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The elastic constants of bcc Nb-Zr alloys are measured over a composition range between 100 and 30 at.%
of Nb and temperatures between zero and the melting point, using a new technique for the high-temperature
measurements. Anomalous behavior is found for C~4. The anomaly is a band-structure effect which is
corroborated by theoretical calculations using electron-lattice coupling constants derived from a tight-binding
parametrization scheme. The calculation is of a type similar to phonon dispersion ones, having the further
complication of temperature eA'ects which have convergence difficulties and need a special interpolation
method.

I. INTRODUCTION

An anomalous behavior of the trigonal shear
constant C44 versus temperature has been observed
in Sd, 4d, and 5d transition metals of the tenth
column with fcc structure and of the fifth column
with bcc structure. This is the case for Pd, Pt,
Nb, and also for V and Ta as was measured re-
cently by one of us (E. W.). The band structures
of these metals have the common feature that the
Fermi level lies 10-20 mHy from the top of a den-
sity-of-states peak, 2nd that the Fermi surfaces
contain open and closed sheets' ' (case of Nb:
Fig. 1). This common feature seems to be the
reason for a similar type of anomaly in all of
them, and Nb is the one which exhibits the largest

. anomaly.
Since elastic constants are related to acoustic

phonons in the zero-momentum limit, an anomaly
in C44 is probably followed by one in the appropriate
low-momentum tr ansversal phonon. Such an
anomaly exists in the phonon spectrum of Nb, ' '
and might have an effect on its superconducting
properties. So a detailed experimental and
theoretical study of the C44 anomaly in Nb i.s
associated with the attempt to understand phonon
anoma1ies. and superconductivity in this substance,
which is becoming a subject of wide interest. ' '

The underlying idea of this work is to study the
elastic constants in Nb as a function of two param-
eters, temperature and number of electrons per
atom. Temperature effects are measured from
close to zero up to the melting point, and the vari-
ation in the number of electrons is achieved by
alloying.

A suitable element to alloy with Nb for such
measurements seems to be Zr. It has one electron

less per atom, and the alloy's bcc phase is stable
over a wide range of composition. Moreover, as
far as the relation with superconductivity is of
interest, the maximal T, in the substance is for
25-at. /0 Zr." As for previous elastic constant
measurements, the only available data are those
of Armstrong et al."on a pure Nb single crystal,
of Hayes and Brotzen" on few Nb-rich Nb-Zr
single crystals, and of Qoasdoue et al. ' on Zr-
rich single crystals. No systematic measurements
have been done in the past over a wide range of
compositions and at temperatures close to the
melting point.

For such a task two major technical difficulties
have to be overcome, namely, the growth of
Nb-Zr single crystals over a wide composition
range and the performance of ultrasonic mea-
surements at very high temperatures. In previous
publications, '4 "low-temperatu t. e measurements
of Nb-Zr single crystals up to 70-at.% Zr and high-.
temperature measurements for pure Nb have been
presented. Here we present results for the same
samples as in Ref. 14 at the whole temperature
range up to the melting point.

The anomalous behavior obtained for the elastic
constants is explained by a calculation based on
the band structure of Nb, and the electron-lattice
coupling constants. The basic idea and fermulas
have been presented in a previous work. " The
method is equivalent to a tight-binding calculation
of the electronic contribution to the zero-momentum-
limit phonon spectrum, using electron-phonon
coupling constants based on a moving-wave-
functions basis.

The rigorous formulation of the electron-phonon
coupling problem in terms of a moving basis,
and its relation with the Bloch formulation, is
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FIQ. 1, Results of Mattheiss Q.ef. 1) for the band strucor e and structure, the density of states and the Fermi surface of Nb

presented elsewhere. " In our opour opmxon such a,

method provides fast convergence for electron-

The sam
p onon- coupling calculations in trans t' tal .

e same electron-phonon parameters used here
have been used in a previous work" solving un-
restrictedly the Eliashberg equations for Nb
obtainin ~ ~ ~

g e anisotropxc mass renormali t'
an superconducting gap function. The ca,lculated
mass renormalization anisotropy is found to agree
with recent de Haas-vsn Alphen (dHvA} results. "
The moving-wave-function basis for the electron-
p onon coupling has been used recently also be
Varma et al.o

A partial description of the theoretical part of
this work is presented in Ref. 20.

II. EXPERIMENTAL PROCEDURE

A. Method

The detailed description of the Nb-Zr single
crystals growth is given in Ref. 14. To determine

e sound velocities, we use the classical ul

4.2-3
ec xque. In the low-temperature region

. -300 K) the transducer was bound d tl
e crystal by means of Nonaq stopcock lubricant.

under 200 K and salool between 200 and 300 K.
Above roomoom temperature we use a technique which
is equivalent, in principle, to that described by
Lowrie and Qonas" but with slight modifications.
The experimental setup for ultrasonic measure-
ments is shown in Fig. 2. It is essentially the
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same as that described previously for a pure Nb

single crystal. " Using this method one measures
the time delay between two echoes of an ultra-
sonic wave reflected from two parallel surfaces of
the sample where only the sample's portion be-
tween those two surfaces is homogeneously heated.

Large single crystals of pure Nb were available
and it was thus possible to make a step cut on them
and produce the two required parallel surfaces.
This could not be done for the Nb-Zr alloys. Those
single crystals have been grown quite small, of
15-20 mm in length and about 5 mm in diameter,
which excludes making any step cut on them. This
difficulty is overcome by welding the small Nb-Zr
single crystal on the top of a sufficiently large
pure Nb single crystal. The welding is done by
diffusion at about 1500'C. If pressure is applied
on the contact surfaces, then the time needed for
such an operation does not exceed 1 h. Otherwise
it takes several days. After completing the mea-
surement, the sample is separated from its
pedestal (wave guide or buffer rod) by spark cutting
and the base is usable for another experiment. All
the measurements are done with the same Nb wave
guide of 10 cm length and 10 mm diameter.

The Nb-Zr single crystals as well as the pure
Nb wave guide are oriented in the [110]direction.
This allows the determination of the three indepen-
dent elastic constants (see Sec. II) by measuring
the sound velocity of the pure longitudinal mode
v, and the two pure nondegenerate transverse
modes n„and v„. They are related to the elastic
constants by the well-known relations

p v, —s (C,~ + C~s + 2C44)

for the longitudinal rg.ode,

pv gj
—C44

for the C transverse mode, and

pv~ —,(C„—C„)

(1b)

(lc)

for the C' transverse mode.
In order to excite a pure elastic transverse

mode in the sample in its maximum intensity, one
must use the pure transverse mode in the wave
guide which is the least attenuated. In pure Nb
and also in the Nb-Zr alloys, the C' mode is much
more attenuated than the C mode. This fact was
attributed by P. A. Maeusli and S.Steinemann (pri-
vate communication) to the relaxation of interstitial
oxygen atoms during the C' mode deformation. For
this reason we use the C transverse mode in the
Nb wave guide to excite both C and C' modes in
the samples. This means that the wave guide
and the sample are oriented such as their [001]
directions are parallel for the C mode and per-
pendicular for the C' mode. Therefore, two dif-
fusions have to be made for measuring the trans-
verse modes. Attenuation is small fo'r the long-
itudinal mode, on the other hand.

The sample is heated using an rf coil keeping
the transducer contacting Nb face at room tem-
perature by water cooing. The large temperature
gradient affects mainly the traveling wave in the
Nb portion and not the measurements. Neverthe-
less, a small temperature gradient remains in
the sample. It can be reduced to a minimum by an
optimal choice of the sample position inside the
rf coil., but cannot be totally eliminated. In our
ease, the maximal temperature. difference along
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the sample has been kept below 50'C in the whole
temperature range. Moreover, since the variation
of the elastic constants is small and almost linear,
the effect of this gradient can be reduced by con-
sidering the average temperature. This is pos-
sible above 1000 C where a two-color Leybold
pyrometer is used for temperature measurements.
In the range, between room temperature and 1000'C,
we use a chromel-alumel thermocouple dipped
in a piece of copper, pressed on the free face of
the sample through a thin plate of sapphire,
avoiding any diffusion of copper into the crystals.
This sapphire plate, which gives a relatively
poor thermal contact between the sample and the
thermocouple, introduces errors in the measured
temperatures. Those errors are reduced by
making measurements with increasing and de-
creasing temperature (it is not possible to achieve
stabilization in this range), but there still remains
an uncertainty of +50'C. For temperatures higher
than 1000'C stabilization can be achieved and
those errors do not exceed 10'C. Below room
temperature the method described in Ref. 14
enables temperature accuracy of a2'C.

All the time measurements between the two first
echoes resulting from the 10-MHz pulses are per-
formed on a Tektronix oscilloscope with time
delay plug-in unit which displays directly the time
difference between any two points on the screen.
This technique is not very accurate, but it is dif-
ficult to measure smaQ differences in the delay
time between two echoes when the overall delay
has a much higher inaccuracy due to the variation
in the temperature gradient along the Nb wave
guide. The displayed time value has a resolution
of 0.01 p. sec as long as time is less than 15 p.sec;
otherwise it has only resolution of 0.1 p. sec. In
our case, the delay between echoes is generally
larger than 15 p, sec and a one-digit accuracy is
lost. Because of this fact, measuring points do not
follow a smooth curve.

8. Resu1ts

The results measured for the two transverse and
the longitudinal elastic constants given in Equations
(la)-(lc) are shown in Figs. 3 and 4. In Fig. 5
we present the bulk modulus fi =-', (C»+ 2C„)
determined mathematically from those results.
These results are characterized by the following
systematic anomalous behavior.

In the low-temperature range C4, has a minimum
which shifts down in the temperature scale from
450 K for pure Nb to 60 K for 'l5-at. % Nb. De-
creasing the Nb percentage further, this minimum
shifts up in the temperature scale and persists
as a change of slope; it disappears for 30-at.%Nb.

The V5-at. %%u()Nbcompositioncase isalso theone
with the maximal superconducting T,.' Using the
rigid-band approximation, it is around this com-
position where the Fermi level crosses the top
of the density-of-states peak. '

In the high-temperature range, the slopes of
the C,4 curves change rapidly with composition,
and they all cross around 900 K. The slopes of
C«and of C' = —,'(C» —C») decrease towards the
melting points. The temperature at which this
slope decrease starts goes down as the Zr per-
centage increases.

III. THEORETICAL CALCULATION OF ELASTIC
CONSTANTS

The theoretical calculation is based on a distance-
dependent tight-binding par ametrization of the
APW result of Mattheiss for Nb (Fig. I),
and a Brillouin zone summation of matrix elements
obtained from those parameters, used to evaluate
the elastic constants as functions of temperature
and composition. The theoretical elastic constants
are isothermal and not adiabatic (as measured
by experiment). However, the difference between
the two is believed to be small compared with the
inaccuracies involved in the calculation.

g, (R, r) = -- Q e'~'ay, „(r-R),

where

p, „(r)= (I/r)R, (r) Y,„(A),
R are the equilibrium lattice positions, and E are
taken as 0 and 2, considering the 4d and 5s bands.
The two-center transfer integrals are given by

(3)

pr(R) f(,„(r)'v(r) (,.~ (r —R=) d'~, (4)

where V(r) is an atomic contribution to the lattice
potential, assumed here to be spherically sym-

A. Tight-binding parametrization

The effective tight-binding transfer integrals
determining the band structure are expressed as
functions of distance in terms of several param-
eters. Such a procedure is useful both to reduce
the number of parameters required and to determine
the electron-lattice coupling constants. This
parametrization. is based on the generalization
of the method of Ashkenagi and%cger. which
has been used in parametrizing the band structure
of V3Qa, ' and also by Birnboim and Gutfreund'
calculating electron-phonon coupling constants.
The method is now described.

The Bloch functions are assumed to be linear
combinations of the functions
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of p, (r-R) in power series of r/R Using s. pheri-
cal coordinates around r =0, and doing the in-
tegration (4) we consider only the leading non-
vanishing terms. So doing one gets distance-
dependent integrals expressed in terms of the
parameters Q„P„anBd,„, the last being a
multiplication of A. „with a radial integral including
R, (r). The resulting expression for the Slater-
Koster transfer integrals are given in Table I.

The band structure of Nb (Fig. 1)' is fitted by
those parameters considering neighbors up to the

third shell, and also considering two additional
crystal-field-splitting integrals as parameters.
The effects of three-center integrals and of over-
lap integrals between wave functions centered on
neighboring atoms are neglected. The values ob-
tained for the band integrals and their distance de-
rivatives are given in Table II. (The distance de-
pendence of the crystal-field-splitting integrals
is neglected. ) For the d transfer integrals a
behavior close to R is obtained, which is approxi-
mately the one expected from resonance theories. "

Using the band parameters given in Table II,
and the s-d Slater-Koster angular coefficients
given in previous publications" "(in terms of
the direction cosines I,, i=1,2, 2) a tight-binding
6 x6 space Hamiltonian matrix R(R) is constructed.
This space gamiltonian is Fourier transformed and
diagonalized giving the band energies (fitted to
Mattheiss' results)

F. "= I [U'gk)] Qe"'"H'"'(R))()' (k) (6)

where U(k) is the eigenvector unitary matrix
transforming the basis functions given in Eq. (2)
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TABLE I. Expressions for the two-center transfer integrals as functions of the interatomic
distance R, in terms of the parameters B»., Q&, and P, (l =0, 2).

Integral

dda(R)

dd~(R)

dd~(R)

@go'(R)

sd&(R)

(B»/R') exp(-Q, R) [1+,(1 —P,)(3-P,)

+~(3-» )Q2R+~&(Qp)'1

-(B2&/R ) exp(-Q2R) (2 —P2+ Q2R)

(B2$/R') exp(-Q2R)

(Bpp/R) p(-Qc

(Bp2/R) exp(-Q2R) + (B2pl R ) exp( QpR)

[+3(1—Pp) (3—Pp) +
3 (3 —2Pp) QpR + 3 (QpR) J

to the Bloch eigenfunctions, and 5 is the band in-
dex.

B. Derivation of the elastic constants

There have been several errors in the formulas
derived in Ref. 16, so they are rederived, making
some generalizations.

Assuming a crystal undergoing a deformation
given to the first order by

5R,. = &,,R,.

the strain tensor & is defined by

formation is given by

1~6E=—~ C g& Eg,
n)3

where, using the Voigt notation, a vector index
n =1, . . . , 6 is equivalent to a pair of matrix in-
dices ij=11, 22, 33, 23, 13, 12, respectively.

The tensor of the elastic constants, C, is sym-
metric, and for a cubic system it contains only
three different elements C», C», and C«re-
presented before Eq. (1) (the other elements being
either equal to those or to zero by symmetry).

Diagonalizing the C matrix, one gets three dif-
ferent elements:

According to Hooke's law, the bilinear increase
in the free energy per unit volume due to the de- is the bulk modulus,

g.Oa)

TABLE II. Values, in rydbergs, of the crystal-field splitting, the Slater-Koster transfer integrals, and their distance
(R) first and second derivatives, used for Nb in this work.

ddo SSo' bIl.e]

Integral

f(R)

First
derivative

R df
f dR

a 0~3&2

ap

apW2

ape 3/2

ap

apv2

-0.085 70

-0.048 09

-0.010 35

-3.922

-4.118

-4.806

0.079 09 -0.024 52 -0.072 88 -0.068 92

-4.325

-4.588

-5.430

-4.921

-5.218

-6.136

-2.559

-2.800

-3.456

-1.879

-2.394

-3.517

0.041 68 -0.01183 -0.049 59 -0.050 64

0.007 41 -0.001 67 -0.016 64 -0.018 18

-0.064 77 -0.099 57

Second
derivative

R2 d2f

f dR2

ape 3/2

ap

ap~2

18.13

19.75

25.57

21.41

23.77

31.90

27.35

30.38

40.73

7.67

8.86

13.88

1.54

4.78

12.70

' Crystal-field splitting between the 4d and the 5s orbitals.
Crystal-field splitting between the e (d 2, d 2 2) and the t (d„~, d„», d~,) orbitals.
ap = 6.2294 a.u. .
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is the tetragonal mode shear constant, and

G2 = &44

(10b)

(10c)

particle Hamiltonian matrix in power series of
the strain 'Y),:

H(k y ) = g-' y"H ' "'(k) .
flW

& i = &2 = &3 = 'Yo y

&4=&5= &6= 0.
(ii) [001] symmetric tetragonal shear

(11a)

is the trigonal-mode shear constant.
Tetragonal and trigonal shears are double and

triply degenerate, respectively. To simplify the
calculations we choose special symmetric de-
formations of those types. We make the calculation
for the following three strains:

(i) Homogenous exPansion.

(h, l)( )
(pg
& ~&x &o

8 Ehk H&k 2&(k)+2+'tHh'ht (k} I

2 bb~4 0 b' bk b'k

(18a)

(18b)

Inserting (15) and (18) in Eq. (14) we get the fol-
lowing expression for the elastic constants:

Working in the undistorted lattice-band represen-
tation, in which H', ~y "(k) = 6», E;„, we can apply
a perturbation expansion and get

—2f —-2&1 2 3 1 0

4 ES E6

(iii) [ill] symmetric trigonal shear

2=&3=0

4 5 6 2'

(1lb)

(11c)

bk bb' k

x a&') kbb' bb'

f( g) f( 'g) (19)
bk b'k

G = —' QH'. "(k)f(Ehk}+QH'h'h) "(k)*

For each of these deformation the bilinear in-
crease in the free energy per unit volume is given
by

6F(y,) = ,'G, y', (X=0-, 1,2). (12)

So the elastic constants can be calculated dif-
ferentiating the free energy with respect to the
appropriate strain:

(14)

where f is the Fermi function.
The strain derivatives of the Fermi function are

given by

sf(Ehk) df(Ehk} sEhk sEF
~'Y) d+bk

and the Fermi energy derivatives are obtained
from the number of particles conservation: '

(15)

gdf(E -) &E,; gdf(E@)
k bk 4 g bk

(16)

This derivative vanishes for X=1,2 as was shown
in Ref. 16.-

In order to obtain the strain derivatives of the
band energies we expand the electrons single-

Using a noninteracting-particle type of free energy
one obtains the following expressions for G, :

where the second s~m is taken also for b =b' ob-
taining df(E)/dE as a limit.

Equation (19) could be also obtained by a dia-
grapnatic approach calculating the electronic con-
tribution to the zero-momentum-limit acoustic
phonons. The elastic constants G, are proportional
to lim, [Qh(q)/q]', Qk(q) being the appropriate
phonon frequency [see Eq. (1}]. The matrix ele-
ments Hh'. hy"'(k) are proportional to lim, ,
[g",h."'(k, q)/q "],g" "'(k, q) being the appropriate nth-
order electron-phonon coupling matrix based on
wave functions which follow the atomic displace-
ments. In Ref. 18, the same method and band
parameters used here are applied to calculate
the first order electron-phonon coupling matrix
elements, solving the superconducting Eliashberg
equations.

In our tight-binding scheme, the H" "'(k) matrices
are related to strain derivatives of the space
Hamiltonian matrix H(R) by [see Eq. (6)]

H'k "'(k) =Q e'"'"U(k)tH'" "'(R)U(k) . (20)
R

In order to calculate the derivatives H'k "'(R),
n = 1, 2, we need the first and second R (distance)
derivatives of the band parameters given in Table
II; we need the first and second l,. (direction
cosines) derivatives of the angular coefficients
used to construct H(R), given from expressions
in Refs. 16 and 26; and finally we need the first and
second strain (yk} derivatives of R and l, The
first strain derivatives sR/sy, and sl,./sy„are ob-
tained using Eq s. (7), (8), (ll), and given in
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TABLE IH. Strain derivatives of the distance g
and of the directions cosines l,; (i=1,2, 3) for )he strains
y), (& = 0, 1,2) def ined in the text.

Strain

Expans ion
A, =O

Tetragonal
A, =1

Trigonal
A, =2

&R(g', —1)

Z~ »~~ ~~ .I»

—
2 &;gs, i=1,22-. 2

+;»;I;—QqP&, »»;lg»

H'"'(R, s„)= T(s,)~H(" "'(R)T(s„), (22)

where s, are the star operations generating the
y„deformed IBZ out of the cubic one (there are
1, 3, and 4 such operations for A, =O, 1, and 2,
respectively).

The required expression for H'" "'(k) in a k point
of the deformed lattice IBZ, in terms of the
eigenvectors matrix in a k point of the cubic IBZ,
is obtained inserting (21) and (22) in (20) and
given by

H(x, n)(s P) P e((s»t& RP(k)tH(n)~ (R s )P(k} (23)

C. Computational procedure

The elastic constants are computed on the basis
of Eq. (19) (and the equations related to it), taking
1015 points in the cubic IBZ. Convergence in the.
whole temperature range is obtained using a new

Table III. A finite strain y, is constructed as an
integral of infinitesimal strains dy„each of them
defined by Eqs. (V), (8), and (11) (replacing these
&, e and yby de, d&, and dy). So the second
strain derivatives O'A/sy, ' and O'R/By„' are
obtained by differentiating the first derivatives
expressions given in Table III, using those ex-
pressions again for the required derivatives of
R andi,

The H" "'(k) matrices are not invariant under
the cubic star transformations group, but under
its subgroup, the star transformation of the y,
deformed lattice. However, for any cubic star
operation s, there exists a unitary matrix T(s),
which can be obtained simply from symmetry con-
siderations, and which yields for any k

U(sk) = T(s)V(k) . (21)

So actually one has to do the diagonalization
procedure (6) only for points k in the cubic ir-
reducible Brillouin zone (IBZ), and to evaluate
once and for all the matrices

interpolation method" which enables making second-
order energy interpolation with rather simple
expressions.

The distance-dependent parametrization makes
it possible to calculate the effect of volume change
due to temperature and alloying on the band struc-
ture. For this purpose we use tabulated tempera-
ture-dependent thermal-expansion coefficients
of Nb, "and the previously measured'~ lattice
constants for the Nb-Zr alloys. As for the thermal .

expansion coefficients in the alloys, their devia-
tion from the pure Nb values has been measured
and found not to exceed several percent, which
permits using the Nb coefficient instead without a
considerable effect on the results. Alloying effects
not connected with the volume change are neglected
within our approximation.

There are two types of temperature effects, the
first due to the Fermi function in Eq. (19) and the
second due to thermal expansion. The second
effect is found to be a linear decrease in the ab-
solute values of the elastic constants with tem-
perature, at a rate closely proportional to their
magnitudes. Such an expansion anharmonic effect
is the major reason for the normal linear decrease
of elastic constants with temperature. "

Following the procedure explained in the Sec. II
we get for pure Nb at zero temperature C~= -3.55,
C' = 0.19, and B = -2.13 in units of 10"N/m'. The
negative values reflect well what in classical works"
is called "Fermi contributions" which are attrac tive.

In the present calculation there have been several
inaccuracies and terms which are not included:
(i) neglect of contributions from inner-shell elec-
trons and nuclei and this is just the so called
"repulsive part" in the elastic constants"; (ii)
double counting of electron-electron interaction
contribution to the band energies in Eq. (14) due
to the use of a noninteracting-particle free energy;
(iii) neglect of the distance dependence of crystal-
field integrals; (iv) inaccuracies due to param-
etrization and the band structure used here; and
(v) neglect of alloying effects other than volume
changes.

The missing terms and inaccuracies are believed
to have no essential effect on the anomalous be-
haviour of the elastic constants. However, those
terms naturally decrease with volume similarly
to the included terms. The missing terms are
accounted by adding "calibration" factors to each
of the elastic constants which match the pure-Nb
zero-temperature results to the experimental ones.
Those calibration factors have to be volume de-
pendent to account for the variation of the missing
terms with volume. As a first approximation we
take the volume dependence of the calibration
terms to be proportional to the volume dependence
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regarding the variation of the elastic constants
with alloying and temperature, the shift of the
low-temperature minimum in C«, the crossing
of the C44 curves, and the decrease of the slopes
at high temperatures.

As was discussed in Sec. II the effect of the
volume with temperature introduces an approxi-
matively linear negative slope to the theoretical
results.

Doing a constant-volume calculation, a positive
slope increment has to be added in agreement with
constant-volume experimental results for pure
Nb in the 300-450-K range derived from mea-
surements under pressure (H. LO Huy, C. Wein-
mann, and S. Steinemann, private communication).
From this work it seems that the main origin of
the normal linear decrease of elastic constants
with temperature is due to the volume increase
and not to the other types of anharmonic effects„"

The anomalous behaviour of C,4 is a Fermi-
surface (FS) effect due to the first derivative term
in Eg. (19). It originates from the high-density-
of-states region situated in the Brillouin zone be-
tween the jungle-gym and the ellipsoid FS sheets
(Fig. 1) and disturbed mainly by a C~ type of de-
formation. The C«anomaly at low temperatures
is also expressed through its increase with the
Zr content in contrast to C' and B. As temperature
becomes higher, the C«curves cross, and then
they decrease with the Zr content like the other
elastic constants.

The decrease in the slopes of the elastic con-
stant at high temperatures seems to be associated
with the fact that a considerable number of electrons
start to be excited from another branch in the
dispersion curves around the point P (Fig. 1). As
Zr is alloyed, the Fermi level goes down, and
the temperature at which electrons start to be ex-
cited from this region goes down too, giving the
right experimental effect of alloying on the slope
decrease temperature. As suggested in a previous
work" a second-order anharmonic effect can also
contribute to such a decrease.

A problem associated with this work is whether
the rigid-band approximation for the alloys is
valid. Qtherwise, one should use such methods
as Miedma's approach" of the CPA (coherent-
potential approximation), or make a supercell
calculation. From this work and from recent work
by Katahara et al. , ~3 it seems that the rigid-band
approximation works over a wide range of com-
positions for alloys of transition metals of the
fifth column with ones of the fourth or the sixth
column and the same row. Qn the other hand, in
measurements done on Pd-Rh and Pd-Ag alloys, '4

a similar shift of a minimum in C«was observed
for a few percent of the alloyed metal. For a

higher percentage, the structure in C«disappears
which might indicate the breakdown of the rigid-
band approximation in that substance.

Another problem is whether the present cal-
culation treats correctly the charge rearrangement
due to the deformation. Sinha and Harmon' and
Hanke et al."have calculated phonon anomalies
resulting from charge fluctuations, and have shown
that the anomalous magnitude has a direct relation
to the density of states. In our work charge rear-
rangement is probably accounted well in the tight-
binding limit. " However, an additional screening
calculation of that type'" couldprobably improve the
agreement of C«with experiment, especially the
correlation of the zero-temperature results with
the density of states at the Fermi level of the alloy.

V. CONCLUSION

The elastic constants of bcc Nb-Zr alloys have
been investigated intensively both by experiment
and theory. Results have been obtained for Nb with
0 to VO-at. /q Zr and temperatures between zero
and the melting point, making ultrasonic measure-
ments on single crystals using a long Nb wave
guide for high temperature.

A first-principles calculation, explains qualitatively
the anomalous behavior obtained experimentally,
and also the normal decrease effect. The calculation.
is based on the band structure in the vicinity of
the Fermi. level, and on a tight-binding param-
gtri, zation scheme used to derive the electron
lattice coupling constants. It is of a type similar
to phonon dispersion calculations, ' having a further
difficulty of convergence in the whole temperature
range which is overcome using a second-order
interpolation method. "

In order to obtain a better quantitative agree-
ment between theory and experiment, one has first
of all to improve the band parametrization scheme,
and the linear muffin-tin orbital (LMTO) method
of Andersen" seems to be useful. Using the virial
theorem as done by Pettifor" might help solving
the double counting problem. The core electrons
and nuclei have to be considered, and more care
has to be taken for deformation charge rearrange-
ment'" and alloying" problems. Finally, the
contribution of the phonons to the elastic constants
and their temperature dependence will have to
be more fully discussed in the future. "
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