i —2(06g/47i . (C 3d)

E = j5' J
px i p~r 0

(C1)

&P2 Pl

0 0 p,'
(C2)

(a) The relation J=(o i(de~/4-w) E can be inver-
ted:

i/0 = 41K'L(d/p&C

~ = (p.' p,')/p,', —

W= -iP2/P, '=2O2/O, '.

(C5a)

(C 5b)

(C5c)

By substituting Eq. (C1) into Eq. (7), we find

Vx [)7x(J+yM J+ Wz x J)]=q,2J, (C4)

where

where

P2 C2/(+1 C2) I

P,' = (02 -2(ds~/4li) ',

(C 3a)

(C 3b)

(C3c)

(b) The eigenvalue equation: By substituting
J, [Eq. (32)] into Eq. (C4), and utilizing the rela-
tions of Appendix 8, this differential equation can
be turned into a linear equation relating the various
A, , C,

m'

Al + cl Cl )+~~ [( lm~ll l' + ctm~lll' )~i~' ( l ~2l l' im~lis' ) l' ]le

~

~

m 1 IHIQII— iii'/(/ 1,(a, Ai"+c, Cl)+~Ml, , (a, Cl", -c,+l, ~
=(/', ~(a,+i+c,„Cl"). (C6)



4284 R. S. MARKIE%ICZ

Here the V's are defined in E(l. (814),
((+ (}().-1)((— I)( +(m))'~*

r, r-r r-l, r 12(21 1)(2l+ 1)

and Mr r
=0 if l'& l +1. Since the Ar~ s and

are mutually orthogonal, the coefficient of each
must vanish separately in E(l. (C6). By rewritting

of order ~2n (electric) or 2n —1 (magnetic). The
most general J'"' is chosen which is divergenceless
and satisfies 0 J=O at z=a. 'This will result in
the same expansion for J as given in Ref. 19, but
the determination of the coefficients will be more
complicated, since the conductivity tensor is con-
sidered to be completely arbitrary. Only the co-
efficients needed to evaluate the dipole moments to
second order will be explicitly evaluated.

rl' = (io/(1 —&(), (C8)

E(i. (C6) is transformed into the eigenvalue e(lua-
tions

Tj'1 Tel T11y(ar '"'r t, r + ar. a, "r,r.2, r + at -a. "r, r-2,

Tj'3 TI 3+et+&, ))(" r, t+r, t+et r, m" r, -t r, t)-

-iW{[m/1(1+1)]a,„-c„,~;„„

Inside:

J(o& Q gteym

Electric dipole

Zeroorder solution

-c, , ~r, r] = -war, (CQ)

3 1 1y(cr~V r, r+a„, V, , r, +ar , V- , 'r , )-
-iW{[m/l(l+ 1)]e, —a„, ~"„,, ,

-a, , ~t, r)= -&(ct„. (C10)

These equations are solved numerically. Once

J, is known, the electric and magnetic fields can
readily be found, using E(ls. (2d) and (C1). The
magnetic field may be expressed as

E (0)
p gny~

m, n

Outside:

E('&-$4&r P 0* ~ E Y~ +f — Y~

J =(-i(&e&(/4 r)Er' '.
From the continuity conditions at the sphere sur-
face, it can be shown that

-4ni ~
Bq (ctm l at))(Ct ) ~

gC

while the electric field may be expressed as

(C11)
n 3&~L, -g

Bffi~g~ = —, e m
~ Eiv'4g

fr =Q (6 —38 r„)&('2m 8„* E, . (D2)

E, =(1 —A.)p,'J, + +fr„Br",

where the f,'„are defined through

(C12) Here 5 = 1 if m = n, = 0 otherwise, while B „ is
defined by E(l. (72).

f,„+(l+ 1)p,'a, „(1—X)
v'l(l+ 1)

(C13)
Inside:

First order

', =iW(m ar -(2l+ 1)Mr r rcr.pI I l l fg '" '")
l 2yr lgl l lytn 2fr 2yr r

3 1

(l' —m')(l+ 1)
l(2l —1) (C14)

J(t& g [dma2y))) + dm&&(ym + ~5 y))) )

+d"t'Y +d, r'Y" ]

F(r& g(l any()( +1))( ay~ + l &2Y

6r = (2l+ 1))('(1+1)/l . (C16)
where

+l x2Y~ +l~r'Y~ )3 Qt2 4 3~2

APPENDIX D: DERIVATION OF THE APPROXIMATE

THEORY [Eqs. (71, AND (75)j

This Appendix closely follows the analysis of
Ford, Furdyna, and sterner. " For each order of
perturbation n, J'"' is expanded in terms of the
vector spherical harmonics, the expansion coef-
ficients being polynomials in the sphere radius

5Z ~() 0& t ~p Q pm)rdl r
n n

and th8 other l are the most general which can be
formed by operating p on the Y vectors. These
coefficients can be determined from V x (v x E"')
= (4&rim/c) J"'. The only combination needed is

4/r" + Bv 2 l,"= -(4rri&u/e')gt" .
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Outside:

E(1) g h$ (
AN +hNl~

~

YNl
I (g) li2 3 (~) 3i4

Matching conditions at the boundary gives two
equations involving h, :

Sa,",= -5a,",=(2w&uK„/c')4 'w-.

By premuitiplying J'" by j5, it can be shown that

(D'7)

Here a,"(r}=a,",a'r+ aiNr', etc. Now, using VX Ei"
= (i&a/c)B'", it is found that

~= W2(l"+1 )+l =
~

' + —d"
~
.

aN . 0 i N i(gw (~2 2 i)

Therefore,

(D4)
va„=p [D„„bi"—O'„„N l)—,

N b, ],

~aNN= 2 [D~bN+D~w'~Nba ] ~

(D8a)

(D8b)

~h" 2M2 „-4wiv
NNl a2 2 5 1 5~2c2 gl (D5)

Finally, as in Ref. 18, it can be shown that the
dipole moment is given by Eq. (69), with fi, =f,
+ h, , which is equivalent to Eqs. (70) and (Vla).

Here D' is a matrix linearly related to the p ma-
trix, but its explicit form is unimportant. ~

At this point, there is enough information to
evaluate the magnetic dipole moment M, using the
relation

Magnetic dipole
1

M= — rx Jdx
2c

Inside:

First order [Here J enters, and not j, since the magnetic
field satisfies Vx B=(4w/c)J; see Ref. 48.] Writ-
ing J=ZGP, .(w)YP, , and using relation (D10) and
the orthogonality of spherical harmonics, we have

J"'=Ex r=-z v'-'n Z rY~
S &a~ N (D6) a

M=- r'dr G,",(r) .
m 0

But to second order, we have shown

(Dlo)

As was originally shown in Ref. 24, K = (iuP/
2c)D ' &„*~ B„with D given by Eq. (V6). Further-
more,

15c

Gi", = iv 'wr-K~-+ be'r+ b,"r',
3

so that

ia' — K b~ 5~
M= —&-w e -i ~w ~+ ~+~ a'

c ' 3 5 5 7

(Dl1)

Second order from Eq. (D8),

Ji2) Q ((bNlawr~ bNI~S)yNl

+ b,"[Mw'Y, ,+ ,'v , r(Vr'--5a-')Y,",]
+ blll~3yNl

bll bll aNI @IN) 8w(0NK
+ —(d +

(D12)

E'"= g [a", (r)Y, ,+ aN~(r)Y,",+ aN"(r)Y,",
+ a, (r)YN", + a, (r)Y,"„+aN(r)Y,",,].

Note that the terms involving the D' matrix can-
cel exactly, and the remaining terms can be re-
formed to give Eq. (75).
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