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We present a theory of the Brillouin scattering of light from long-wavelength acoustical phonons in an
opaque crystal which takes into account the effects associated with a finite skin depth. The theory
incorporates the photoelastic back scattering of the penetrating light, the effect of the thermal elastic strain
induced surface corrugation on the reflected light, as well as the interference between the two scattering
processes. We relate the scattering cross section to the spectral density of the elastic-strain fluctuations in
the materials, which we construct from the relevant classical elastic Green’s ifunctions for a semi-infinite
elastic medium bounded by a stress-free surface. We present representative computed line shapes and
compare the relative strengths of the different contributions to the spectra for various angles of incidence.

I. INTRODUCTION

Any theory of the inelastic scattering of light
from elementary excitations in opaque solids must
take explicit account of the boundary or boundaries
through which the light enters and leaves the solid.
This is due both to the refraction of the light as
it enters and leaves the solid and to its attenua-
tion with increasing distance into the solid.

The experimental observation by Parker ef al.!
of inelastic scattering of light from the optical
vibration modes of long wavelength in the poly-
atomic metals Zn, Mg, Bi, and AuAl, stimulated
further interest, both theoretical and experimen-
tal, in the inelastic scattering of light from opaque
solids. A theory of this effect was presented
shortly after,? and was soon followed by a theory
of the inelastic scattering of light from the long-
wavelength acoustical vibration modes of metals
and opaque semiconductors.® At about the same
time experimental results for the inelastic scat-
tering of light from long-wavelength acoustical
modes in silicon and germanium were presented
by Sandercock,* together with theoretical consid-
erations concerning such scattering processes.
Subsequent theoretical and experimental work on
this problem has been carried out by Dresselhaus
and Pine,’ by Dervisch and Loudon,® and by Dil
and Brody.” Recently, Loudon® has pointed out
that the approximation of the dynamical Green’s
function for a semi-infinite crystal used by Ben-
nett et al.® to simplify the calculation of the scat-
tering cross section led to a distortion of the re-
sulting line shape. In this paper Loudon has fur-
ther studied the scattering at normal incidence
for a crystal slab of finite thickness on the basis
of a Green’s-function approach. In a recent paper
by the present authors® a theory of the inelastic
scattering of light from the long-wavelength
acoustical modes in a semi-infinite elastic me-

dium, assumed to be isotropic, was presented.
This work, like that of Loudon,® is based on the
dynamical Green’s-function tensor for a semi-
infinite, isotropic elastic medium, bounded by a
plane, stress-free surface, which has been de-
termined recently.'® It is not limited to normal
incidence, and no simplifying approximation is
made concerning the Green’s tensor, of the kind
employed earlier by Bennett et al.® in calculations
of line shapes.

All of the work cited above dealing with the in-
elastic scattering of light by long-wavelength
acoustical phonons in opaque solids has invoked
the usual mechanism governing the scattering pro-
cess, namely, the modulation of the dielectric
tensor of the solid by the long-wavelength acousti-
cal vibrational modes, which can be treated as
spatially and temporally varying strains in the
solid, the elasto-optical effect. However, it has
been shown recently by Mishra and Bray'* that
the dominant mechanism involved in the inelastic
scattering of light from acoustoelectrically ampli-
fied long-wavelength transverse bulk acoustical
waves in GaAs and CdS is reflection from the rip-
ples produced on the surface of the solid as the
acoustical wave passes through it.

In the present paper, we present a theory of the
inelastic scattering of light from long-wavelength,
thermal equilibrium, acoustical phonons, in an
opaque solid which incorporates the contributions
to the scattering cross section from scattering via
the elasto-optical effect, reflection by surface
ripples, and the interference between these two
scattering mechanisms. Calculations of the scat-
tering cross section are carried out for varying
angles of incidence and for polarizations of the
incident light parallel and perpendicular to the
plane of incidence, as well as for several scatter-
ing angles, and the relative importance of the two
primary scattering mechanisms is determined as
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a function of these experimental conditions. Be-
cause the scattering is due to long-wavelength
acoustical phonons (and to Rayleigh surface waves
as well), the Fourier transforms with respect to
time of the strain and displacement correlation
functions, and the mixed strain-displacement cor-
relation functions, which enter the expression for
the scattering cross section, can all be expressed
in terms of the dynamical Green’s tensor for a
semi-infinite elastic medium bounded by a planar
stress-free surface. The elements of this tensor
have been obtained recently for an isotropic me-
dium™® and for an hexagonal medium whose basal
plane is parallel to the surface.'*> The scattering
of the electromagnetic radiation is studied in first
Born approximation with the aid of the electro-
magnetic Green’s functions used in our earlier
work? ® and developed further in more recent
work.'® The numerical calculations of the scat-
tering cross section are carried out for aluminum,
with the approximation that it can be treated as
an isotropic elastic medium, and the elements of
the photoelastic tensor required are obtained from
the work of Bennett ef al.®

When the work reported here was nearly com-
pleted, two papers dealing with the theory of the
scattering of light from surface ripples due to
long-wavelength, thermal equilibrium, acoustical
phonons in an opaque solid appeared in print.***®
In the first of these, Dervisch and Loudon'* have
shown that the contribution to the cross section
for scattering from liquid metals arising from the
reflection by surface ripples dominates that from
the conventional elasto-optical effect. In the sec-
ond, Loudon'® reaches the same conclusion for the
scattering from opaque solids generally. In these
two papers the scattering by surface ripples is
treated independently from the scattering by the
elasto-optical effect, but the conclusions reached
are qualitatively and quantitatively in agreement
with those presented here.

II. FORMAL DERIVATION OF THE SCATTERING
EFFICIENCY

We consider the scattering of a plane wave of
electromagnetic radiation incident upon the sur-
face of an opaque medium. We assume the am-
plitude of the electric field inside the medium is
attenuated as we move deeper into the material
such that we may neglect any scattering from the
back surface. Hence it is sufficient to treat the
material, in the absence of any thermal fluctua-
tions, as if it filled the entire half space x;<0,
with its surface in the x;-x, plane.

The scattering geometry we consider is illustra-
ted in Fig. 1. The wave vector of the incident ra-

X2

FIG. 1, Scattering geometry considered in this paper.

diation K, is in the x,-x, plane and makes an angle
6, with the normal to the interface. The angles
0, and ¢, specify the direction of the scattered
wave,

From Maxwell’s equations, we obtain the vector
differential equation governing the electric field,
in the absence of any macroscopic currents flow-
ing in the medium, to be

'v5x["vf><ﬁ(§,t)]=—~clgs?;ﬁ(i,t). (2.1)
The electric displacement vector is given by

Di(z’c,t)=zj: Sat e ®lE,0E &), (2.2)
and we write the dielectric tensor as

€&l 1) = f‘;—:e“i“’“‘t"e”(w %1).  (2.3)

In writing Eq. (2.2) we have assumed a (spatially)
local relationship between D(%,¢) and E(%, /). Due
to atomic displacements in the medium, the bound-
ary defining the interface between the crystal and
vacuum is given by

xs=u3(%,0,1), (2.4)
where U(X,x;, ¢) is the time-dependent elastic dis-
placement at the point X=X, + .85, X;= %%, + %%,
being the component of the position vector parallel
to the surface of the crystal. Consequently, the
dielectric tensor for the vacuum-crystal system
is given by

€;; (WX, 1) =0(x;~ u5(%,0,£))5,,

+0(us(X0, 1) - x)e {5 (wlX, ¢), (2.5)

where €’ (w|X, t) denotes the dielectric tensor
inside the material. We may write

€N wlR, t)= eé”(w)&u +6€(wl%, 1), (2.6a)

where
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(2.6b)

is the complex dielectric function of the medium

€§Mw) =€, (w) +ie,(w)

in the absence of any strain fluctuations, which we

have taken to be isotropic. The modulation
6e ) (w|X, t) arises from the photoelastic coupling
to the elastic fluctuations,
be B (WX, 2) =D By juy (@l (%, 1) . (2.72)
1]
here k; ;,,(w) are the photoelastic coefficients re-

lated to Pockels’ elasto-optical coefficients through
the relation

B @)= Y €0@)D el (2.70)
and u,,;(X, ¢t) are the elastic displacement gra-
dients,

u; (X, t)=0u,(%,t)/0x;. (2.7c)

After some manipulation we may write the dielec-
tric tensor of the vacuum-crystal system Eq. (2.5)
in the form

2

9
jz (‘9"13"1

_5‘~jV2>Ej(§,t)+ - C2 atz

€;; (WX, 1) =€(w]x5)0; ; + 6e P (w|X, £)O(~x,)
+0e B (wlX, t). (2.8a)

Here €,(w|x;) is the dielectric function for the
vacuum-crystal system in the absence of any
fluctuations,

€o(w]x5) =0(x5) + € (W)O(=x35) . (2.8b)
The photoelastic modulation of the dielectric ten-
sor inside the medium 8¢}’ (w|%, ¢) has been de-
fined in Eq. (2.7a). The second modulation,

8e @ (w|X, t), which arises from the presence of
surface corrugation, is given by

6eP (wlE, ¢) =[efF(@lx,¢) - 6;,]UK;t), (2.8¢)
where
URX;t)=0(us(X,0,¢) - x3) = 0(=x,). (2.8d)

With the use of Eqs. (2.3) and (2.8) the differen-
tial equation obeyed by the electric field Eq. (2 1)
may be rewritten as

5 2 Jarf Lealre e, &, )

a ’ .
= at2 _/dt f e i ¢-t[9(~x,)0e & (wlk, ¢ )+8e P (WX, )]E;X,¢). (2.9)

We define a Green’s function G, (X,

X’;t —t') as the solution of

2 ij 0 ” > >
T (55 -~ 0us¥ o K51 =10+ T 2 S [ cqizyeion-ne, & x5 00 1)
B ) c® ot

9X,0Xg

=— 476, 6&-%')o(l "), (2.10)

subject to boundary conditions at the plane x,=0 which ensure the continuity of the appropriate electric

and magnetic field components across it, as well as outgoing wave conditions as x,— —,
With the help of this Green’s function Eq. (2.9) may be transformed into an integral equation,

Z_/dx Sat'6,s&%
t'z-/d"”:/

E(%,t)=EQ(F, t)+ it =t")
emi 04t e (~x5)0e §)(QIXt)

+oeQQIX'E)EK, ¢ ")) (2.11)

where E© (%, ¢) is the solution of the homogeneous
equation and corresponds to the electric field of
the wave specularly reflected from the flat sur-
face in the absence of fluctuations.

We first consider the following integral in-
volving 6e¢ ® in Eq. (2.11),

; S % Go® F 5 - )0 QIR VEE )
Y
fd %'Gop&, X5t =t ) (QIFL) = 65y]

X UR'; 1)E(&',1"). (2.12)
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From the definition of the function U(X’;¢’) in and when u,(X]0,¢) <0,
Eq. (2.8d), we note that when u,(X/0,¢’)>0, ,
U(i';t)={ if u,(%0,7") <x,<0,

V&' 1) = {1 if O<xy<uy(X,0,2'), 0 otherwise. (2.13b)
’ - .
0 otherwise, (2.13a) Thus, we have from Eq. (2.12)

—

Zfd3x'caﬂ(§,§';t —t')6e $QUX, L VEX',17)
By
2 3 i(lo t’) .
- ;fd Oy (R10, ¢ ))f 4G R, K15 £ = 1) [e S5 (RUR'E") = 0.5, B, (R'E )
Y

+ 2 [ arve-u®o,tn f . |G Rt =1 ) [ef(OIR'L) = 05, B E17) . (2,19
By :

ug (x'o'

Since u,(X/0, ¢’), the surface ripple amplitude, is small we retain only terms up to the lowest order in this
amplitude on the right-hand side of Eq. (2.14). We do this by replacing the integrands in the integrals over
%3 by their values at x;=0. In doing so, we take account of the fact that the discontinuity of G, 4 is across
the flat surface, x;=0, while that of the electric field E is across the rippled surface, x,=u,(%,0,#’). Thus
up to terms hnear in us(xuo t'), Eq. (2.14) reduces to

Zfdsx'caﬁ(’ X5t =1")6e ) (QUR'LE,X , ¢")
“les@)-1] 2 S ([0 &0, )G R, K{ 0+ ; £ ~ £ 7)E 4 (R{0~; £7)

+O0(=uy(X(0, )G, X, X[0~; t =t )Eg(X[0+ ;¢ ") Jus(X[0,27). (2.15)

Here 0+ and 0- denote, respectively, whether the limit x,=0 is approached from above or from below.
Using the above result we may write Eq. (2.11) in the form

Zfd le dx, fdt'GaB(’ Rt 1)
dﬂ __’ r_pm - - ”
xaoz J dt” e S s TN )
[ d9
. _/dzx"fdtfdt’ B fesor@)-1]

x( Cus® K041 = 17)5 ,26(u3(x0 £ )E 5(&10-317)

Ef%,t)=EQ®, )+

+G o5 (X, X 0—5t — ') —5 at'2 O (—us(Xj O,t'))EB(if,0+;t”))u,()’({,O, t'). (2.16)
L]
We are interested in obtaining an expression for G op(®, X 0+; ¢ - ¢ )EQD (X1,0~; )
the scattered field in the first Born approxima- ¢
- % —1t = tEL) (X1 0+ 7). .
tion. Thus, we replace the exact field E(Z, #) in Gas (X, X401 - 1)E " (%} 04;17) 2.17)
the integrands on the right-hand side of Eq. (2.16) With the help of Eq. (2.17) and the identity ©(x)
by the solution to the homogeneous equation, +0(~x)=1, the expression for the scattered field
EOx, ). in the first Born approximation becomes
The Green’s function G, (X,%’; ¢ - ') defined by (s) ) (
EPRE, t)= %,t)+E@ (% 2.18
Eq. (2.10) has been evaluated by Maradudin and & & D=ESX ) +ESR, 1), ( )
Mills.® From their results, we observe that where

J

0 ’ ”n
Y. fdzx{,f dxj fdt’GaB(i,i';t—t t,z /dt" o5 et pell

x (@|%'t)EV &, t7), (2.192)

(1) -
ED® 0=
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and

E® %, ¢t)=

4nc?

E™ is the contribution to the scattered field due
to photoelastic scattering and E‘® is the contribu-
tion due to scattering from surface corrugations.
In obtaining the result for the scattered electric
field given by Eqs. (2.18) and (2.19), in particular
in deriving Eq. (2.19b) for the amplitude of the
field scattered by the surface corrugations, we
have, in fact, used the Green’s-function approach
developed by Agarwal®® for the study of the scat-
tering of electromagnetic radiation from a rough
surface. In the present case the displacement
amplitude u4(X,0, ¢) plays the same role as the sur-
face roughness profile function in Agarwal’s
formulation of the rough surface problem. The
scattered field E¥(X, ) due to the photoelastic ef-
fect is a first-order field (in the deformation
parameters), is independent of the surface cor-
rugation, and satisfies the Maxwell boundary con-
ditions across the plane surface x;=0. As a re-
sult, the amount by which it fails to satisfy the
boundary conditions at the corrugated surface is
of at least second order, involving products of
the deformation parameters and the amplitude of
the surface corrugation. The zero-order field
E(9(%,¢) and the scattered field E® (X, ¢) due to
scattering from the corrugated surface then com-
bine to satisfy the boundary conditions at the cor-
rugated surface to first order in u4(X,0, ) just as
in Agarwal’s theory. For additional references

which bear on the equivalence of the result obtained
J

1 ¢ 92 aQ - rogn
> [ QG op &, %) 0+; 8 =) gz [t [ S [ef0@) = 1] et
B

Xuy(%/,0, ¢t )EQ (%03 ¢") . (2.190)

I

by Agarwal with those obtained by other ap-
proaches; the reader is directed to the papers by
Kroger and Kretschmann,'” Marvin et al.,'® Mills,*
and Elson.?® From Ref. 13 we have the expression
for E(9(%, t) for x,<0:

+(0) = (1) S .
EO (X, t) =gty "Xy miwotpiky ¥ FOV(K(?)) | (2.20a)

where

E"(ao)(E(o)).:z FZ(E(O))E()\I) . (2.20b)
x

Here K@ =2{0%, +{?%, is the wave vector of the
incident light in the vacuum, w, the frequency of
the incident, light and

kS = ~[e5 (wodwh/c* = B{V2] M2, Im(R{})) <0,
(2.21)

is the x, component of the incident wave vector
inside the medium. E{? is the amplitude of the
incident electric field of polarization X (parallel
or perpendicular to the plane of incidence) and

Zk(o)

TLER) = T %y s (2.22a)

3
kA ~ B0,
kg‘:)l = €5 (wo)ks”
Substituting Eq. (2.20a) into Egs. (2.19a) and (2.19b),

and performing the integration over ¢”, we get

TE)=2 (2.22b)

- 1 0 O TR B
E(&l)(x, t)= 47’_02 E fdzx'"f-w dxéfdtlcaa(i,i';t—t’) e'k I X||+lh3;’ 3 E‘F“
By

x [e'“"o" Gé(slg(woli't')]i(yo)(E(o)) ;

and

E@ (X, 1) = 1

% [e-i wot'us(gﬁ 0, t')] E'“(BO)(E(O)) .

. . =(0) -, 82
4nc® 2 fdzx’!t/dt'Gaﬂ(x’x1|0+;t‘t')e‘k" ""[ef.,<)(wo)—l]—-——-
s

(2.23a) .

atlZ
(2.23b)

In these equations, we observe that due to the smallness of the acoustical-phonon frequencies compared
to w,, the frequency of the incident light, we may ignore the time derivatives of 65(517) (wo|X"¢’) and
u4(%,0, ') compared to the derivatives of ¢~“**'. Thus, we have

EPE,1)=

-wh 2 ° SO, @,
P2 Y [ arf  ang [ arGa@Ese-t) T R i
By =

x el (wol&'#)EL (K®)

(2.24a)
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and

»>(0) »

—2[() ~1 , , , ~ .
P, 0= el otl 3 fan [ a6, @, 51051-0) T Themtt (g, EPED).
B }

(2.24b)

The translation invariance of the system in the x, - x, plane allows a partial Fourier transformation of
the Green’s functions,

> = d?k
Gae(x,x';t—t')= (277 1 f daQ etk" (x" xﬁ) -iQ(t-2’ )GaB(kHQ xsxa) (225)
One has®® for x,>0
éaB(EIIQ;x30+ (4nc®/Q%)et s*s g (1) (&, ) _ (2.26a)
with '
gk, Q)= Z S (K)S;; (K, gy Ky Ql+) (2.26b)
kl
—k§Dky 0 —k kye ()
- _ i 2° B —e(@)k
gk, Q|+) = 2 (@), 0 & w0k, 0 . (2.26¢)
Ry kG 0 (@)}

Here S;;(K,) is the matrix which performs a rota- () 2 1/2 )
tion in the x,-x, plane to align k, along the x, ks 6(9’) -kij o Im@E7)<0. (2.280)
direction,
B, kB, O For x,>0 and x4<0, the region of interest for
. (1) !
S,(&,) = -;— -k, By O ). (2.21)  Eo &1, we have
i
0 0 &k, i
- - T . - 2TC $Rox. !l(”x’
The wave-vector components k, and k¥ are de- Cap(®yQ;x35) = oz elts'se!™s gk, Q) (2.292)
fined by
2 .
Q% -k2)2, ?—>kﬁﬁ (2.28a) with
ky= . .
A 2\ @ &y, @)=Y S,,&,)s,&,) 2, &, Q 2.29b
z<k?]__c_2_> , cz <K, (2.28b) 8i5\Ky _%: wi(Ky) 15(Ky) g (ky Q) ( )
k5" 0 —kykq
- i Q° kP - @)k
5 (E.Q)= 3 R L2 .
2a (&, Q) T @)k, 0 Z TRk, 0 (2.29¢)
kY 0 #
Using Egs. (2.25)-(2.29), we get )
(D)(F. ) = —0? 2, , at k,, a IBEE 1 2o .3
EY &, 1) —woz fd x”f_ dx3fdt @Y e x-iQt o iy =k ) exy

i) ’ >
x e RSNy =t wpm )t Zon &y, 2)56 (oK ENEL RD), (2.30a)
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E® X, t)= —wi[e{(wo) 1]

o

><e"“<n Dk X il wgm e g E, Q)E(")(E(“))us(?c’o .

If, recalling Eq. (2.7), we set

ho‘l“/ (E" ’Q)E Z gaﬂ(EII ’Q)kﬂyuu (wo)EAgyO)(E(O)) ’
By

in Eq. (2.30a) we obtain

Invoking Maxwell’s equations, we may obtain the
magnetic field of the scattered wave, H(®(%,¢) in
terms of the electric field E‘)(, ¢) defined by Egs.
(2.18), (2.30b), and (2.31b). The magnetic field
may also be written in the form

HO®, 1) =HYE,)+ HD (R, 1), (2.32)

where the first term arises from the photoelas- .

tic scattering, while the second term arises from
the surface-ripple mechanism of scattering. The
time-averaged rate of energy flow in the scat-

_/d x,,fdt’ (2”

.- 1
dﬂ gk T-iat =

Xho(pu (E“ ’ Q)u“y (il’ tl) .

dae 1
2r o

ikex-iQt

(2.30b)

(2.31a)

S KD <k ) X i)+ ey =1 (wp- )¢

(2.31b)

In view of Egs. (2.19a) and (2.32), we may write

2
S$&,t)= 2§‘“’ X, 2.34a
(X, t) Z 2 %,t), (2.34a)
where
§“'“(}’<,t)=é[ﬁ‘“(§,t)]*xﬁ‘“(:’c,t). (2.34b)

After some straightforward algebra using Eqs.
(2.30b) and (2.31b) one has

tered wave is given by the real part of the complex SENF, )= 877 dﬂ ?2;1)2 —1—5 kS, ,(@,9) )
Poynting vector i
c (2.35a)
] N ) * w1 ) (%
S(%,t) 8 [E®E, ) xHS(XF, 1), (2.33) with
$1@9) = ZMZ: Z [hauy<kl ywd R gus, (&S Lwy)
Hy M'fy?
0
X dx§ dx _'K3x3€“(3xé':6"" (2 x5x5) , (2.35b)
. iy
S@) =ef” ) =1 20 2 lrous &P, 01 30 £ R4
xBOR) [ axger 5, @alx0), (2.35¢)
Su(@®) = [e (o ~ 1] 222 [8 REPw ) ELE)
lO
XY @) [ dgets5y,@010x) (2.350)
(137 -0
and
S,5(3,92) = IE <)(w°) 1|2 ZZ Z g‘*’ (s)w ) E“”(k(‘”)]
X g (& Cw )Ek ) D,,(g,2|00). (2.35e)
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In the above equations, we have introduced the
quantities

@ =8 (2.36a)
E”(s):ﬁ"(l))_ au ’ (2.36b)
[wW/c? - (RS ]/2, ‘;’s > (B9)?

(=
k3 i[9 = 02/, (RO > wP/c? (2.36¢)
and

=k + Y, (2.360)
with
B= = (clw) L= 6) ", Iy <0, (2.360)
335 — | €\Wy oz ~\% s m sus . (. e

Furthermore, the quantities 9,(§,2|x,x]) appear-
ing in Eqgs. (2.35b)-(2.35¢) are related to the dis-
placement gradient and displacement correlation
functions according to

uos(X, D, (X', 1)

2 - - -
(di-qilzf ZS_Z eiq,,'(x,.-x{,)
M

1% e-tﬂ(t' -t ):DBV (quglxaxa
(o a(X, ug(X70, 1))

—-—(‘;Z%S’/‘ﬂeia”'(i”-if')
. T

(2.37a)

< e’m("'”')ﬁﬁs(a,.ﬂlxs 0), (2.37b)
g(%,0, Duugg(&', 1))

d 9 m (%~ X
____._fzﬂ) f (277) IR T ]

X gm0 -t")g B (6,9]0x3), (2.37c)

and

(us(X,0, Dug(X,0,£"))
d® 9 dQ zqu'(i,,- %)
(2m?

x e"““""”:ﬁ”(&.ﬂloo) . (2.37d)

Note that the Fourier transforms of all the above
correlation functions may be obtained from the
Fourier transforms of the displacement correla-
tion functions,

o (X, hugX', 1))

dz a q, dQ
@n?

X e"““"t"’ Dus(@, Q] %5x)),  (2.38)
through the relationships

1q,,- Gy= %)

-~ 2]
£2,40,9) ) = (1041 - 89+ B 5
3

9
X(-—iq,,(l - 5,,3)+ 5,3 E,—)
3

x 330: u.(qun ( xsx?:) , (2.39a)
S8 (= . a9
5)23((1”82 l xso) = (qu(l - 533) + 683 5;')
3
x Dya(q,02x,0) (2.39b)
and
S B (= ’ . ]
Dyo (@,2]0x7)= (—’M]B(l ~ Op3) + Og3 oxl
X 5530‘(&,,9]0953’)‘, (2.390)

In Appendix A we show that the displacement cor-
relation functions are in turn related to the classi-
cal elastic dynamical Green’s functions D ,4(d, 2| x;x;)
through

_ i [n()+1]
p
X{Dae(aus Q+ io‘xsx:;)

ﬁas(ana lxsxsl)

- [Dﬁa(auy Q+ Zo lxéx!S)]*} *
(2.40)

Here #n(Q) is the Bose-Einstein occupation factor
and p is the mass density of the crystal.

Now from Eqgs. (2.34a) and (2.35a) it is a simple
matter to show that the contribution to the average
rate of energy flow per unit area into the solid
angle dQ about the direction (¢, ¢,) due to modes
with a given §,, from radiation in the interval
(wg, wo+dw,) is given by

1 cosé; wo s,

. Q).
8mc 871 W’ A2,

S (6, %)dQdw,=—
(2.41)
Here, and in what follows, = w, - w,.
From this result we now proceed to obtain the -
scattering efficienties. Using the definitions Eq.
(2.20b) and Eq. (2.31a), we write

; [hBu.u(ku s w )]*hsu' '(kn , W )

Z T(u (v, uIVI)E(EI)Ent)’

n=i, L

(2.42a)

where

T v pu'v) =3 3 mEPESw ),y . w) T*

b0 78

OW y (wo)[re(k(o)] rn(k(o))

(2.42b)
and
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m(p(lyl)(ﬁtf)ws) = Z [g‘ra(ifts)ws) ]* gfo(ﬁl(;,)ws) ¢ (2.420)
T

Also,
[€6Xw0) =11 2 Drau B T* gil(Eiw R
[3Y

= Z TGA(uv)EVED,  (2.432)

&,n=i, L

Taun)= 30 30 mig & )k o wo)
[}

X [T k), (2.43b)

= e Awn) =11 T [8:R0w )] g1lkie).
(2.43c)

4

|€¢()<)(°~’o) 1P ZZE gex)(km ]gg,t’(kff’ws)[E‘§°’(k‘°’)]*E‘;?’(k‘°’)= Z TE2EPED

T({zz)__ I€(<)(w ) 1 lz Z m(zz)(k(s)

x [Tﬁ(k‘”)]*l“;'(l?‘“) ,  (2.45b)

and

(22)(k( Ny ) Z [g(*’ ‘S’ gfr;)(kf;‘)ws) . (2.45¢)

If we choose the incident radiation to be polarized
either parallel or perpendicular to the plane of in-
cidence, from Egs. (2.34)-(2.45) we obtain for the
scattering efficiency for polarization 1 (=]| or 1),

d*Z, _ wicosf,
— 0

dQdw,
7[n(Q)+1 2 -
« B2 re 3 (an@o),
(2.46)
where
ARG =i 2:,2 o aB; uy)
[+3 ky

o] [o] *
Xf dxsf dxje 3%
- -

X eta=Dy (4, Q| x3x5)

(2,47a)
ADG,Q)=i ZT“Z’(aﬁ)

f dx e’ ‘“3"396 :«;(q.nQ I xso) ’

(2.4'b)

Similarly we have two more sets,

-1} Z‘ [g5EPw )T*

X [BOE) Py, 0,

{ <)( wo)

= 3 TE(uEPED, (2.44a)

g, L

T(zl)(uv) Z Z m(zu k(s)w o ul o)
x [T4EO) Tk,

Z (g% (&P ) *

X g,a(k‘s)w ), (2.44c)

(2.44b)

(21)(k(s)w )___ [€(<) w )*

(2.45a)

&, 0=, L

ADG,Q) =i YB, T2 (o B)
[+3

0
X.[ dxje'*ss,} (4,9 |0x3)

~0

(2.47c¢)

and

ADG,Q) =T D,,(q,200). (2.47d)

In the above we have introduced

qnﬂlxsxa) _[—(_Q—):l_] Do, %553 -

(2.48)

From Egs. (2.48) and (2.40), we note that the
quantities D,, are related to the elastic Green’s
functions D,z through

Dy (0, 2| 23%3) = {D o oG, 2+ 70 | 25x3)
~ [Dgo(@,2+140 | x3x,) ¥}, (2.49)

This completes the formal derivation of the scat-
tering efficiency in terms of the classical elastic
Green’s functions.

III. BRILLOUIN SPECTRUM FOR A CRYSTAL WITH
ELASTIC ISOTROPY

The discussion in Sec. II has been Quite general,
In this section we obtain explicit expressions for
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the scattering efficiencies assuming photoelastic
coefficients appropriate to a cubic medium and
elastic isotropy.

With this assumption the photoelastic tensor
assumes the following form

A(n)(qnﬂ) _,Lf dxsf dxle-zk?;xseix:;rs

< 2T [Catrmsgrm s

i=1 j=i

(1) (A1) ()% 8?
¢ (~agme+ g 2

APE)=A0E)+ALE2)

kaBuv k126a36uv+k44(5 58v+5uu Bu)
+ (kll _k12 -2k 4)6 uv oau* (3'1)

Using this form for the photoelastic tensor in
Egs. (2.42b), (2.43b), and (2.44b), we may
write Egs. (2.47a)-(2.47c¢) as

9 -
2)(5}1)(7)) 2 + 17\(1”(77) W)D{j(qllﬂ l %3%3)
3

(11)(17)* —_—— 1,7\”(11) ——)-Dji(qnﬂ I x3x3]
(3.2a)

_Z[j/‘ dx, o i3 xaz <Za(1z)(n)+3(12)(n).a_ax_) D 4(x5, 0)
j=1 3

+f dx,eis®s Z (—iaj.;z’(n)* +BS32 ) (n)* gax—)ﬁ)sj(o,x3)] .
- j=1 3

Explicit expressions for the coefficients a{}"’, 8{}",
and a{'®’ are written out in Appendix B.

The relation between the correlation functions
D,;, appearing in Eq. (3.2) and the dynamical elastic
Green’s functions D, ; is established in Appendix A
and displayed in Eq. (2.49). Using this relation,
we may note that the integrals in Eq. (3.2) have
the form

0 0
f dx,
-0 -0

dx;e' k¥ x3gikgxd

X [AD 15(%s5 23) +A*D (g, 23) ]

; 0 0
- {21 Im[f dx3 dxé e-iu?;‘xaeixgxg
2Re 7 -

X D (53,5 £ 4%D (35, ).
(3.3)

A similar relation holds for the integrals involving
the derivatives with respect to x, or .

The exact dynamical elastic Green’s functions
for an isotropic semi-infinite medium bounded by
a stress-free planar surface have been determined
recently by Maradudin and Mills.!® We list these
in Appendix C, modified to apply to our geometry.
These functions may be split into two parts

1](QIIQ l xsxs) D(B)(quQ , xsxa) +D(s )(QHQ I xsx:;) .
(3.4)

Here D{¥ is that part of the Green’s function that
is independent of the presence of the surface and

(3.2b)

D3’ is the part that arises from the presence of
the surface. The following symmetry properties
of these functions may be noted

D(B)(x:;; x3) D(B)(xé; x3) )

D{B(x4, x4) = D{P (x5, x5) =D B(x, x,) ,

(3.5a)
(3.5b)

D13 23(x3, xg) = D31 32(x3,x3) = ‘D{:? ha(x5, %5) 5 (3.5¢)

D{§ (x5, x5) = DS (xh, x5) (8.6a)
D S)(xs’ xs) DZ(f)(xaﬁxa) D(s )(x:';, xs) E] (3-6b)
Dis 23(x3: x3) = =Dy 31, 32("3’ %Xg) « (3.6¢)

These properties in conjunction with Egs. (3.4)
allow us to obtain expressions for the scattering
efficiencies in closed form. In order to write

these in compact form, we write the elastic Green’s
functions in the following forms

Difalre, 3) =50 Z DR eronlmmxst (3.72)
usl, ¢
D13 23("3, xg) = 292 2 (D13 23) e~ ulxgxd |
X sgn(x; - x5) , (3.7h)

L3 2 (D)), etunens |

D5 (%5, x4) =
32 73 2
29 +l$ltvlt

(3.7¢)

Here the subscripts ! and ¢ refer to longitudinal
and transverse parts, respectively. The quanti-
ties D{¥ and D{3’ may be inferred from the ex-
pressions for the D;, given in Appendix C. We
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recall that where ¢, and ¢, are the longitudinal and trans-
—(a® -2/ 2. Rela, )>0 3.8a verse velocities of acoustic waves in the isotropic
o= (@ =9/ 1, )", (@,)>0, (3.82) medium, Using Egs. (3.3)-(3.6) we may write
Eq. (3.2) in the following form
y =—4a1a g+ (a5 +qh)? (3.8b) e (3.2) €
+ 4o o t(a +q") ’ ° Aﬂ”(qllﬂ) A (n, B)(qnn) +A(n.s )(q”ﬂ), (3.9&)

J

AGPE, =2 z{ [(2(15 ») {Re[a ()] - a2Re[8EOM) |

w=l i=1

+(D®) {Re[a V()] - a%Re[8E) () 1})1

2 -~
+ (Z (DB {Re[a i’ M)]- a Re[B“”(n)]})Ju]

i=1

e[ (2 18 imelusiom) -Relp o,

+ (O {Relxt(n)] - R (1) .},

+i‘,(ﬁ;g>)u{Re[ v )] - Re(xg”)}aulu]}. (3.9b)
Ai?'s’@.ﬂh% 2, m't{ [ - (Z D) {Re[a (M) ]+ a 0, Re(BEM)}

+ (D), {Re[a 3 ()]+ @, Re[B5 ()]}
%2 (B ), [a B0 0) + @,e,88°0)]
B Al + a0, B30 D)KL
[ (Z D) W xi ) + P Flay, A0 ) + 50 +le,)

+ (D‘S’) WGV @+ DGV P, —{XGV M F 25 ()}a,)

_,_E( D(S)]w &Y Ma, - A& m)a, ]

O, - DE O FaD)KL) . (3.90)
Here, the integrals/,, J,, K,, and L, are given K Efo . o~ ¥ x5 gt = 1 ' (3.10¢)
by o o . - 3 au - ZK; ’
Iu- .=f dxaf dxg e—ikg‘x;;eiksxé eo ulxg=x4 |
_ ~2ia, . 1 ’ and
(kg —k¥)(KI+a2) (kg —a )(a, —ik¥)’
3.10a; 0
0 o ( ) L, Ef dxy eicd*§ ptuxd = 1 —, (3.104)
J, Ef dxaf dxg o 1% x5 o ikaxg - . o, +1iKg
x " ul#s*$ | gon (xh — x,)
2, 1 Similarly, Eq. (3.2b) reduces to

=(K —K*)(K3+0!2) (ucs—au)(a —ik¥)’

(3.10b) APEQ=A0P@EQ)+ALYE9Q), (3.11a)
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A(lﬂz'B)(quQ) = 9—2 ZI

¢ [Im (,22;1 (D?)S eyl 3(12)

(42 ()] °L,}

+ (D@, o, {612 )k, + 42 (n)J*Lul})

2

+ Re (Z (5333)) { (12) o) K +[a(12) (U)J*L }

(B2, {0 (DK, [l ()] *Ly})]

A&Q'S) (&uﬂ)—gz Z Z

B=1 4t py=1,

(3.11b)

%Im[ (Z“D“")w B2 ey K, - B8, [B70)]*euLs)

+ D(ass))uu{ 3132) (T])auK [13(12) n)J*auLu}):]

+Re[rl+ (,;{(55‘8) )y l101(12) MK, + (D(S))VM [a(lz) M ]*L,}

+ D(sss) )“ y{a(lz)

These equations, in conjunction with Egs. (3.9),
(2.47d), and (2.46) constitute algebraic expressions
for the scattering efficiency for both polarizations
n(= H or L) of the incident light for an isotropic
elastic medium.

In view of the complexity of the final expressions
for the cross section it is, perhaps, worthwhile to
present a brief summary of the derivation and
comment on the meaning of the various contribu-
tions to the spectral density before we turn to the
numerical evaluation of the line shapes.

We have considered two mechanisms having
their origin in thermal acoustical phonons that
produce modulation in the dielectric tensor of
an opaque crystal. The first is the usual photo-
elastic modulation given by Eq. (2.7). The second
contribution arises from the fact that in the pre-
sence of acoustical phonons, the surface of the
crystal is no longer flat, but is dynamically cor-
rugated. This term may be written as in Eq.
(2.8c). We solve for the scattered field in the
first Born approximation with the above two dielec-
tric modulations as the source term in Maxwell’s
equations. The result is presented in Eqs. (2.18),
(2.30b), and (2.31b). The scattering cross section
is then obtained from the averaged Poynting’s
vector given in Eqs. (2.34) and (2.35). The neces-
sary correlation functions, Egs. (2.37a)—(2.37d),
are constructed from the classical elastic dynam-
ical Green’s functions through Eq. (2.40). In this
section we have specialized to the case of an elas-
tically isotropic medium with photoelastic coeffi-
cients appropriate to a cubic medium. The neces-
sary elastic Green’s function for such an isotropic

(3.11c)

~[o4 (n)]*Lu})]}.

semi-infinite medium have been reported recently,
and are listed in Appendix C.

The imaginary part of A,, given in Eq. (2.47d) is
the contribution of the surface corrugation mecha-
nism alone to the Brillouin spectrum. For the
special case under consideration, one may easily
show that

a,
4o, asqf+ (@Z+q5)?’

ImA,,(¢; Q) ~Im (3.12)

where a;  , are defined in Eq. (3.8a). This agrees

" with the result of Loudon.!® This expression has

a pole at the frequency corresponding to the Ray-
leigh surface wave, and zeros at 2 =c,q, and
Q=c, q, (corresponding to the bulk TA and LA
frequencies). There is a nonvanishing contribution
for c,q; <Q<c;q, and for Q>c, q,.

The purely photoelastic contribution is given by
Eq. (3.9). A'variety of line shapes are possi-
ble® 8+ 2! depending upon the opacity of the medium
and the scattering geometry. The general features
of this contribution are an intense peak at the fre-
quency corresponding to the Rayleigh surface wave
and non-Lorentzian structures at the transverse
and longitudinal acoustical wave cutoff frequencies
(2=c,q and Q =c, q;, respectively). For less
opaque crystals, structures in the spectrum also
appear at the bulk acoustical wave frequencies.

The interference terms that arise from the si-
multaneous presence of two scattering mechanisms
are collected in Eq. (3.11). Any complete theory

" of Brillouin scattering from an opaque crystal

should take account of all the above four contribu-
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tions. In the next section we present the results
of a detailed numerical study of the spectrum
using the expressions derived in this section.

IV. NUMERICAL STUDY OF REPRESENTATIVE LINE
SHAPES AND DISCUSSION

In the previous section we derived expressions
for the Brillouin scattering cross sections for an
opaque crystal with elastic isotropy. These ex-
pressions are simple algebraic equations, albeit
quite lengthy. Rather than make approximations
in order to obtain simpler expressions for the
line shapes we have carried out a detailed numeri-
cal study of the spectra as functions of the angle
of incidence and polarization of the incident light.

We consider the scattering of incident light of
wavelength 4880 A from a crystal of aluminum
with a planar surface. The elastic constants of
Al at room temperature are®

¢,,=1.08x10* dynes/cm?,
¢,,=0.61x10' dynes/cm?,
¢,,=0.29X10' dynes/cm?. (4.1)

These values yield an anisotropy ratio, 2c,,/

(c,, —cy,) of 1.24. Hence the use of elastic Green’s
functions calculated on the basis of elastic isotropy
is reasonable. We take for c,, the speed of trans-
verse acoustical waves in an isotropic medium,
the expression

¢y = (caa/P)'?, 4.2)

which is the speed of transverse acoustical waves
propagating along a (100) direction in a cubic crys-
tal. Using the value of c,, given above, and a value

for the density p of 2.7 g/ecm?,? we get
¢, =3.22x10° cm/sec. (4.32)

For an isotropic solid with a Poisson’s ratio
o=3, this gives for the speed of longitudinal acous-

tical waves,
¢, =2c. (4.3p)

For the speed of surface Rayleigh waves, one
obtains??
cx=0.933c, . (4.3¢)

We use the values of €,, k,,, k,;, &, at the fre-
quency corresponding to a wavelength of 4880 A
calculated by Bennett et al.3:

€,=-38.1+i6.05,
ky, =42.5-758.8,
k,,=34.9 -i13.38,
k. =2.08 —i 9.61,

4.4)

The damping of elastic waves (due to anharmoni-
city, etc.) has not been incorporated into the elas-
tic Green'’s functions used in the last section.
Hence the spectral density contains sharp singu-
larities at frequencies corresponding to the vari-
ous excitations of the system. The presence of
‘damping would round-off these sharp features.

In order to simulate this effect of damping, we
have introduced a small positive imaginary part
to the frequency shift  in computing the spectral
densities. '

Since frequency shifts due to acoustic modes are
very small, to a good approximation n()+1
= kyT/EQ. In this limit, there is no difference
between the Stokes and anti-Stokes spectra. The
frequency shifts are measured in dimensionless
units Q/c,q,, where g, is the magnitude of the
wave-vector transfer, parallel to the surface.

In Fig. 2 we show a representative spectrum
which includes contributions from the surface-
ripple mechanism, the photoelastic modulation
and the interference between the two processes.
The particular spectrum shown is for 6, = 67.5°,
6,=20.7% ¢, =0° with the incident electric field
polarized in the plane of incidence. The general
features of the spectrum for (g, # 0) are quite in-
sensitive to the angles of incidence and scattering
as well as to the polariz‘ation‘of the incident light.
The integrated intensity of the spectrum for the
case when the incident light is polarized parallel
to the plane of incidence is higher than when the

1.0
R
Il Polarization
61 = 67.5°
- s = 20.7°
‘t;, 4’; = 0°
(8]
@
(723
«
9 —
=
L
'k
S g
©
I L
0.0 J ' L

0.5 3.0
Q/c,q,

FIG.2. Representative Brillouin spectrum which in-
cludes all contributions.to the spectrum,
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incident light is polarized perpendicular to the
plane of incidence. For a fixed angle of scattering
the intensity of the spectrum decreases as the
angle of incidence is increased.

The primary features of the spectrum in Fig. 2
to be noted are the Lorentzian peak (R) at the fre-
quency of the Rayleigh waves, the cutoff for pro-
pagating transverse acoustic waves (T') and the
minimum at the frequency corresponding to that of
propagating longitudinal acoustic waves (L).

As indicated by the experiments of Mishra and
Bray,'! and pointed out by Loudon' the surface-
ripple contribution dominates the spectrum. In-
deed, on the scale of Fig. 2 the total spectrum is
nearly indistinguishable from the surface-ripple
contribution alone. The photoelastic contribution,
which is nearly three orders of magnitude smaller
than the surface-ripple contribution, is shown in
Fig. 3. The incident electric field is polarized
perpendicular to the plane of incidence in Fig. (3a),
The features to be noted are the Rayleigh peak (R),
the “singularity” at the transverse cutoff (T), and
the peak at the longitudinal acoustical wave fre-
quency (L). In Fig. 3Db the incident light is polar-
ized parallel to the plane of incidence and the
“singularity” at the transverse cutoff is absent.

These features differ from the photoelastic spectra

calculated by Bennett et al.® due to their neglect of
surface contributions to the response function.
Our results are in accord with the recent calcula-
tions of Loudon.?!

In Fig. 4 we show the influence of the interfer-
ence effects of the two scattering mechanisms on
the spectra. The solid lines represent the total
spectra and the dashed lines give the surface-rip-
ple contributions. As expected, the interference
effects are small. They tend to decrease the in-
tensity in the vicinity of the transverse acoustical
frequency and enhance the intensity in the vicinity
of the longitudinal acoustical frequency. Further-
more, for a fixed angle of scattering, the inter-
ference contributions grow as the angle of inci-
dence is increased. We note that the interference
effects are much larger than the photoelastic con-
tribution alone.

The primary reason for the dominance of the
surface-ripple mechanism in highly opaque crys-
tals is that the cross section for this mechanism
is proportional to the reflectivity at the optical
frequency of the incident light, which is of the
order of unity. On the other hand, the photoelas-
tic contribution depends on the transmission co-
efficients which are quite small. Hence the inter-
ference effects contained in our theory will be
more significant in less absorbing materials than
the one considered in our numerical study. How-
ever, if the optical skin depth for the crystal is

3.5 T[ PHOTOELASTIC .
L a)l Polarization
) 8= 67.5°
8s = 20.7°
$s = 0°
< R
]
i \1
)]
"
7\'(‘3 ool
O 002 R bl il Polarization
= | 6; = 67.5°
3 8s = 20.7°
N
o S s = 0°
a
o
0.00 i
0.5 3.0

a/c,q

FIG. 3. Photo-elastic contribution to the spectrum
when the incident electric field is polarized (a) perpen-
dicular to the plane of incidence, (b) parallel to the plane
of incidence.

I
Il Polarization
6y= /8 8s = 20.7°
$s = 0°
Total
- —- Surface Ripple

Intensity (Arbitrary Units)

1.0 2.0 30
' Q/c,q,

FIG, 4. Interference effect between the two scattering
mechanisms as a function of the angle of incidence for a
fixed angle of scattering, The solid lines are the total
spectra and the dashed lines are the surface-ripple con-
tributions alone.
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FIG. 5. Brillouin spectrum for normally incident and
normally scattered light. The dashed line is the sur-
face-ripple contribution and the dot-dashed line is the
photoelastic contribution. The solid line is the total
spectrum including interference effects.

comparable to its thickness, one has to account
for the reflection of light at the back surface and
the semi-infinite treatment is inappropriate.

In Fig. 5, we show the spectrum for normally
incident and normally scattered light @FO)- The
frequency shift is measured in dimensionless
units Q/c, k,. The surface-ripple contribution
goes as 1/92 and is shown as the dashed line. The
photoelastic contribution is shown as the dot-
dashed line and the total spectrum, including the
interference effects, is shown as the solid line.
The photoelastic contribution and the interfer-
ence effects are not quite as small as in the pre-
vious case considered. In Fig. 6, we show the
photoelastic contribution on a larger scale. The
normal incidence photoelastic contribution has
been considered by Dervisch and Loudon® and
our result is in accord with theirs. The distorted
Lorentzian has a peak at Q = 2c, k,| Ve, | corres-
ponding to the frequency of the longitudinal acous-
tic wave. The opacity broadening is evident in the
spectrum.

In conclusion, we have presented a comprehen-
sive theory of Brillouin scattering from an opaque
crystal with elastic isotropy. The theory takes
account of the photoelastic mechanism, the sur-
face-ripple mechanism as well as the interference
between these two scattering processes. We find
that the interference effects are larger than the
photoelastic contribution itself, which is quite

small compared to the surface-ripple contribution.
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FIG. 6, Photoelastic contribution to the Brillouin
spectrum for normally incident and normally scattered
light,
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APPENDIX A
We first recall the well-known result®* that
the correlation function

Das® ¥50)= [ dt €Kuo (&, up®,0) (A1)

and the Fourier transform of the retarded Green’s
function

P& %)= at et

-0

x{=10(t X[uy (X, t),us&’,0) )}
' (a2)
are related through
Do Xw)=i(1 - e ") [DRIE, X'; w +i0)
-DR X, X ;w-10].
(a3)

Now consider the second derivative of the retarded
Green’s function with respect to time,
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82 92 . A1) (1) = L{TL(2[,2,,41) 2
S D& T 1) =5 {0t K[ug (&, 1), us&', 0])} afy’ () =372 [Plgime |yl
+2q,9,Re(m{y VRfoky2)
+qam | Ryl?], (Bla)

ad (L) = %(Flez[CIfm(lllulk«lz

= —i6(¢ X[ty (%, 0), u 4%, 0)])
=i0(t X[ito (%X, 1), us(®X’,0)]) . (A4)

Here i, denotes du,/8/ and #,denotes 8%u,/0¢°.

(A1) 2%
The equation of motion satisfied by U(X, ¢) is +2q:q: Re(miy Kighiy)

1y~ o ouu(k, 1) (A52) +gzm$s k|, (B1b)
i, (X, t)== —c X)———= a
D= oy o a%(4) =T Plg3m e el (B1c)
where ¢, ,,(x) are the position dependent elastic afy (W) =T 12 (@im i *rh R,
coefficients g
’ +q192mSy Rk,
c X) =0(~x3)c . A 5b
aouy(®) =002) o, : ( ) +q:1q.m G Ry
The stress-free boundary conditions are built into 2, A1)k
the equations of motion through use of position- +qamis ki) (B1d)
dependent elastic coefficients.' Furthermore, ol () =Ty |2 (q1g.m 8 Ry,
[pity (X, 0), us(X, 0) =120, 58 (X ~ X') . (A6) +qzm {3 [kl (Ble)
From Egs. (A4)-(A6) we get the equation obeyed a3 (L) = T3 1% (g,9.m 83 | Padl®
) : B
by the retarded Green’s function rEmOD LR, . (B1f)
9% 1 -9 ] - =,
T (w3 Loy ) PG F50 AW =T Pkl (B22)
SO =35 PmeD | Ry, |2 (B2b)
L5106, -%). (AT) s ommEla T el
p ﬁz(s ') = }r‘z I m(zlsl)*kzqk_xz . (B2c)
Except for the factor 7#/p on the right-hand side, A (1), BAL(1), BAN(1) are identically zero.
Eq. (A7) is identical to the equation which deter- o L " .
mines the classical dynamical Green’s function X2 (1) = Irz" (qum 3% |y
D, g(X,%’; t) of an elastic medium.'® Since the +qemE LR ) (B3a)
boundary conditions are incorporated into the equa- an L a1 .
tions of motion through the use of position-de- Xes (L) =|T5 [Pgam G| yyl®, (B3b)
pendent elastic. coefficients, it follows from the XEW) = [T Pgam P bRy, (B3c)
above observation that an(1) = [T an
AED(L) = T4 2 (g, mED R,k
D, X, %)= (p/B)DE) X, &5 1). (A8) ” 3t e Tl
+qom 3 |kyl?) , (B3d)
It now remains to show that A1) < |12 2 an g 2
R Az (L) =Ty gy m3, |k
Do s, ' w+10) = [D (R, &|w = 10)]*. (A9) " 2T
+q,mP kR ) (B3e)
s . R . q2M 13 "Raqra) s €
This is most easily established by noting that an i a
D, (X, X’; w+in) may be expanded in terms of the A5 W) = T3 [*gym s Rk,
zcs)rmal mode eigenfunctions and eigenfrequencies + @M kR, . (B3f)
. ( V(S)(i)[v(s)(ﬁl ]* The remaining xul)(—l—) and A(u)(—‘-) are zero,
D, X ;w+in)= - - . (A10 :
e @50 e =) S e —a? ¢ (410 D)= [T mEP Ry ram PR, (Bda)
Expressing both the left-hand side and the right- a8 (L) = [T 53 a2) px a2) px
q,m +q,m (B4b)
hand side of Eq. (A9) as in Eq. (A10), the identity 2 2l T R
follows. CY(3132)(—L) = Ir;lzgzm(slzz)kL s (B4c)
APPENDIX B B (1) =0, (B4d)
(12) =0y A2) Lk | L2 Bde
In this Appendix we list the coefficients a, 8, x, B (W) =m G ke (Be)
and ) appearing in Egs. (3.2a) and (3.2b). BEP (L) =m §2 k| T |2 (B4f)
(i) Incident light polarized perpendicular to the
plane of incidence. All symbols have the same (ii) Incident light polarized parallel to the plane

meaning as in the text. of incidence.
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a8V(ID =T P[g2m &P By % + 29,9, Re(m {3 kBl ag) + qam$ | kyyl?]
+|T5Pgim 8} | kyo|® + 2Re[TT3(gim & i oyp + qag2m 83 R EaRo) 1}
af (D =T (g3 m s By ks + q1gem § R iy + 4192m 8 [Ral® + gam 3 X Riyys) + (T3l Pqug,m §30 | By
+ T T3(qugm S R fyp + G383 ki) + TiT 3 g m G * Rt kaa + q1q2m §3 0% o)
afP (D) = IT) (g3 m S By kag + 412 m 83 | g P) + | T3 (q17n‘11§’*kfzk44+qlqzm‘zls” kit Rya)
+ T (i m D b Ry + q1g,m S R Rag+ q1qom $y 0% | Rag | + @2m G | Ryg|?) + TIT ¥ 2 m Sk Ry
a8’ (1) = H{IT1 P[5 m 8 | gal® + 219, Re(m {3 %R Jor,) + g3m Y o]
+|T51Pm$3 g3 kyo|* + 2 Re[T*T3(q,g.m§3 Riylro + g3m (3| Ry 1) 1T
a2 (1D =T [2(@2ms" [kas 2 +410,m BV Rl kae) + T4 [2(@,a2m G el lag + a3m D *hlylas)
+TPTY@m G * Rag [* +410mG" [Ryg [P+ 102m GV R kas + a3m 3 elhys)
+T\T3*q,gm G kg,
a2 (D=3 { [T} Paim$? ko [+ T3 [ [a3m G0 (o [ + 2410, ReOn GV) [y [ + g3mG" [Raa [P]
+2Re[T{*T3(q3m 5V [kas [* +410m % [Rag |1}
BAVN =3[ [TY [Pr§™ [yg [+ [T P2 By [*+ 2Re(@ Tim 5V [y 1,
BEV (N = ll"g‘z ;”[k44,2+1"”*1"3m2§“*]k'“lz,
Bl(:lal)(”) = lrlxl lzm s ¥k, t Irg lzmxél)k::xku +T) *rgmégl)k«’ﬁku +TTy *mﬁ”k:‘xk;z:
(11)(”) erg 12 ;l),k44‘2
AO(|) = T8 P Dk EE,, + TIT m D %k,
BAV(ID = 3[|T Pm &Y Ry, [ +|T0 Pm &Y |k, 2 + 2 Re(T ¥ Tim SV k%R, ) ] .
XSO0 = [Ty [Plam G0 %y, +am D™ Ry [) + TI*Tig m § kR,
+ DT (g m kg +aom Y ey )+ [T Paym VR,
XSO = [T (qmB % [y | +gom ¥R di,) + T{*Tigm G kER,,
+ D Ti*(gm (Y Ik« |2+sz1(i“k:4k12)+ ‘I‘" lzqzmxél)k‘uklz’
x5 = II‘T !2 mh lk« Iz +T*Ty(g,m 5> Ik« IZ +g,mGH* lk44 ‘2) +ITy *qmGH lk«m lz
+ lrlsl '2(‘11mli1) lkcm lz +gmit |k44 lz
XSV =TT (@m" [aa [P+ am GV *Rlikrs) + [T Pgam s R fikss,
X3V =TTy qmGY [y [P+ [T P@m G Ry [P +am Y R [,
X&H (1) = T} [Pqm Gk kg + T (@um ko kas + am G R as)
+TITI* g m GOk Ky + T8 [2(gum GV ¥k by +q,m BV kY By,

)\(11)(”)_!1-. lz 1""‘&1 )kikxkxz+‘I2m121)*k44k12)+r"*r”( 1m1(;1) lku ‘2+sz2(;”k:4ku)

+I""rg*qlm1§1)* lkxz I2+ Ir lthmé;”kikzku’

7\8”(]])=I'"1'*1""(q1m1u)k*k44+q2m2él)lk44 lz +f1" lz i kbR,

MO =T [P qm § %k, +gam D |k, [2) + TIXTA g m B kE R, +qam GV %R,,)
+TITi*qm 50 Ry, [+ T4 Pgam GU k%R, .
af®(ll)= [Ty |2(qm 2k + g m 2 kE) + TIXTig,m 82k E +4,m 82k E)
+TT3*g,m Gk + II"" ,241m332)k12’
afi(ID) =T} 2@ m £k +a,m SDRY) + TI¥Th (g m$2 R, +q,m E2k%)

+ DT *gm$2 kY + ‘rs ,2 éz)klqu’
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(B5a)
(B5b)
(B5¢)

(B54d)

(B5e)
(B5f£)
(B6a)
(B6b)
(Béc)
(B6d)
(B6e)
(B6f£)
(B7a)
(BTb)
(B7c)
(B7d)

(BT7e)

(BT£)

(B7g)
(B7h)

(B7i)
(B8a)

(B8b)
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B (1) = [TY [Pm g,k + TU*Tigm$ kg + TITA qm §2 kY + 4m S5k )

+ ’r” lz(ihmléz R+ mis kY. (B8c)
B&2 () = fr'" fz BRE+ (T TImED + TIT o S0k X + lI"a' [zml(;z Rk, (B9a)
BE7(I) =TT m &k + [T} [Pm 2k, (B9b)
010 = [T o 8%, + {82 k5, + TIT 500 [0 e 30 (B90)
APPENDIX C DB (x,,x0) = P ( o, X, + %z'—xt>, (C5f)

t

We quote below the dynamical Green’s functions
for an isotropic semi-infinite elastic continuum
bounded by a stress-free planar surface derived
by Maradudin and Mills.!® The results have been
adopted to suit the geometry of the present work.
We introduce the quantities

(@ +in)® */2

Q.= q5 z, , Re(a,,)>0, (C1)
- —40;0,q] + (o} +¢7)°
£ 4a,0,(a%+¢?) (€2)

Here ¢, and c, are, respectively, the longitudinal
and transverse acoustical velocities in the isotrop-
ic medium. All other quantities have the same
meaning as in the text. We shall suppress the ar-
guments of the Green’s functions D‘.j(a,,ﬂ ‘xa,x;)

for brevity. We write

D;=D{’+D{’ (C3)
where the notations B and S refer, respectively,
to the bulk and the surface terms. Also, let

Xu :e'a“lxa-x{;l, (C4a.)
Y, =e%uTe s, (C4b)

with u and v being I or £. We write the wave-vec-
tor transfer in the plane, q,, as q,%, +q,%,. Then,,

-1{q qia qe82
D (x,,x [1X+<—-—=+—2———X
11 3 3 292 q” o th“ t 1
(C5a)
D3 (x5, x3)=D3P (x5, x3
_ -1 [qlqz X,- (qlqzat + q qgn )Xt] ,
29 cIu a thn
(C5b)
DB (x;,x3) =D& (x,,x))
-1 . ]
= W ("1qu1+lq1Xt) Sgn(x:;_xa)’
(C5c)
_1 q2 _qza q 92
D(B) N = _[_i +< 2t 1
w o= aila, X U * agean /X
(C5d)

D{P (x4, x3) =D (x4,x]

("iQ2X1 +iq2Xg) Sgn(xa'- xs)y
(C5e)

- =1
20°

For the surface terms we have

-1 7. q°
D ey, x9) = 202 [ql ¥+ _1_ (Y”+Y”)

(w , B +)Y”]. (C62)
qll a ctqll
Dl(g)(x3,x3’)=02(f Y(xg,%4)

- -1
2Q%

[qlqt Y, + (;qt Y, +Y,)

2195%,7- qlqgﬂ LA
+ 2 Yu )

q, a thu

(C6b)
D(S)(xa, )_—Dm (x4,%3)
-1 . iq,q}
o LA

+iq1Y”+iq11'_Y”], (Céc)

-1 [g2r. 7z
R A S T
+ 1

2 202
Gy, | gy )
+< & ait) ) (00

Dz(a )(x:;, )= —D(S )(xef:xs)

-1 [ iq,q95
= + 1
————~2927’ [zqzr_Y,, @, Y,

+1q,Y ,, +iq21f_Y”] s (Cée)
D r)—;l_ Y _,_qu Y, +Y,)
33 W3:X3) = 902 ™ [0V Xy, (Y, +Yy,
+
2y_
+ —q—&- Y“]. (Cs1)
¢

We remark that in the limit ¢, -0, we have D,,
=0=Dy,, D;3=0=Dy, D,;=0=D,, and

1

Dn(xsyxa') "Dzz(xsyxs,)”ii—?i Xt+Ytt) (CTa)
t-t

and

-1 .
D33(x3,x3’)-°5§§ (~a,X,-a,Y,,). (C7b)
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