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Electronic structure of Ge and diamond Schottky barriers
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The electronic structure of metal-semiconductor (or insulator) interfaces is studied using the self-consistent
pseudopotential method. The metal is simulated by a jellium model for the positive background with a charge
density equivalent to that of aluminum. For the metal-Ge(111) interface, a high derisity of metal-induced gap
states is found which pins the Fermi level. These states are free-electron-like in the jellium and decay
exponentially into the Ge. The calculated Schottky-barrier height is 0.55 eV and the index of interface
behavior S is 0.14, in agreement with experiment. The behavior of the diamond Schottky barrier is crucial
in the theory of Schottky barriers because of its large gap and zero ionicity. For the metal-diamond
interface, the density of metal-induced gap states is found to be smaller than in the case of Ge. Predictions
based on experimental extrapolations give S = 0. Our calculations give S = 0.4. We obtained a barrier
height of 2.2 eV, in agreement with experiment. The theory of the Schottky barrier is discussed using
present results.

I. INTRODUCTION

The self-consistent pseudopotential method
which has proved very successful for calculations
of metal-Si and metal-zinc-blende semiconduc-
tor interfaces" has been applied to similar cal-
culations of metal-Qe and metal-diamond inter-
faces. Current interest in metal-semiconductor
(M-S) interfaces has focused on the dependence of
the barrier height on ionicity (or gap size) of the
semiconductor and the electronegativity of the
metal. The central problem is the interface in-
dex$ of the semiconductors which characterizes
the behavior of the Schottky barrier. Some re-
searchers have claimed that it is a crucial indi-
cator of the covalent-ionic transition among
various semiconductors. 3 The physical under-
standing of these properties is of continued in-
terest and many questions still remain open.

Hopefully a theory of Schottky barriers should
be able to explain the behavior of Schottky bar-
riers of both covalent materials and ionic mate-
rials. Self -consistent pseudopotential calculations
for the Schottky barriers of Si and zinc-blende
materials yielded information on the local density
of states, barrier heights, charge densities, in-,

terface states, and metal-induced gap states. The
present paper on Ge and diamond is a complement
to the previous calculations; the calculation of the
diamond Schottky barrier is of special theoretical
importance because different theories predict dif-
ferent behavior for this large-gap but zero-ionic-
ity material. '

The model presented here for the calculation of
the electronic structure of the M-S interface is
considered to be a realistic one in that the con-
duction electrons of the metal and the valence

electrons of the semiconductor are free to re-
distribute self-consistently for a given system.
Our model for an ideal M-S interface consists of
jellium in contact with a semiconductor described
in the pseudopotential formalism. There is ex-
perimental evidence for chemical-bond formation
for many M-S interfaces under favorable condi-
tions. 'The jellium model is certainly not able to
adequately describe the M-S chemical bond. We
will show, however, that without taking into ac-
count the details of the chemical bond, our cal-
culations are still in good agreement with experi-
ment wherever experimental data are available,
and this model even allows u-s to explain funda-
mental features of the behavior of the Schottky
barrier in terms of metal-induced gap states
(MIGS). In this sense, the jellium model serves
a good starting point for a completely realistic
interface calculation. In addition, a recent
pseudopotential calculation of an aluminum rnono-
$gyey on Si, where the chemical bond is allowed
to form, shows states in the gap which are simi-
lar to our MIGS.

'The plan of the remainder of the paper is as
follows: in Sec. II the calculational procedure is
described. The results of the calculations are
presented in Sec. III. The theory of the Schottky
barrier is developed in Sec. IV. Finally in Sec. V
some discussion and concluding remarks are
given.

II. CALCULATIONS

our model for an ideal M-S interface consists
of jellium in intimate contact with a semiconduc-
tor described in the pseudopotential formals:sm.
This model for the M-S interface and the method
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TABLE I. Parameters entering Eqs. (1) and {2) to
define the ionic pseudopotentials of Ge and diamond.
The potentials are in rydbergs and the lengths are in
Bohr radii. Normalization for Ge is per bulk unit cell.

Qe
Vio„ ydiamond

0
@diamondi

a~
a2
a3
a4
as

—0.95546
0.803 23

—0.31205
—0.018 52

100
5.68
3
1.5
0 4

9
4.41

11.6
1.3

—0.15

we used to calculate the interface electronic
structure have been discussed in detail in Ref. 1.
Hence, in this section, we shall only brieQy
describe some of the essential features of the
method.

Two crucial features of our method are (i) self-
consistency in the potential of the valence elec-
trons is imposed to allow for the correct elec-
tronic screening near the interface and (ii) peri-
odicity is artificially retained along the direction
perpendicular to the interface to allow for the use
of the usual pseudopotential techniques.

Our elongated unit cell consists of pg atomic
layers of the semiconductor and n layers of equi-
valent thickness of jellium metal. The numbers
used here are m = 12, m=12 for Ge meta, l and
m =12, n=20 for diamond metal. The ratioofm to
n is approximately the ratio of the Gibbs oscillation
wavelength of the semiconductor valence charge den-
sity to that of aluminum charge density. These num-
bers are big enough to suppress significant interac-
tions between. the neighboring interfaces.

There are no adjustable parameters in the cal-
culations. The only input consists of the struc-
tures (i.e. , the geometry of the interface) and the
ionic pseudopotentials of the semiconductor ion
cores which are determined from atomic spectra.
Present experimental and theoretical methods do
not enable us to unambiguously determine the
geometry at the interface. In the jellium model
we are not concerned about the exact positions of
the metal atoms; the single quantity to be deter-
mined for the metal is the position of the jellium
edge. The edge has been taken to lie at half the
semiconductor-semiconductor bond length away
from the interface atom of the semiconductor.
Previous calculations for the metal-Si interface
showed that the interface properties are not sensi-
tive to 25'I/~ change in this value. Semiconductor
atoms are assumed to be at the ideal positions.
The ionic core potential for Ge is a local pseudo-
potential whose Fourier transform is of the form

V,.'„(q) = (a,/q')[cos(a, q)+a, ] e'4' .
'The same potential was used in the Ge surface
calculation before. For the ionic core potential
of diamond, we used angular-momentum-depen-
dent nonlocal pseudopotentials derived else-
where s

4

+diamond( )
L-z (~-g ) J

g +Qjg

Parameters are found in Table I.
Screening is achieved using a Hartree potential

via Poisson's equation and Slater's statistical ex-
change pote'ntial. %e used ~ =0.794 for the local
exchange potential to be consistent with previous
surface calculations for Ge and diamond. ' In
addition to ionic core potentials, a starting em-
pirical potential is needed to initiate the self-
consistent loop. An adequate choice of the starting
potential reduces the number of iterations re-
quired to achieve self-consistency. Details of the
method are found in Ref. 1. The electronic wave
function is expanded in a basis~et of -200 plane
waves for the Qe Schottky barrier. Another 400
plane waves are included through a second-order
perturbation scheme. Those numbers for dia-
mond are 600 and 800, respectively. This set
of plane waves gives roughly the same degree
of convergence as for the previous surface cal-
culations.

III. RESULTS

In this section, the electronic structure of the
Ge-jellium and the diamond-jellium interfaces
are presented. Some of the results have been
briefly reported previously. ~ The results for the
Ge-jellium interface are presented first. The
total valence charge density is a good indicator of
the quality of the present work. For the repeated
slab geometry employed in our model to adequate-
ly represent noninteracting interfaces, the charge
densities away from the interface should reproduce
the bulk densities of the two materials. Figure 1

displays the total valence charge density in a
(110) plane perpendicular to the interface. A few
angstroms away from the interface, the charge
density is essentially a constant corresponding to
bulk aluminum on the metal side and bulk Ge on
the semiconductor side (obtained in Ref. 8 with
the same cutoff energies in the basis set), re-
spectively. As the behavior of the Schottky bar-
rier is determined by the states available in the
gap, we will investigate these states in detail.
The charge density of the gap states is plotted in
the (110) plane perpendicular to the interface in
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FIG 1 TTotal valence charge-density contours of the jellium-Ge(111) ' t f
corresponds to the number of electrons per unit "supercell. " Th b

m er ace in a (110) plane. Normalization

ge the normalization per unit cell of bulk Ge. Therefore, the density at the bondin site it
r e . e num ers in the plot should be multiplied b 8.112 to.f ~ he jellium region a typical value of 1.03 corresponds to r =2.08 which i

agreement with the aluminum charge density, r~ = 2.07.
r, = . , w ic is again in

Fig. 2(a). The same charge-density profile,
o(z), averaged parallel to the interface and plotted
perpendicular to it, is shown in Fig. 2(b). These
gap states induced by metal are free-electron-
like on the metal side and decay exponentially into
the Ge region. The decay length 5 is determined
to be -2.7 A from Fig. 2(b), which is a little
longer than the Ge-Ge bond length -2.5 A. There

is an oscillation of the average charge in the ex-
ponential tail due to the semiconductor bond.
Right at the interface these states look like dan-
gling-bond states found in the clean Ge(111) in-
terface. ' Another characteristic feature of the
gap states which is relevant to the behavior of
the Schottky barrier is the surface density of
states D, (E) For ene.rgies over the semiconduc-
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FIG. 2. (a) Charge-den-
sity contours for gap states
(0 & E & E ) in a (110) plane,
The numbers should be
multiplied by 0.57 to get
the number of electrons
per unit cell of bulk Ge.
(b) The same charge den-
sity averaged parallel to the
interface and plotted per-
pendicular to it.
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FIG. 3. Surface density of states D~ of the jellium-
Ge(111) interface in the gap. Also shown (in heavy
dashed lines), is the density of states of the clean
Ge(111) surface states in the gap from Bef. 8. It is
clear from the figure that the surface-state peak of the
clean Ge is drastically reduced by the metal contact.
The new metal-induced gap states give the more or less
uniform D, . Ez ' and E~z' are the Fermi levels of
the metal-Ge interface and the clean Ge surface, res-
pectively. (Note: The density of states of the clean sur-
face should be multiplied by the spin degeneracy 2 be-
cause it has been omitted-in Ref. 8. The same is true
for Fig. 6.)

tor thermal gap, we define

N(E, r) =- p ~q„-„(r)~'5(E —E„(k)) .
n, k

Thus -eo, (E) gives the density of surface charge
per unit energy per unit area. The calculated
D, (E) shown in Fig. 8 is more or less uniform in
the thermal gap region. Also superimposed in
the figure is the density of states of the clean
Ge(111) surface in the gap from Ref. 8. This

D, (E)=—a '
I N(E, r)dada, 0&E&E, , (3)
a ~0

where g is the interface area, g, is the gap, and
the integral over z is to be performed from the
interface to a point deep into the semiconductor
bulk. N(E, r) is the local density of states defined
by

figure clearly shows that the sharp peak of the
dangling-bond states found in the clean Ge surface
is dramatically reduced by the metal contact.
This is an unequivocal illustration that the gap
states of the Schottky barrier are not the intrinsic
surface states" but the metal-derived states. "
This is also in agreement with recent experi-
ments. " The Fermi level is not shifted by the
metal contact within our c@lculational accuracy.
The calculated height p, defined to be the dif-
ference between the conduction-band minimum
and the Fermi level (for the n-type semiconduc-
tor) is 0.55+0.1 eV. The effect of the image
force on the barrier height is neglected here. Our
calculated gap of -0.9 eV is somewhat larger than
the zero-temperature thermal gap, 0.75 eV. If we

should include spin-orbit splitting at the triply
degenerate valence band maximum in our calcula-
tion, the top of the valence band would be raised
by 0.1 eV. So our calculated gap size is in rea-
sonably good agreement with experiment. In any
case the value of p, for the n-type Ge is not af-
fected. This value is in good agreement with the
experimental values for the Ge-Al Schottky bar-
rier ranging from 0.49 to 0.61 eV u'3 As elec-
trons in our model do not experience the details
of the actual Al potential, one should not attach
too much significance to high accuracy. However,
because p, is found almost independent of the
metals in contact for the Ge Schottky barrier,
this agreement is a successful aspect of our cal-
culation. Experiments also show that the tem-
perature dependence of the barrier height is fairly
small up to room temperature, so that zero-tem-
perature band calculation is to be compared di-
rectly with experiment. "

The results for the jellium-diamond interface
are presented in Figs. 4 —6, in the same manner
as above. In Fig. 4 the total valence charge den-
sity on the metal side away from the interface
region is again a constant corresponding to alumi-
num charge density and that on the diamond side
agrees with bulk diamond calculated in Ref. 8. The
average charge density of gap states plotted in
Fig. 5(b) shows one noticeable difference compared
to Fig. 2(b) for the Ge-jellium interface. The
dangling bond of the diamond is so strong that it
gives rise to depletion of charge on each side of
the dangling-bond region. This effect is strongly
enhanced by the fact that the number density of
surface atoms of diamond is -2.5 times as high as
that of Ge. Otherwise, the overall charge dis-
tributions resemble each other. 5 is 1-.37 A in
this case, a little smaller than the C-C bond length
-1.55 A. The plot of the surface density of states
together with the corresponding density of states
of the clean diamond surface (Fig. 6) illustrates
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FIG. 7. Interface index S vs Pauling ionicity (from
Ref. 3). For SiC the value of S has been adjusted to
S- 0 (Ref. 14).

FIG. 6. Surface density of states D, of the jellium-
diamond(111) interface in the gap. Also shown (in

heavy dashed lines) is the density of states of the clean
diamond(111) surface states in the gap from Ref. 8.
Again, the clean diamond surface-state peak is dras-
tically reduced by the metal contact. The new metal-
induced gap states give almost uniform D, . Ez and

EJ,. are defined as in Fig. 3.

indirect gap is 5.7 eV compared with the experi-
mental value of 5.5 eV, uncertainty of -0.3 eV is
involved in determining energy levels. Spin-orbit
splitting is completely negligible for diamond.

IV. THEORY OF THE SCHOTTKY BARRIERS

The results obtained in the previous section are
analyzed here and the behavior of the Schottky
barrier is discussed, theoretically, based on this
analysis.

Empirically the barrier height'p~ obeys the
relation

is the famous curve obtained by Kurtin zt al. ,'
showing a rather sharp transition from covalent
to ionic materials among semiconductors. Agairi,
such a sharp trarisition has been questioned re-
cently, "and the data are rearialyzed to show dis-
persed points in a bubblelike region rather than

on a well-defined curve as in Fig. 7. In parti-
cular, it is found that there is nothing sacred
about S=1.0 saturation; S's for some materials
like SiO, are found far above the saturated $
= l 0 line (S-1.5 for SiO,)." Throughout this paper
S is in units of eV/(electronegativity units).

Keeping these new aspects in mind, we now use
a dipole-layer model' " to explain the behavior of
$ for different semiconductors. For a semicon-
ductor of electron affinity y, in intimate contact
with a metal, the electric dipole potential ~
established at the interface is

& =XI+ 4n —4 e

where p is the work function of the metal. Em-
pirically p„ is found to be linear in X(m)"; i.e.,

p„(s,m ) = S(s)X(m ) + p, (s)., (5) y. =&X(m)+ a.
where X(m) is the Pauling-Gordy electronega-
tivity of the metal" and S(s) and p, (s) are con-
stants depending on the semiconductor. $ is
usually called the "index of interface behavior. "
Obviously, this is a linear approximation to the
behavior of an extremely complicated many-body
system. It has been reported recently" after ex-
tensive analysis of the available data that the
slope S begins to decrease when X(m) is large
enough; i.e., S is also a function of X(m). But S
is still widely believed to be an important para-
meter characterizing semiconductors. Figure 7

The change in ~ for a metal of slightly different
X(m) in contact with the same semiconductor is
therefore

d~ = d4~ -AdX(m) .
On the other hand, since the change in ~ originated
from the change in dipole charge e(DE ) ~P„dw-e

have

dh= 4we D, (Ez)dg, p-off i

where 5,g is the effective distance between the
electrons transferred to the semiconductor side
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and the holes left behind in the metal. Eliminating
da from Eqs. (8) and (9) and using the definition,
S-=ep~/ey(m), we get

TABLE II. Theoretical and experimental values for
various parameters of the Schottky barrier. They are
defined in the text.

I

(10) Ge Diamond

ln our derivation of Eq. (10), the formation of the
&g -$ chemical bond is not taken into account.
Chemical bonding is not believed to, be crucial be-
cause we are doing a linearized Schottky-barrier
theory and 9-has been found experimentally to be
dependent only on semiconductor properties to
first order. Any JI/1-$ interaction is replaced by
a product of y of the metal and 5 of the semicon-
ductor in Eq. (5). The successful application of
Eq. (10) to Si and zinc-blende semiconductors has
been discussed previously. '

To calculate S from Eq. (10), we have to evalu-
ate the effective distance g,&. This distance is
the true distance divided by the appropriate dielec-
tric screening function, i.e. , 5,«=f /e +f, /e, .
We may approximate t /e by a typical screening
length in a metal -0.5 A and t, by our calculated
5 in Sec. III. The dielectric constant q, for po-.
tential fluctuations over a distance of the order of
5 has been found to be -2 for both Ge (Ref. 19) and
diamond. '0" A in Eq. (10) is taken to be 2.27 ac-
cording to Qordy and Thomas. "

Recently, it has been pointed out that the slope
A begins to decrease for large y(m). " This is
directly related to the dependence of S on y(m)
mentioned above and is a measure of the deviation
from the linear theory. If we could leave out the
contribution to the metal work function from the
surface dipole of the metal, the linearity would be
better. This fact was recognized by Heine in. his
early paper' and more explicitly stated in a re-
cent paper by SchKiter, "but we will not go into
the details of this controversal point" in the pre-
sent paper.

Substituting our results for L), and g obtained in
the previous section into Eq. (10), we obtain S
=0.14y0.05 for Ge and $=0.38q0.1 for diamond.
The value for Ge is in good agreement with experi-
ment (S-0.1). There are no acceptable experi-
mental data for 9 for diamond. One experiment
reported $-0.2 or smaller for diamond, ' but the
authors pointed out that this value is not conclu-
sive. The results are summarized in Table II.
Although we calculate $ without regard to the
doping condition of the semiconductors, it is
known experimentally that p, is practically inde-
pendent of doping density for typical doping den-
sities of n-10" cm '.

We now present some semiquantitative inter-
pretations of our results in terms of the energy
gap F., and the lattice constant a, . Comparison
with previous metal-Si and metal-zinc-b&ende

D's' (10~~ states/'ev cm2)
scarc (g)
ycb~~f (ev)
ycalc (eV)

Sexpot

S calc

4.7
2.7

-o 55'
0.55 + 0.1

1c
0.14 + 0,05

2, 3
1.37

~2e0
2.2 + 0.3

(0-2)
0.4 + 0.1

~ References 12 and 13,
Reference 14.

c Reference 3

semiconductor interface calculations indicates
that the charge transfer per unit area to the
semiconductor resulting from the exponential tail
of the metal-induced states in the thermal gap is
proportional to the number of surface atoms of the
semiconductor per unit area. In other words,
each surface atom of the semiconductor "induces"
approximately a fixed amount of charge transfer
from the metallic wave functions to the semicon-
ductor side. We neglect the dependence of the
density of surface atoms on the crystal face of
interest [e.g. , the (110) surface is a little more
dense in atoms than the (ill) surface] and nor-
malize it to the density on the (ill) surface. This
is justi. fied because the barrier behavior has been
known' to be insensitive to the crystallographic
orientation of the surface. We estimate that 0.6-
0.7 electronic states per surface atom are avail-
able on the semiconductor side in the thermal gap
for any of the following: Si, GaAs, ZnSe, ZnS,
Ge, or diamond. If we assume that the surface
density of states D, is more or less uniformly
distributed in the thermal gap, then a large gap
material has a small g), for a given number of
electronic states available. Neglecting lattice
constant effects, the D, of diamond compared, say,
to Si would be reduced by a factor of the ratio of
their gaps, -—,'. (Here we used the thermal gap
rather than Phillips' average gap. '4 'The use of
the Phillips' gap is not consistent with our argu-
ment for two reasons. First, we are interested
in the two-dimensional band structure. Second,
the assumption of nearly uniform Q, holds only in
a narrow region of the fundmental gap; it is ob-
viously not true for the wide energy region of the
Phillips' gap. The average gap of the tuo-dimen-
sional- Projected band stmctuxe would be appealing
theoretically; this gap is still too wide for the
uniform D, approximation. Moreover, we have to
calculate it separately while the thermal gap is
an easily measurable quantity. ) However, since
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diamond has a smaller lattice constant than Si, it
has a larger number of surface atoms per unit
area, hence, D, of diamond increases by a factor
of the ratio of square of the lattice constants -2.3.
The net resultant D, for diamond would be about
one half of Si, and indeed we get -2.3x10" states/
eV cm' compared with -4.5x10~~ states/eV cm'
for Si.'

5 is essentially a property of the semiconductor
and determined mainly by the gap size. The decay
length of the metal induced states of Ge (-2.7 A)
compares well with the decay length of the dan-
gling-bond states of the clean Ge surface (-2.5 A).
Corresponding values for diamond are -1.37 A

and -1.0 A, respectively. For completeness, we
give the corresponding values for Si; they are
-3.0 and -2.5 A, respectively. When a M-9 con-
tact is made, 5 increases by a small but finite
amount in each case. At the center of the gap, 5

for metal-induced states is very close to 5 for
dangling-bond states. As we approach the edge
of the gap 5 increases. So the average 5 for
metal-induced states is longer than the 5 for
dangling-bond states. This also accounts for the
fact that the fractional lengthening of 5 (from
dangling-bond states to MIGS) is in the order of
Qe, Si, diamond; i.e. , in the order of increasing
gap size. We may well take the value of p for
dangling-bond states if these states exist on the
clean surfa, ce and if a M-$ calculation is not avail-
able. A more elementary estimate of g using the
WEB approximation (g/25 =(mE, )'~', where E, is
Phillips' average gap'4) is also in'agreement with
our detailed calculation. Here, the average gap of
the two-dimensional projected band structure is
definitely the most appropriate one. But we can
simply take Phillips' p, . Iri general, $ is less
sensitive to 5 than to D, . It is crucial in the above
arguments that D, is approximately constant in the
thermal gap. This was assumed by some of the
earlier workers" and proved to be approximately
the case in a model calculation for the Si-metal
interface by Yndurain zt a3." Our complete cal-
culations show that it is always permissible to
replace D, (E„)by (D,(E)), the average of D,(E)
in the thermal gap, to calculate $.

Using the above arguments, we now examine the

case of cubic SiC. SiC is also an interesting test
case because $ for SiC would be greater than $
for Si or diamond if ionicity should be used as the
characteristic parameter. From experimental
data" the $ parameter for SiC is probably very
close to that of Si, although precise determination
is difficult. Using Si as a reference material,
and from the experimental values E, = 2.3 eV and
a, =4.35 A for cubic SiC,"we estimate D, for SiC
compared to D, for Si,

QSiC

Dsi
1.1 5.43

4 35 0 75

Assuming the same reduction in g we get $-0.2

for SiC, which is half the calculated $ for dia-
mond and close to the calculated value 9=0.13
or the experimental value 9- 0.1 for Si. Our cal-
culation predicts S si & $ ' & $ '~'", while any
model based on ionicity as the fundamental para-

would predict $» Sdi~ond& S sic

V. CONCLUSIONS

In summary, we obtain g„=0.55 eV and S =0.14
for Ge and p, =2.2 eV and S=0.4 for diamond
Schottky barriers. These values are in agreement
with experiment where experimental data, are
available. 5=0.4 for diamond does not fit into the
curve in Fig. 7 (~=0 for diamond). Our result
is also in contrast to recent attempts to para-
metrize the barrier behavior by the chemical re-
activity" or by atomic term values, ' which would

give $-0. If our calculation is confirmed by ex-
periment, this would support the conclusion that
the behavior of the Schottky barrier $ is not. pri-
marily determined by ionicity, and'a sharp transi-
tion between covalent arid ionic materials can not
be an appropriate description of the S(&X) cu'rve.
We argue in Sec. IV that D, ~ (E a',) ' using metal-
induced gap states, and we are able to explain the
behavior of the Schottky barrier without invoking
many-body effects or chemical bond effects.
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