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Calculation of the sodium vacancy thermal coefficient of expansion
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The method of lattice statics is used to calculate the temperature variation of the vacancy formation
volume 6 V of sodium in the range 90-300 K. 5 V is shown to derive its temperature dependence from that
of the elastic constants and that of the interionic potential taken from the work of Rasolt and Taylor. The
thermal coefficient of expansion of the sodium vacancy is found to be about 15 times greater than that of the
perfect lattice at high temperature. This result could play an important role in high-temperature defect
measurements and provides at least a partial explanation for the Arrhenius-plot curvature in sodium.

I. INTRODUCTION

In general, assuming a single-defect mecha-
nism, one expects the self-diffusion coefficients
D(T) of pure metals. to show a T ' exponential
behavior; i.e., a plot of ln D(T) vs T ' (Arrhenius
plot) should yield a straight line. However, exper-
imentally, significant curvatures in Arrhenius
plots of D(T) are usually found and it is of interest
to gain an unders. anding of the mechanisms behind
these curvatures. Clearly, one possible explana-
tion is that more than one defect is involved in the
diffusion process. However, an alternative explan-
ation, involving only a single-vacancy mechanism,
has been proposed. ' This requires the enthalpy
changes M associated with the formation and mo-
tion of this defect to be strongly temperature de-
pendent. Consequently the corresponding specific
heat hc~=(94k/sT)~ should be large. Now Gilder
and Lazarus' have shown that, to a good approxi-
mation,

6cq = 2TKPOP„D V~,

where Po and K are, respectively, the thermal co-
efficient of expansion and the bulk modulus of the
perfect lattice. 6 VD is the vacancy activation
volume of self-diffusion related to the thermal co-
efficient of expansion of the activated vacancy by

(2)

Hence one can see that a strongly temperature-
dependent b, V~ can lead to a large value of P, and
an appreciable curvature in the Arrhenius plot of
D(T). This appears to be the case in zinc' and
cadmium3 where the large variations of the activa-
tion volumes with temperature can be interpreted
as due to large values of P„(-15PO). Accepting that
such large values of P„are plausible, it is entirely
possible that the Arrhenius curvature is consistent
with the single-vacancy mechanism in the diffusion
process. Hence it follows that, before attempting

to incorporate other defect processes into an anal-
ysis of diffusion, one should assess the magnitude
of the effect of the activated vacancy thermal ex-
pansion. In this paper we provide an estimate of
this effect, not in cadmium or zinc, but in sodium
for which it is possible to perform with greater
ease, a meaningful calculation.

In sodium we note that the experimental values
of D(T) do exhibit an appreciable curvature when
displayed on an Arrhenius plot. ~ Unfortunately
there are not sufficient data for AV„as a function
of temperature to determine P„precisely. How-
ever, the curvature in Mundy's data4 is consistent
with a la, rge value of P„similar to those found in
zinc and cadmium. Hence a numerical estimate
of this quantity in sodium will provide a good test
of the importance of the vacancy thermal-expan-
sion mechanism in this system and help establish
the degree of plausibility for the presence of the
same mechanism in other systems.

In order to calculate aVD(T), and thus P~, we
need to know not only the vacancy formation vol-
ume ~ V but also the migration volume aV„:

Generally speaking, ~ V~ is believed to be much
smaller than AV although it is a poorly defined
quantity. Ideally we should include the effect of
4 V~ in our calculations, particularly since its
temperature derivative could still be comparable
with that of b V, but such a calculation is beyond
the scope of this paper. Hence we focus our at-
tention on a calculation of the relaxed-vacancy
thermal-expansion coefficient,

If this quantity turns out to be of about the same
magnitude as the values of P„needed to explain
the observed Arrhenius-plot curvature, the va-
cancy-expansion mechanism will be established
as an important contributor to this effect. If, on
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the other hand, it turns out to be very rhuch
smaller, then it is likely that such a mechanism
can safely be ignored.

In Sec. II we describe the method of calculation
and the interionic potential used. Then in Secs.
III and IV we present our results and discuss their
implications.

II. CALCULATION OF THE TEMPERATURE VARIATION
OF THE VACANCY FORMATION VOLUME

The formation of the vacancy introduces changes
in the interatomic interactions in its vicinity, giv-
ing rise to the lattice relaxation. Taking the defect
itself as the origin of the coordinate system, the
position of the atom / having suffered a displace-
ment u(l) from its equi)ibrium site r(L) is given by

x(l) =r(L)+u(L).

The overall response of the crystal will be a
uniform expansion by some fraction of an atomic
cell, which is referred to as the formation volume
b, V. In the lattice statics method, as proposed by
Kanzaki' and extensively used by Hardy and co-
workers, ' b, V can be written

b, V = 0 + G/3I(' .
Q is the atomic volume, K is the bulk modulus,
and G is the vacancy dipole moment defined by

(6)
l

The contribution G, of an atom in the Eth shell
comprising n, atoms is given by

G, =F(x(L)) r(l).

Hasolt and Taylor' recalculated at the electron
densities appropriate to the temperatures of in-
terest. These authors have shown that the contri-
butions to the interionic potential beyond second
order in perturbation theory can be simulated by
a model potential, the parameters of which are
determined by the requirement that a linear-re-
sponse calculation of the charge density of an iso-
lated ion embedded in an infinite electron gas
should agree exactly with a full nonlinea, r calcu-
lation of the same quantity. Full details are given
in their paper. Using this procedure, accurate
phonon dispersion curves can be generated in so-
dium, as well as other systems, ' with no parame-
ters adjusted to fit other experimental properties.
Also, other thermodynamic properties of sodium
are reproduced satisfactorily. " Hence this po-
tential shouM be entirely suitable for our purposes.
For all our calculations, the potential was trun-
cated at the eighth neighbor since this procedure
had been shown to give rise to negligeable er-
rors. "'"

To determine the contribution G', for each shell,
we can either use the exact value of the first de-
rivative of the potential at the relaxed positions of
the atoms

@r( )
sc (x)

x(l)=t r (g)+ u(g) t

or we can approximate C, (u) by means of a Tay-
lor's series expansion in u(L). In the first case

~ x;(L)r;(L),
( )

which reduces to

G, = r(L)C,'(u) (10)
The force F(x(l)) on the Lth atom due to the defect
has to be evaluated at the relaxed positions.

The formulation of lattice statics is strictly val-
id at zero temperature, and the calculation of the
formation volume at elevated temperatures should
take int'o account the effect of lattice vibrations
and thermal expansion. But it has been shown, in
a previous paper, ' that the contribution of vibra-
tions to the calculated value of a V is negligeable
for all metals. Then, if it is assumed that the
host atoms interact among themselves through a
pairwise potential 4, the defect potential due to
the absence of an atom is just -4, in the case of
a vacancy. Therefore, the use of an interionic po-
tential taking into account the variation of elec-
tronic charge density with lattice parameter or
temperature to calculate the forces in Eq. (7) will
give a good description of the variation of 4 V with
temperature.

For the interionic potential we used that of

when the displacements are radial. In the second
case, we can write

F (x(L)) =F (r(l))+ gu, (l) + ~"
r (l)

Substituting Eqs. (12) and (13) in Eq. (7), and ne-
glecting higher-order terms, we obtain

G, =r(l)C,'(0) +u(l) ~ r(L)C I'(0) . (14)

Qf course

F;(r(l)) =r; (L)4, (0)/r(l),

thus

sF~ r; (l) r, (l) „C,'(0) 5;;4,'(0)
ex~(L) -, (, ) r '(l) ' r(l) r(l)

(13)
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We can see from Eq. (14) that a calculation of
G, requires knowledge of the values of the first
derivative of the potential, not at the relaxed po-
sitions as in the first approach defined by Eqs. (9}
and (10), but rather at the equilibrium positions
of the ions.

The choice between using Eq. (10) or Eq. (14}for
the calculation of G, will be determined by con-
sidering the convergence of the Taylor's expan-
sion used in Eq. (11) and the possibility of calcu-
lating the atomic displaeements for the different
shells.

In the ease of sodium, considering the first two
shells, one observes that although the first-deriv-
ative value of the potential is of the same order of
magnitude for the first and the second neighbor,
the second-derivative value for the second neigh-
bor is only 7% of its value for the first neighbor.
Thus we can expect the use of Eq. (14) to be justi-
fied to calculate G2. On the contrary, G, ought to
be obtained from Eq. (10), which is appropriate in
that case as we know from symmetry considera-
tions, that the displacements of the first neighbors
of the vacancy are radial.

In order to calculate the value of G, from Eq.
(10), we need to know the displacements of the
atoms. belonging to the first shell; those have been
obtained by use of the static Green's function
method. " The first and second derivatives to the
interionic potential are calculated for the l th shell
at each temperature or lattice parameter, the
force-constant matrix Q is then given by

a) ~ (&)&8(f) @i(0) @-0) 5 aK(0)
~(&)' ~(f) ' ~(~)

(15)

u(l) r(l) =GP, /~(L), (18)

n,r,C,(u)+Q', , n, ~(l)e;(0)
1-Q;,~,s, c",(0)/y(i)

(19)

from which a temperature-dependent value of the
formation volume of the vacancy can be obtained
via Eq. (5), when the temperature dependence of
the isothermal elastic constants contributing to K
and P, is known.

where P, is a factor dependent on elastic constant
values and orientations of the atoms of the Lth
shell. In addition, P, is given by a rather corn
plicated integral expression which is, in general,
not reducible to a simple analytical form. Numer-
ical integration is thus required to gerierate the
P, 's appropriate to the present calculation. The
validity of using two approximations, na, mely,
Taylor's expansion and elastic-field approxima-
tion, in the calculation of the contribution of the
non-first-neighbor shells will be justified below in
considering their numerical values. Another ad-
vantage of making those two approximations is that
it is no longer necessary to undertake an explicit
calculation of the displacements and potential val-
ues for the second to eighth rieighbors, because in
the determination of G2 to G, an elimination of the
displacement u(l) occurs between Eqs. (6), (14),
and (18). On the contrary the calculation of G„
from Eq. (10}, implies the determination of the
displacement M, (1}from Eq. (16) and then the cal-
culation of the interatomic potentia, l first deriva-
tive C ', (u).

Finally, substituting Eq. (10) for l = 2 and Eqs.
(14) and (18) for f =2 to 8 in Eq. (6) yields

u, (2) =c ', (o)[~-„'—c",(0)j-', (16)

where XI- is a simple combination of the matrix
elements:

I (0) I (2) 2I (2) I (3) 2I (3)

2I (3) I (5) 2I (5) (17)

To determine the displacements of the atoms of
the second to eighth sheQs, we make use of the
value of the elastic field around a symmetric point
defect in a cubic anisotropic material"

Next the Fourier transform of the matrix P is
calculated. Taking the inverse of Q and then the
inverse Fourier transform of p ', by summing
over the allowed values of the wave vector in the
Brillouin zone, the lattice Qreen's function I' is
readily obtained. Assuming a perturbed space
consisting of the nearest neighbors and the vacancy
site, the expression for the displacement of the
first neighbors may be written'~

III. RESULTS

Using Eq. (15}, the force constant matrix 4 has
been obtained from the iriterionic potential calcu-
lated for several lattice parameter values or tem-
peratures. The derivation of the temperature-de-
pendent lattice Green's function l required subse-
quently the inversion of 4 and summation over
85 000 points in the Brillouin zone. The displace-
ment component of the first-neighbor atom then
followed from Eq. (17); it was found to be directed
inward (in the direction of the vacancy) and its am-
plitude u, (2} expressed in unit of the lattice param-
eter was found to decrease with temperature from
0.041 at 93 K to 0.033 at 296 K.

The nori-first-neighbor displacements contribute
to the defect strength. with the second term in the
denominator of Eq. (19); this contribution appeared
to be small at all temperatures and of the order of
0.051. This result justifies the approXimations of
elastic-field displaeements and Taylor's series
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development which have been used to calculate
G3 ~ ~ ~ Gs.

The isothermal elastic constants of sodium were
taken from the data of Martinson'4 and used to cal-
culate K(T) and P, (T). The experimental data were
used in preference to the calculations of Ref. 10-
because of the difficulty of generating an accurate
representation of the volume-dependent potential
which also contributes to the elastic constants. "'"
We did not extend our calculations to temperatures
above 300 K due to the absence of experimental
elastic constants above that temperature.

The variation of the formation volume is plotted
against temperature in Fig. 1 and shows a rapid
increase with temperature. The calculated values,
in the range 90-300 K, are in very good agree-
ment with a quadratic best fit of the form

I
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FIG. 2. Variation of the coefficient of vacancy thermal
expansion in sodium with temperature.

& V/0=0. 2733+2.235xl0 'T~, (20)

(21)

Combining Eqs. (21), (3), and (20) we find that

p =pa+4. 47 x10 'T/(0. 2733+2.235 x10 'T') .
The values of P(T) and P(T)/P, (T), as calculated

from Eqs. (20) and (21), are illustrated in Fig. 2.
P is found to increase with temperature from 1.55
xlo-'K-' at 93.1K to 3x10-'K-' at 296.2K; or
in terms of the thermal coefficient of expansion of
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FIG. 1. Variation of the vacancy-formation volume in
sodium with temperature.

where the contribution of higher order in T can be
ne gle cted.

The slope of the A V(T) curve gives the value of
the vacancy thermal coefficient of expansion P. We
note that V, gQ gV ' ggV 0

the perfect lattice P„we have 11.7 P, & P & 14.7P,
in the same temperature range.

IV. DISCUSSION

For sodium the self-diffusion activation volume
has been experimentally determined at two tem-

peraturess,

the values being 4 VD = 0.467 + 0.008 Q

at 288 K and & VD = 0.540 + 0.008 0 at 365 K.
Therefore, the increase of the calculated forma-
tion volume is consistent with the increase of the
measured activation volume. In addition, the value
of ~ V = 0.46 0, presently calculated at 288 K, is
evidently in good agreement with these measure-
ments.

Our results show that a good description of the
first-neighbor displacement is essential in the case
of sodium; the value of u(1) obtained by lattice-
statics calculation is much larger than the value
given by the elastic-field theory, as previously
pointed out. " At 300 K, if the relaxation of the
first neighbors were either neglected or approxi-
mated by a value derived from the elastic theory;
we would obtain, respectively, the values of 0.91
and 0.87 0 for ~ V, both of which are two times
greater than the presently calculated value.

The large calculated value of thermal-expansion
coefficient for a vacancy in sodium, P =15P, at
high temperature is of the right order of magni-
tude to be consistent with the activation volume
measurements of Mundy. However, we find an
increase of P with increasing temperature in the
case of sodium, opposite to the behavior found in
zinc. This difference in behavior is nest too sur-
prising, inasmuch as P=T ' was established for
zinc and cadmium in a temperature range, where
T is two to three times larger than the Debye tem-
perature OD. However, for sodium GD=150 K, so
that the presently calculated values of 4 V fall in
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the "reduced temperature" range, 0.6 & T/0 & 2.
We thus expect ~ V, at low reduced temperature,
to decrease and become independent of tempera-
ture (P- 0 for T -0 K), consistent with the third
law of thermodynamics.

In the temperature range 195-370 K the curva-
ture in the Arrhenius plot of sodium experimental
diffusion data implies a change in the vacancy-
diffusion enthalpy 5s H = 2.2 + 0.1 kcal/mole. ' Us-
ing Eq. (1) and extrapolating our calculations of P
to 370 K we obtain a value of 5~ H = 1.0 kcal/mole,
which is of the same order of magnitude, Since
we have ignored the contribution of (SAV„/BT)~ to
the diffusion enthalpy, the difference between
these two numbers should not be regarded as sig-
nificant. Hence we conclude that it is quite possi-
ble that the Arrhenius curvature is entirely due to
the thermal expansion of the diffusing vacancy.
But in any case it is clear from our calculation
that the highly relaxed monovacancies of sodium
are endowed with a sufficiently large thermal co-
efficient of expansion to make an important contri-
bution to the measured Arrhenius-plot curvature.
It would appear then that to neglect this effect in
an analysis of diffusion data is unrealistic, even
when it is assumed that at least two diffusion
mechanisms are operative.

In a final comment we note that a change in ha
of 1 kcal/mole (=0.04 eV) over the temperature
range 195-370 K is =10'fo-15% of the measured
formation enthalpy in Na, ."'" Hence this effect
should not be ignored when interpreting these ex-
periments.

In conclusion, it has been shown that the availa-
bility of reliable interionic potentials for simple
metals makes it possible to undertake tempera-
ture-dependent calcuhtions of the vacancy thermal
coefficient of expansion.

However, this supposes that for each metal con-
sidered there exists an adequate @ay of handling
the problem of convergence that arises from the
oscillating nature of the potential. In the case of
sodium this problem is, in effect, drastically
simplified by the fact that the truncation at the
eighth nearest-neighbor site, used by us, had been
previously shown to yieM all of the phonon and
thermodynamical properties of sodium. Although
the present results cannot be readily applied to
other metals (nonalkaline as well as alkaline), the
technique can, provided that a reliable interionic
potential that depends on lattice parameter exists
and that an adequate means of treating the problem
of convergence is readily available. Inasmuch as
the present calculation represents the only known
first-principle-type calculation of the vacancy co-
efficient of thermal expansion, it remains to be
seen whether the above-mentioned conditions can
be satisfied for a wide variety of metals. Consid-
ering the order of magnitude of the present result,
it is clear that the thermal properties of the va-
cancies should not be neglected in future studies
of thermal dilation and self-diffusion in metals.

ACKNOWLEDGMENTS

We express our gratitude to Dr. Roger Taylor of
the National Research Council of Canada for his
considerable help in the utilization of his sodium-
potential computer routine as weQ as for his useful
comments on the manuscript. In addition, we
would like to express our deepest thanks to Pro-
fessor G. Sines of UCI A for his extremely helpful
contribution to our understanding of anisotropic
continuum defect calculations. We are indebted to
the Centre National de Recherche Scientifique of
France for supporting this project.

*Present address: Centre des Materiaux, Ecole des
Mines, B.P. 87, 91003 Evry Cedex, France.

H. M. Gilder and D. Lazarus, Phys. Rev. B 11, 4916
(1975).

L. C. Chhabildas and H. M. Gilder, Phys. Rev. B 5,
2135 (1972).

3B. J. Buescher, H. M. Gilder, and N. Shea, Phys. Rev.
B 7, 2261 (1973).

4J.
¹ Mundy, Phys. Bev. B 3, 2431 (1971).

~H. Kanzaki, J. Phys. Chem. Solids 2, 24 (1957).
6See, for example, J. B. Hardy, J. Phys. Chem. Solids

15, 39 {1960);J. H. Hardy and R. Bullough, Philos.
Mag. 15, 237 {1967).

~H. M. Gilder and P. Audit, Phys. Bev. Lett. 38, 30
{1977).

M. Basolt and R. Taylor, Phys. Rev. B 11, 2717 (1975).
9L. Dagens, M. Rasolt, and B. Taylor, Phys. Rev. B 11,

2726 (1975).
S. S. Cohen, M. L. Klein, M. S. Duesbery, and B. Tay-
lor, J. Phys. F 6, 337 (1976); 6, L271 (1976).
M. S. Duesbery and R. Taylor, J. Phys. F 7, 47 (1977).
&. K. Tewary, Adv. Phys. 22, 757 (1973).

'3D. J. Miller, 6, Sines, and J. W. Goodman, Acta. Met-
all. 23, 245 (1975).

~4B. H. Martinson, Phys. Bev. 178, 902 (1969).
' Z. S. Basinski, M. S. Duesbery, A. P. Pogany, B. Tay-

lor, and Y. P. Varshni, Can. J. Phys. 48, 1480 (1970).
~ M. W. Finnis, J. Phys. F 4, 1645 {1974).
' L. L. Boyer and J. B. Hardy, Phys. Bev. B 4, 1079

(1971).
' R. Feder and H. P. Charbnau, Phys. Rev. 149, 464

{1966).
W. Adlhart, G. Fritsch, and E. Luscher, J. Phys. ,

Chem. Solids 36, 1405 (1975).


