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band structure and the tails of the wannier functions
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Properties of multipole wave functions and of Wannier functions are studied jointly, because both are

generated by unitary transformations of Bloch waves and because their symmetry and localization depend on
the analytic behavior and phase normalization of Bloch waves. Fourier theory relates the amplitude and

convergence of the tails of Wannier functions to the singularities of Bloch waves in k space, specifically to
the contribution of singularities to integrals over k. These singularities may include branch cut surfaces

bounded by curves of degeneracy. We discuss the convergence of the coefficients of a linear-combinatiop-of-

atomic-orbitals expansion in orbitals introduced recently by Kohn, which. are Fourier coefficients of the

eigenvectors U ~ (k) of the Hamiltonian in Kohn's basis. The phases of Bloch waves are fixed by a constraint
on the Wannier functions. The symmetry of Bloch waves determines then botb the species and the center of
symmetry of the Wannier functions. An application to the conduction band of copper is presented.

Contributions of neighborhoods of loci of degeneracy in the Brillouin zone to the multipole wave functions are
singled out and the rate of convergence of their Wannier series is examined, The series converges faster than

the corresponding Wannier series of Bloch waves.

I. INTRODUCTION

The work reported in the present paper originates
from a program to construct crystal wave functions
adapted to the point-group symmetry about an iso-
lated impurity. The purposes and approach of the
program are outlined in the Introduction to the
companion paper. ' Here, however, we deal with
broader questions of band theory that had to be
settled in order to proceed with that program.

In the physics of crystalline matter one faces
the task of separating local properties, which de-
pend on the chemical bonding, from long-range
properties. In the one-electron-band approxima-
tion, this dichotomy can be discussed in terms of
the localization properties of the two generally
employed basis sets of functions:

(i) The Bloch waves (p&(r;k) are characterized
by moduli with the full translational symmetry of
the crystal. Their analytic dependence on the
wave vector k has singularities which relate to
long-range order and which will be discussed ex-
tensively in this paper.

(ii) The Wannier functions a&(r-n) are localized
about individual lattice sites n. This basis is thus
suitable to describe local effects, but each of its
elements has also a long-range tail which is as-
sociated to the singularities of the (p„(r;k), as
we shall see.

The two sets of functions are related by the uni-
tary Fourier transformation

a„(r-S)=r(t fdkrP„(V;k)e .
'"'",

where Q stands both for the Brillouin zone and for

its volume. Bloch functions have served as the
basis set for solving the majority of problems in
the physics of crystalline media. This is because
one was mainly interested in physical effects
characterized by momenta k belonging only to
smal/ Portions of the Brillouin zone. Limited ef-
forts have thus been directed to the calculation of
Wannier functions. Th&s paper will study in par-
ticular the contrasting properties of the Bloch
and the Wannier functions on an equal footing,
interconnecting them by the theory of Fourier
analysis.

This study appears particularly desirable at
this time o~ing to two new developments. One
development stems from Kohn's' proposal to con-
struct the Wannier functions as superpositions of
exponentially localized atomiclike orbitals, I..e.,
in chemical language, by LCAO. These orbitals
and the Wannier functions are calculated varia-
tionally, without advance knowledge of the Bloch
waves. The other development is our own pro-
gram, mentioned above, "'~ which made it neces-

.sary to identify the effects of the nonanalyticity of
the Bloch waves about the loci of degeneracy.
Points of degeneracy in the Brillouin zone are an
analog of the level crossings of independent elec-
tron orbitals in molecules. As for molecules, the
degeneracies will be lifted by the interactions a-
mong electrons and phonons, but nonanalytical
singularities will remain nearby in the complex
domain of k vectors. This paper intends to bring
out combined implications of these developments.
We note at the outset that degeneracies in con-
densed matter are known to be related to long-
range order, ' even though we da not attain yet a
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full interpretation of this connection.
More specifically, our apprach starts from

breaking the matrix elements of the unitary trans-
formation (1.1) between Bloch waves and Wannier
functions into contributions from the various sym-
metry species Ii,

e'" "=gP &nlr'&f q)e Pg+" (k;&p), (1.2)

where

1 d Ss„("~"'q)-.=~,„,„-,.~V„-E„(g)

&& P(r&) (k.E )e&& '~

Equation (1.2) extends to nonspherical symmetries
the partial wave expansion of a plane wave. The
vector k ranges here over the constant-energy
surface E„(k)=Z, whose harmonics are the poly-
nomials Pzf~r~~(k;Z&). ' The relevance of the decom-
position {1.2) results from two considerations:

(a) All symmetries of the system, i.e., transla-
tional, point group, and time reversal, will be
taken into account consistently by specifying de-
tails of the integration process in Eq. (1.1) which
defines the Wannier functions. Specifically, we
shall have to define properly the relative phases
of the Bloch waves with different momenta k, a
goal whose desirability has been stressed repeat-
edly but never attained in the literature. ' The
analysis of the Fourier transformation in terms
of symmetry species will provide the framework
for attaining this goal, much as the Lie algebra,
of angular momenta does for the phases of spher-
ical harmonics and of more general atomic wave
functions.

(b) Following Lighthill's approach to Fourier
analysis, ' we shall investigate separately the
Bloch waves near their singularities which con-
tribute long tails to the Wannier functions. In
fact, these tails cannot be neglected if one wants
to reproduce the Bloch functions everywhere in
the Brillouin zone. By contrast, the multipole
wave functions are obtained by integrating over all
Bloch waves of given energy, E& (k) =E. Contrib-
utions from small neighborhoods of the points of
discontinuity can, therefore, be neglected for
many practical purposes. Note particularly that
when a Fourier series is slowly convergent or
even not convergent at al), its term-by-term in-
tegration yields a series which converges faster
and irrespective of the convergence of the original
series. ' This property, and many others, are
well established only for functions of a single
variable; their extension to functions of three
variables, such as the components of k, is still
under development.

In the course of this work I have encountered
many problems that had been raised previously.
The framework which underlies this paper seems
to have helped in removing obstacles. Thus we
note that the points of degeneracy in the Brillouin
zone are responsible for the long-range order
and for the characteristics of the tails of the Wan-
nier functions; by contrast the bulk of the Brillouin
zone appears to contribute only local properties.
Further, the study of particular examples suggests
that the successive bands of a crystal may be
classified by the symmetry properties of their
Wannier functions, These properties depend es-
sentially on the treatment of degeneracy. points
and curves. They include the identification of
centers of symmetry for the various Wannier
functions which may belong to different Bravais
lattices, displaced one with respect to another.

Sections II-IV of this paper introduce a number
of conventions, definitions, and mathematical
statements. Sections V and VI contain the essen-
tial developments, illustrated by a simple example
in Sec. VII. Sections VIII-X deal with the main
application to the s-d bands of Cu and to the con-
struction of the corresponding multipole wave
functions.

pp(rqk)=~ Qgp(rqn)e
n

where n is a vector of the physical lattice. The
translational invariance of the crystal requires
the Fourier coefficients to satisfy

(2.2)

a„(r;n) =a„(r—n) . (2.3)

II. FOURIER ANALYSIS OF THE BLOCH %B'AV ES

Here, we regard the Bloch waves q„(r; k) as
functions of the continuous variable k, while the
space coordinate r is considered as a parameter.
Because crystal momenta k differing by vectors
of the reciprocal lattice @re physically equivalent,
the vector k is confined to vary within the Bril-
louin zone (or fundamental domain), Q. Equiva-
lently, we may set the periodicity condition

y„(r;k+h) =y„(r;k) (2.1)

for any vector h of the reciprocal lattice and for
all r. Here we assume that the "band" index p,

labels a well-defined, periodic function of k, which
is an eigenfunction of the one-electron crystal
Hamiltonian g, . The actual definition of a "band"
will be discussed in Sec. III.

The Bloch waves, considered as functions of k,
belong to the class of mathematical functions called
pieceuise smooN, which are generally studied
through their Fourier series. In the case of Bloch
wave, the series is
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The Fourier coefficients (or Wannier functions)
a„(r —n) are then obtained by the inversion form-
ula, Eq. (1.1).

%hereas Fourier series of piecewise smooth
functions of one variable have been investigated
extensively, ' the same does not hold for functions
of several variables. I am indebted to Professor
R. Fefferman for bringing several results to my
attention. Apart from convergence properties to
be discussed in Sec. V and of term-by-term inte-
gration discussed in Sec. IX, the following general
properties are relevant:

(i) First of all, the summation over the three-
dimensional net of points in Eq. (2.2) acquires a
definite meaning only after we specify the proce-
dure for performing the sum. %e choose to sum
first over each "shell" of lattice vectors, the nth
shell being defined as the set of lattice nodes hav-
ing equal distance n = ~n~ from a fixed node of the
Bravais lattice taken as the origin. (Lattice nodes
belonging to the same shell can be grouped into
"stars" of nodes related to each other by opera-
tions of the point group of the Bravais lattice. )
The subsequent summation over (nj is then one di-
mensional. The equality sign in Eq. (2.2) must be
thus understood as the limit of finite sums, over
[n~ N, when'-~. That is, we set

(2.4)

Any truncation of the infinite sum constitutes an
analytic aPProximation to the Bloch wave y„(r;k),
whose nonanalytic behavior about the loci of de-
generacy manifests itself in slow convergence of
the series. Moreover, we stress that the choice
of sjherical Partial sums ensures uniform convex
gence of the Fourier series (2.2) in every subdo-
main of the Brillouin zone where the Bloch func-
tion is continuous.

(ii) The Fourier coefficients of any piecewise
smooth function have the property

11111 lap (rj n)l = 0.
In I ~~

This equation holds regard1ess of the direction of
n. Equation (2.5) ensures that the tails of the Wan-
nier functions a&(r -n) will fall off for ~r -n~-~.
The rate of the falloff is determined, as we shall
see, by the nature of the singularities of the
Bloch waves about loci of degeneracy.

(iii) The expansion of a function in Fourier ser-
ies tends to emphasize the behavior of the function
in the Eatage, i.e., over the whole fundamental do-
main. For instance, the zero-th Fourier coeffi-
cient represents the average value of the function.
In contrast with the coefficients of a local Taylor

a„(r) =a„(r) +o.'„(r) .
By construction, p&(r;k) and 4&(r;k) have the
same singularities, so that their Fourier coeffi-
cients, a„(r}and ct&(r) will coincide as (r)- ~.

The decomposition in (2.6) is, of course, not
unique. It mill, in fact, depend on the degree of
accuracy one wants to achieve by summing over
a given number of shells. In any specific case,
the contribution of the remainder 4„(r;k} to the
multipole wave functions depends on the constant
energy surface, E&(k) =E, under consideration,
and can be estimated. This contribution can pre-
sumably be neglected for many purposes. %e
thus conclude that, while the Fourier (Wannier)
series might be impractical for representing

(2 "i)

expansion, which are obtained by differentiation,
the Fourier coefficients are, in fact, obtained by
integration. Conversely, a single point ko of non-
analyticity of the Bloch wave y„(r;k) affects the
convergence of the Fourier series (2.2) every
cohere in the Brillouin zone. This is a well-known
problem with any Fourier series, which makes it
impractical in many cases.

(iv) Among the methods which can be used to
improve the convergence of a Fourier series are:
(a) "adjusting" the function in a neighborhood of
small measure of the loci of discontinuity so that
the high Fourier coefficients of the "adjusted"
function will converge to zero at any desired rate.
In this way, one gains uniform and rapid conver-
gence at the price of reproducing the original
function everywhere except in the neighborhood of
the loci of discontinuity; and (b) integrating the
function represented by the series causes the ser-
ies of integrals to converge uniformly as noted in
Sec. I. Furthermore, integration will improve
the rate of convergence of the series by smoothing
its singularities,

As we recalled in Sec. I, our main goal is to
construct multipole wave function, which are ob-
tained by integrating over all Bloch waves of
given energy E„(k)=E. We ean thus use the smoo-
thing effect of the integration to improve the con-
vergence of the Fourier (Wannier) series of the
Bloch waves, Eq. (2.2). To do this, we follow
Lighthill's approach' and split any Bloch func-
tion q„(r;k) into the sum of a smooth well-
behaved function P„(r;k), whose Fourier eoef-

.;ficients a&(r-n) converge to zero for large
tn~ at any desired rate, and of a remainder
@&(r;k), which is appreciably different from

,zero-only in a neighborhood of small measure
:of the loci of nonanalytieity of the original func-
:tlonq pp (rq k):

y„(r;k) =P„(r;k) +e„(r;k), (2 6)
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Bloch functions for a band with points of degen-
eracy, it can nevertheless serve well for expres-
sing the set of multipole wave functions.

III. KOHN METHOD AND THE ANALYTIClTY OF BLOCH

FUNCTIONS

We shall use here the Kohn representation' as
a framework to study the analyticity of Bloch
functions and, first of all, to specify a meaning
of the "band" index p, . This representation en-
ables us to locate more precisely the origin of
the singularities of Bloch functions and then to
evaluate the magnitude of the tails of Wannier
functions.

The method proposed by Kohn consists of an ab
initio variational calculation which generates a
set of atomiclike orbitals, {ar,&(r)t, from which
an optimized band structure ean, in turn, be ob-
tained. By construction, the orbitals ar, „(r) are
orthonormal over different lattice sites and expon-
entially localized; the tail of Wannier functions
results from superposition of orbitals centered at
different sites.

One starts by selecting a set of %bands. For the
sake of definiteness, we will restrict the discus-
sion to the s-d bands of metallic copper. Nine or-
bitals are needed to describe these bands with
I'={A, , E~, T,~, T,„). Here, I' stands for an irre-
ducible representation af the point group of the
crystal (0„for Cu) and i for one of its rows. That
isq

dun(r )

ar», r (R r) = g a~~ r (r)D J» (R" ),
/=1

where dim(I') means "dimension of the irreducible
representation I',"for any operation 8 of the point
group. The index y, which distinguishes different
orbitals belonging to the same row of the same irre-
ducible representation, is superfluous for the s-d
bands of Cu, but we will keep it in the course of the
formal discussion.

Then, orie constructs 2 Bloch sums at each k,

(3.l)

Sr, & ( r; k) =~ P ar, &
(r —n)e'" ' ",

n

and represents the Bloch waves y&(r;k) as

(3.2)

p„(r; k) = Z Sr»,r ( r; k) U~z~q~, r (k) ~ (3 3)

The fact that the y„(r;k) are eigenfunctions of the
crystal Hamiltonian @ implies that the coefficients
U~"~ (k) are the eigenvectors of the Hamiltonian
matrix

«», rl&(k) II"»', r'&

= Q(ar, „(r)8,lar, .r.(r -n)) e'" ", (3.4)

corresponding to the band eigenvalues E& (k).
Note that:

(i) The number'of Bloch sums to be included in
the expansion (3.3) should, of course, increase
as the energy range of interest increases or as
higher accuracy is sought, as one does in quantum
chemistry.

(ii) Equations (3.2)-(3.4) resemble a tight-bi'nd-
ing method, but the {a„,&(r)) are not free-atom
orbitals. They are obtained by a first principle
variational procedure so that the eigenvalues
E&(k) of the matrix (3.4) are optimized band eigen-
values.

(iii) Owing to the exponential localization of the
orbitals {ar,&(r)), the Bloch sums (3.2) and the
matrix elements (3.4) are analytic functions of
k.'"' Singularities of the Bloch waves, y„(r;k),
as functions of k, are thus traced to singularities
in the eigenvectors Ut"~(k).

The band index p, will be labeled in order of in-
creasing energy at each k, i.e., according to the
customary "ordered labeling. " This choice is,
however, not altogether trivial. A different de-
vice is made in diatomic molecules, whose Ham-
iltonian depends on a single parameter"; the mole-
cular argument has also led to departures from
the usual practice in crystals, "even though the
relevant Hamiltonian matrix depends on the three
components of k. We base the choice of ordered
labeling on analytic continuation of E„(k) starting
from a nondegenerate reference point%, . Analytic
continuation is possible and appropriate because
both E&(k) and the Bloch functions p&(r;k) are
analytic throughout the Brillouin zone except at
points of degeneracy. " As k approaches any point
of degeneracy, analytic continuation must fo1low
a path that bypasses that point and one verifies
that ordered labeling is preserved along the path. '~

The characteristic behavior of the eigenvalues,
E&(k), and the eigenvectors, U~~(k), about the
loci of degeneracy will be discussed in Sec. V.

IV. ÃANNIER FUNCTIONS AND KOBN'8 ORBIT' ALS

As in Sec. II, we consider a Wannier function
a& (r —n) as a Fourier coefficient of the expansion
of the Bloch wave y„(r;k) as function of k and for
a particular band. In Sec. III we have defined the
bands through a process of analytic continuation
covering the whole Brillouin zone. In this section
we will express the set of Wannier functions
{a&(r -1)f in terms of the set of Kohn's orbitals,
{ar,&(r -n)), associated with a chosen set of 3I
bands. We shall express the Wannier functions
thus defined as combinations of orthogonalized
atomic orbitals with LCAO coefficients, in a form
that permits the identification and estimation of
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their long tails.
Because the matrix elements (3.4) are periodic

in k, with the periodicity of the reciprocal lattice,
its eigenvectors can also be taken as periodic,

Uz" l (k+h) = U("1 (k), (4.1)

and can be expanded in Fourier series:

U&" & (k) =2 u&") (m)e™"
rn

The Fourier coefficients u "1(m) are determined
by the inversion formula

(4 2)

d k U ())) (k)e - ilT ' rn (4.3)

Here again, 0 stands both for the Brillouin zone
and for its volume. Insertion of Eq. (4.2) into the
expansion (3.3) gives

rpw(r;k)= ~ Z) ZI aqqq(r-n)u+q)y(z —n))
~n (r&z)

x ei]. k

Comparing this result with the Fourier series
(2.2), we get the desired relationship

(4.4)

Z+u"'(n)+ uZ")(n) =I, (4.7)
n

where the scalar product of vectors uZ"l (n) implies
a sum over their component indices (I'i, y). As in
Sec. II, the equality sign must be understood as
the limit of a sequence of partial sums over an
increasing number of shells of lattice vectors.
Equation (4.7) thus specifies how many shells must
be included for the sum to become arbitrarily
close to unity.

Section V will study the convergence of the Four-
ier series (4.2) in some cases of interest. Owing
to the exponential localization of the orbitals
(ar& &(r —n)J, the falloff of the enveloPe of the tails
of the Wannier function a&(r) is determined by the
rate of convergence of the Fourier coefficients
ut" l(n) for ~n~- ~. The magnitude of the tails will

a„(r-1)=Z Z ar, &(r -n)uZrI) (1 -n), (4.5)
n (&ez)

which expresses the Wannier function a&(r —I)
centered at the lattice site I, as a linear super-
position of the Kohn's orbitals (ar, &

(r —n)) cen-
tered at all surrounding sites.

The functions

uZz",,~&(l-n) =
z"u,~Z&(1; n,) —= (I'i, y; n(iz;1), (4.6)

I

constitute the matrix elements of the unitary trans-
formation between the sets (arz &(r —n)) and fa„
(r -1)). In particular, the moduli of these matrix
elements obey the "sum rule"

depend on the contribution of large (n~ terms to
the normalization sum (4.7).

Uo» (k) = Vo'& (k) +Wo» (k), (5.2)

where VZ"l (k) is analytic in the whole Brillouin
zone and WZ» (k) differs from zero appreciably
only in a neighborhood of small measure of the
loci of discontinuity. The Fourier coefficients
(4.3) are similarly split as

uZ"l (m) =vZ" & (m) +w~" ~ (m), (5 3)

where v ~l (m) decays exponentially for large ~m~,
whereas w&" & (m) is responsible for the long tails
of the Wannier functions.

Degeneracy in the s-d bands of Cu occurs either
along lines of symmetry in the Brillouin zone
(essential degeneracy) or along curves in symme-
try planes (accidental degeneracy between inequiv-
alent representations). Moreoverthe , iriversion
symmetry of the crystal allows curves of degen-
eracy to occur also at general points (accidental
degeneracy between equivalent representations). "
We discuss iri detail the examples of the essential
degeneracy at the bne b, (2) and the accidental de-
generacy along a curve through the point W (B).

ExamPle A. The threefold degenerate irreduc-
ible representation F» decomposes into the singly
degenerate 6', and the twofold degenerate 6„so
that two bands stick together along the symmetry
line 6=- (O, k, 0). Tofind the behavior of the eigen-
vectors Ut" ~ (k) about A, we need to diagonalize
only the submatrix of the Hamiltonian matrix (3.4)
in the space of the hvo Bloch sums which are de-
generate along A. These sums are constructed
from orbitals I'i = (d„„d„„)and we call them-S„,
(r;k) and S (r;k). Expanding Eq. (3.4) for small
values of the coordinates 0, and 0„ in a plane or-
thogonal to 6 up to second order, one may show
that

V. AYMPTOTIC BEHAVIOR OF THE WANNIER FUNCTIONS

AND THE SINGULARITIES OF U " (k)

According to Sec. III both E&(k) and the eigen-
vectoi's Ut") (k) of Eq. (3.3) are defined by analytic
continuation and have singularities at the loci of
degeneracy. However, the eigenvectors have
stronger singularities owing to their orthonormal-
ization condition

U»(k)*. Uo"&(k) =5„„,. (5.1)

We describe here examples concerning the s-d
bands of Cu.

We start by splitting U» (k) in analogy to Eq.
(2.6),
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&y. l~(k)ly. &=n ~k: y-k„',

&yzIg(k)Iyx&= 6k, k„,
&yxl8(~)I yx) = n -yk', —Pk„'.

(5 4)

W~ "(p, P, K) = e ' 'E'"(p, l) . (5.6)

Here X is a linear measure of the neighborhood of
the line 6 where W is appreciably different
from zero. The analytic part V ' vanishes instead
at p = 0 without any discontinuity.

The Fourier coefficients w(") (tn) are obtained
by entering the expression (5.6) in the integral of
Eq. (4.3). They decay exponentially for ImI -~ in
the f direction and fall off as ImI ' as ImI -~ in
any direction orthogonal to &.

Z axmP/e B. At the point W= (v/a)(1, 2, 0) on the
boundary of the Brillouin zone we deal with two
Bloch sums S„„(r;k) and S„,(r; k) which are degen-
erate by symmetry. In a neighborhood of W the
Hamiltonian submatrix analogous to (5.4) is

&xyIS(q)Ixy& = n —pq„+yq„'+6q'. ,

&xyl&(q)lxz&= nq, q. ,

&xzIS(q)Ixz&= n+pq„+6q„'+yq'„

(5.7)

where q= k —k~ and the parameters n, P, y, 6,
and g are constant. From the structure of this
matrix we see that its toro eigenvalues vary qua-
dratically with IqI along the Q line (q„=0 and

q„+q, =0) but linearly along the Z line (q„=q, =0),
and that V&E(» (q) vanishes at W along q„and q,
while it is discontinuous along q„. (W is a singu-
lar critical point. 'e} Moreover, the degener-
acy persists along a curve in the symmetry
plane k, =0. This curve is tangent to the q„axis
at S'; it is also seen to cross the line Z at about
-', of the distance I'K by inspection of Fig. 3 of
Ref. 17.

Let us now consider the behavior of the eigen-
vectors of the matrix (5.7} around a loop which
encloses the curve of degeneracy. Specifically,
we consider a small circle in the plane - q, =q„
«v/a with radius p = (q„'+ q,')'t' and center at q„

'Ihe parameters n, P, y, and 6 are analytic func-
tions of the coordinate k„along A. Introducing
cylindrical coordinates (p, P, g) about the b, line,
we find that for small values of p (i) the matrix
elements (5.4) depend on 2$; (ii) the two eigen-
values can be expressed in the form

E(»(p~ 0~ &}=n+p'f(. )(4 l) ~ (5.5)

(iii) the eigenvectors U(»(p, p, &) are independent
of p, single valued in p, and analytic in t 'Ih.ere-
fore, they have a jump discontinuity across the
6 link. The nonanalytic part can then be expressed
as

=q, =0. On this circle the matrix (5.7) reduces to

& yl&(q)l y&= t)-q„,

&xyIh(q)Ixz&= aq„
&xzI $(q)Ixz) = n+pq„,

(5.8)

to lowest order in q„and q„and where B=gq„.
Introducing cylindrical coordinates (p, p, g) about
the q„axis, we find that for small values of p (i)
the matrix elements (5.8) depend on p in contrast
to their 2p dependence in example A; (ii) the ei-
genvalues can be expressed in the form

E(„(p,y, ~) =n+pZ(, )(y, r); (5.9)

n-' dku~» k* Uo» k =1.

One can thus show that

dr Qp r +28e (Mp 1 gp r ~~Cp

(5.10)

where C~ is a numerical constant of order unity,
A, is a linear measure of the smoothing range near
a singularity —as in Eq. (5.6)—and d is a linear
dimension of the Brillouin zone; the exponent p
equals 2 in example A of a line singularity, it
equals 1 in example B of a plane surface and it

(iii) the eigenvectors U(')(p, P, f) are independent
of p, single valued in 2 p, and analytic in g.

As we analytically. continue the eigenvectors
U ' around any loop which encloses the curve of
accidental degeneracy, the eigenvectors are now
seen to change sign when p increases by 2w. A
branch cut is thus required. This surface of dis-
continuity might be placed anywhere about the
curve of degeneracy. However, we shall see that
the Wannier function can be symmetry adapted to
the point group of the crystal only if the surface.
of discontinuity is placed in the Plane of symmetry
on one side of the curve of degeneracy.

Proceeding as in example A one finds the Fourier
coefficients, w(»(m), to fall off as ImI ' for ImI-~ in the direction orthogonal to the plane surface
of discontinuity. The behavior for ImI - ~ parallel
to the surface of discontinuity is more involved
because it depends, in general, on the shape of
the curve of degeneracy. In any case, the falloff
will not be slower than Im, ~

in any direction.
'Ibis discussion of the singular functions W(")(k)

and of their Fourier coefficients w(")(m) enables
one to estimate the magnitude of the tails of the
Wannier functions as represented by the functions
n„(r) of Eq. (2.7). The contribution of n„(r) to the
normalization integral of the Wannier functions
reflects the contribution of W " (k) to the integral
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would equal 3 for a point singularity.
The parameter A. , which char'acterizes the effec-

tive range of the singularity associated with a de-
generacy, will presumably be reflected in the long-
range order properties of crystals, which are
known to be connected with degeneracies. ' Exam-
ples of this connection can be found in the works of
Ashkin and Lamb" and of Zunger. " Ashkin and
Lamb proved that for a binary alloy the existence
of long-range order implies degeneracy in the
spectrum of a characteristic matrix concerned
with atomic correlation. Zunger's work concerns
the electronic spectrum of a two-dimensional hex-
agonal crystal. (I am indebted to Dr. A. Zunger
for bringing this subject to my attention. ) By
treating the crystal as a macromolecule and cal-
culating the electronic levels by LCAO method,
Zunger showed that the band gap, i.e., the differ-
ence between the highest occupied and the lowest
vacant molecular orbitals, vanishes only in the
limit of an infinite macromolecule. On the other
hand, by imposing cyclic conditions from the be-
ginning and using a tight-binding scheme, he
showed that the band gap is identically zero even
in the nearest-neighbor approximation.

VI. PHASES OF SLOCH WAVES AIVD THE SYMMETRY OF
WANNIER FUNCTIONS

As noted in Sec. I, our main goal is to construct
a set of multipole wave functions by superposition
of all Bloch waves of given energy, E&(k) =E.'
Each function of this set should be symmetry adap-
ted to the point group of operations acting at the
"central cell" node of the Bravais lattice which
serves as the origin of r and n. This condition
puts restrictions on the phase normalization of the
Bloeh waves and of the coefficients in the super-
position. We choose to satisfy these restrictions
by establishing first of all a phase normalization
of the Bloch waves which will symmetry adapt
their Fourier coefficients, a&(r). We shall see
here how this constraint all but determines the
phases of Bloch waves, much as rotational sym-
metries do for atomic wave functions.

We confine ourselves in this paper to crystals
with a single atom per unit cell and with the atom
at the cell's center, such as fcc copper and other
metals. In this case, the isogonal point group of
the crystal coincides with the (holosymmetric)
point group of the Bravais lattice and constitutes
itself a symmetry subgroup of the Hamiltonian.
More general cases require additional considera-
tions to be developed elsewhere.

A. Phase normalization

The symmetry adaptation relies on the contra-
gradience of the point-group transformations on

the dual spaces r and k. We deal with point group
operations R which leave invariant the center I'
of the Brillouin zone and with the corresponding
R ' which leave invariant the "central" cell node
at r =n =0. Application of this operation to Eq.
(1.1) for n=0 gives initially

a„)R r)=~ f dicqp(R r;k). (6.1)

The implications of Eq. (6.1) will be drawn by
relating first y&(R 'r;k) to y))(r;Rk). For any
nondegenerate k, the p&(R 'r;k) (a) is a Bloch
wave with wave vector R k; and (b) corresponds
to the same energy, E&(k). Therefore, it differs
from cp„(r;R k) only by a phase factor. We set in
gener. al

q&„(R 'r; k) = y)) (r;R k) exp[iv&@(R k)]. (6 2)

[We need not deal with degenerate k, because they
form a set of measure zero which does not con-
tribute to the integral in Eq. (6.1).] The function

exp[is &s&(k)] may be arbitrary at general k vectors,
but it must reduce to a character of a "small" re-
presentation of the group of wave vectors when k
belongs to symmetry planes and for operations R
such that Rk—= k (up to equivalence).

Upon substitution of Eq. (6.2) into (6.1) we note
that a&(R 'r) is the n =0 Fourier coefficient of the
product of the two functions of k on the right of
Eq. (6.2). It can therefore be expressed as'0

a„(R 'r) =pa„(r-n)—0

dkexp(i[Rsl(k)+k n]]. (6.3)

According to this formula the operation A would
transform the Wannier function at n =0 into a su-
perposition of functions at all different sites for
an arbitrary choice of the phase 7~"~ (k). We re-
strict this choice by requiring the coefficient of
a&(r —n) in Eq. (6.3) to vanish for all but a single
n. This n equals zero if the Wannier function
a&(r) is centered on the node of the Bravais lattice
of the "central" cell. However a„(r) could be cen-
tered at some interstitial position 7„within the
central cell, if any, which must be itself a point
of full symmetry of the Bravais lattice. Such an
interstitial position would yield

—n =].p~
——

tp —R tp, (6.4)

a formula that reduces to n=0 for /=0. In the
example of fcc copper, with a single atom per unit
cell, there are two possible positions for the cen-
ter of symmetry of a&(r), t& =0, and t)) =——,'a(1, 1, 1).

Thus we set in Eq. (6.3)
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dkexp(i[7' (k)+k n]]0
(r(v)j(R)6(-n; 1»), (6.5)

where the symbol y(r "~(R)—discussed below —has
the values + 1. The uniqueness of Fourier coeffi-
cients shows that

exp[iT„(k)] =y(r" j(R) exp(ik I„„), (6.6)

except possibly for a set of k of measure zero.
Substitution of Eq. (6.6) into (6.3) shows now that
the Wannier function a&(r) belongs to a one-dimen-
sional irreducible representation of the point
group of the Bravais lattice with center of sym-
metry at t&. This representation is identified by
the values of the coefficient y(r~~~(R) in Eq. (6.5)
for the alternative operations R; for this reason
we have used the symbol y

r+ I(R) which serves
normally to label the characters of a representa-
tion I'(p, ). It remains to be shown how X(r("&&(R)

and t& are determined.
That any Wannier function belongs to a one-di-

mensional representation of the point group has
been suggested by Koster" on grounds of the group
invariance of the energy E„(k). Dr. B. Beiser has
remarked (private communication) that this prop
erty of a„(r) is sufficient but not necessary for the
invariance of Z„(k). Here the same property has
been used to phase normalize the Bloch functions.
Our criterion for the transformation of a„(r) coin-
cides with that adopted previously by Callaway and.
Hughes, "but these authors did not press the anal-
ysis of its implications; difficulties of Ref. 12
arise, at least in part, from a definition of band
indices which prevented the control of analyticity
of y&(r;g), and which proves inconsistent at the
boundary of the Brillouin zone for many lattices.
That the symmetry adaptation of a„(r) may be
achieved for a single one among the alternative
centers of full symmetry which may exist within
the "central cell," n=0, has been noticed by Kohn
in his study of one-dimensional lattices. ' The
physical interpretation of the shift to an intersti-
tial position remains an open question.

B. Symmetry of Wannier functions

The determination of the coefficients y(r" (R)
and of Q in Eq. (6.5) will now be achieved by study-
ing the symmetry of the Bloch functions for special
momenta k on the planes delimiting a basic domain
of the Brillouin zone, where Rk=-k for one parti-
cular R in Eq. (6.2). These special momenta will
be further confined to portions of these planes that
are free from the branch cut discontinuities intro-
duced by curves of degeneracy and discussed in
Sec. V. As anticipated in Sec. V, our symmetry
equation (6.6) requires these discontinuities to lie

Rk T» =(k+hs) ' (tq-Rtq) =h„' tp,

so that

(6.8)

y&(R 'r;k) =y(r~~l(R)exp(i hs t„)y,(r;k);
(6.10)

on the right-band side we have replaced y&(r; k+hs)
by cp&(r; k) owing to the periodicity of y„(r;k). The
phase factor exp(ih„ t, ) equals +1because 2t, be-
longs to the Bravais lattice. The character of
p&(r; k) under this operation R determines tbe
eigenvalue of Eq. (6.10), as it did for a different
R in Eq. (6.8). Since g

r" (R) is already known
from procedure (a), we have thus determined
exp(iK„ t „), A value+1 of this phase factor implies
that either / =0 or hs t„ is a multiple of 2m, while

on Portions of the symmetry Planes. In our appli-
cations the surfaces of discontinuity have been
placed in the interior of the closed curves of de-
generacy, so as to have a simply connected do-
main.

Two distinct situations must be considered:
(a) When k lies on a symmetry plane in the in-

terior of the Brillouin zone, the operation R for
which Rk =k is a reflection through the plane. For
this R we have

Rk' lp~ =Rk' tp —k' t~=0, (6.7)

and the value of y
r+~ (R) is given by the character

of y&(r; k) under reflection of r through the plane,

y (R-'r. k) y(r(v)](R)cp„(r;k) . (6.8)

This procedure is to be applied to each symmetry
plane delimiting the basic domain. Note at this
point that reflection on a boundary face of a basic
domain —whether in r or k space —shifts the do-
main into an adjacent one. Successive application
of such reflections on all faces fills the whole
space and thus yields the values of y(r" j(R) for
all operations R of the point group It is. indeed
apparent from the examination of character tables
that the characters of reflection operations on the
boundaries of a basic domain in r space suffice to
distinguish any single one-dimensional rePresen-
tation from the others. This property is under-
stood from the genealogy of group representations
from the representations of subgroups' according
to Altmann"; alternative one-dimensional repre-
sentations of the holosymmetric point groups differ
by parities under subgroups C, consisting of the
identity and a reflection (or, equivalently, by C,
xO, ).

(b) When k extends to an external boundary face
of the basic domain, we consider the operation R
for which Rk=k+h~, where h~ is a vector of the
reciprocal lattice. For this R we have
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C. Reality of Wannier functions

There seems to remain, for the Bloch functions,
a residual phase arbitrariness represented by a
renormaliz ation

g„(r;k) -=y„(r;k) exp[i'.„(k)], (6.11)

where X„(k) is any analytic function of k with the .

fu/l symmetry of the Brillouin zone. These re-
quirements on A& (k) ensure that g& (r; k) and y„(r;
k) have identical singularities and generate %an-
nier functions with the same transformation prop-
erties. This arbitrariness of X&(k) is, however,
all but eliminated if we require the Wannier func-
tions to be real. To this end the Bloch waves con-
jugate under time reversal must be complex con-
jugate, at any nondegenerate k,

pre (r;k) =y„(r; —k) . (6.12)

To preserve this property under the phase renorm-
aliza'tion (6.11) we must have

A,„(-k) = —X„(k)+2m(integer) . (6.13)

Since the full symmetry of A& (k) includes invari-
ance under inversion operation, it follows that

X& (k) =m(integer) . (6.14)

That is, the arbitrariness of y„(r;k) is reduced
to a common factor + 1 over the entire Brillouin
zone.

t„x0 for exp(ik„ t ) = -].. Examples in Secs. VII
and VIII will verify that application of Eq. (6.10)
to different external faces of the basic domain
identifies t& consistently.

Thus we have found that the reflection symme-
tries of the Bloch functions for k on the faces of
a basic domain identify the two phase factors on
the right of Eq. (6.6). These factors identify the
one-dimensional representation of the Wannier
function a„(r) and its center of symmetry t„within
the central cell, respectively. The classification
of each band thus obtained in terms of the prop-
erties of Wannier functions is substantially equiv-
alent to the familiar classification in terms of the
reflection symmetries of Bloch functions outside
their loci of discontinuity, as introduced by Bouc-
kaert et al.2' In a calculation of Wannier functions
by the method of Kohn (Secs. III and IV) the sym-
metry of both the Wannier and Bloch functions is
embodied in the eigenvectors U+~ (k) of the Ham-
il ton ian (3.4).

TABLE I. Isomorphism between C4„and C4„.

C2g
C+4g

C4

Ox

Oy

aga

(x, y)
(x, y)
(y, x)
(y, x)
(x,y)
(x, y)
(y, x)
(y, x)

a(0, 0)
a(l, 1)
a(l, 0)
a(0, 1)
a(1, 0)
a(0, 1)
a(l, 1)
a(0, 0)

'We use the notation of C. J. Bradley and A. P. Crack-
nell, The Mathematical Theory of Symmetry im Solids
(Clarendon, Oxford, England, 1972).

Consider a two-dimensional square lattice. This
lattice is invariant under the operations of the
point group C~„acting at the lattice points n =a
(n„,n„), where n„and n„rae integers and a is the
lattice constant, but it is also invariant under the
operations of the point group C',„acting at the in-
terstitial points n+t, where t =—,'a(1, 1). The point
groups C~„and C4„are isomorphic. In Table I we
list the set of lattice vectors 1» defined by Eq.
(6.4), for Q=te0.

The special points (I",M, X) and the special lines
(b, ,Z, Z) in the basic domain (or irreducible wedge)
of the Brillouin zone are shown in Fig. 1. By lab-
eling a band by the set of characters of the "small"
representations corresponding to the symmetry
lines, we see that eight possible types of bands
exist. FoGowing the prescriptions given by Eqs.
(6.8) and (6.10), we list in Table II the symmetry
assignment for the Wannier functions correspond-
ing to the eight types of bands, which are thus
mapped in a one-to-one correspondence to the
eight available one-dimensional representations,

VH. EXAMPLE OF A TWO-DIMENSIONAL SQUARE
LATTICE

We now discuss the example of bands whose sing-
ularities do not include branch cuts.

FIG. 1. Basic domain of the Brillouin zone of the
square lattice showing special lines and points.
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TABLE II. Symmetry assignment for %annier functions
of a two-dimensional square lattice.

TABLE III. Four types of upper and lower bands aris-
ing from a,(r) and a~(r) orbitals in a two-dimensional
square lattice.

Band type Irreducible representations Group
Upper band Lower band

&+Z+Z+
6+Z Z+
EZZ
4 ZZ
6+Z+Z
4 ZZ

Z Z+
6 g+Z+

A.(
Ag

A2

Bf,
Bg
B2
Bp

C4

C4„
C4„
C4

C4v
Ct

C4
C4

g„y(11) &0 b, Z+Z
E„„(10)&E„(10)

E„„(10)& E~~(10) "~ +

g„y(13.) &0 E~Z Z+

6+Z Z+

Z Z

Z Z

6 Z+Z

four of C4„and four of C4„.
For this example, the vector h~ to be inserted

in Eq. (6.10) is (2n/a)(1, 0), so that exp(ibad t)
=exp(-in') = —1. One then sees that the characters
of the "small" representations zn the interior of
the Brillouin zone (i.e., on b, and Z) uniquely de-
termine the one-dimensional irreducible represen-
tation of the Wannier function, whereas those an
the boundary of the Brillouin zone (i.e., one) de-
termine whether the Wannier function is symmetry
adapted to C,„or to C4„.

We now consider the pair of bands that arise
from a single pair. of orbitals a, (r) and a„(r) fol-
lowing Sec. III, including only the interaction in-
tegrals E,~(n, n„)-=(a, (r)~H, ~a~(r —n)) up to the se
cond-nearest neighbors with i,j &(x,y). The ma-
trix elements of the Hamiltonian in the basis of
the Bloch sums S„(r;k) and S„(r;k) of Eq. (3.2)
are then

& x( h (k) i x) =E,„(00)+2E„„(10)cos$

+2E„,(10) cosy +4E„„(11)cos] cosy,

,&xl h (k) ly) = —4E„(11)sing sing, (7.1)

&y( h (k)~y) = E„„(00)+2E»(10) cos( +2E„„(10)cosy

+4E„„(11)cosf cosy,

where (g, q) -=a(k„k„). In Table III we list the four
sets of symmetry labels for the upper and the
lower band as determined by the values of the in-
teraction integrals. By comparing with Table II
we conclude that the Wannier function correspond-
ing to each of the two bands can be symmetry adap-
ted to one of the four one-dimensional irreducible
representations of the point group C4„, whose node
is at t =—,'a(1, 1) rather than at the center of the
"centr'al" cell. Note that a&(r) could be symmetry
adapted about n=0, but only by forcing the Bloch
function y& (r; k) to be discontinuous at the boun-
dary of the Brillouin zone, and thus causing a
wider spread of the tail of a& (r).

We finally determine the rate of falloff of the
tail of the Wannier functions corresponding to the

bands that we designate as upper (+) or lower (-)
which are degenerate by symmetry only at I' and
M. For small values of $ and q near the I' point,
the matrix elements (7.1) reduce to

&x[h(k)~x) = a -Pg'-yq',

& l~(t)l»= «n,
&yl &(k)ly) = a r(' -Pq', -

(7 2)

VIII. COMPOSITE s-d BANDS OF COPPER

The fcc Bravais lattice of metallic copper is in-
variant under the operations of the point group 0„
acting at the lattice nodes n= —,'a(n„, n„,n, ), where

n„, n„, and n, are integers such that n„+n„+n, is
an even integer and a is the lattice constant. The
lattice is also invariant under the operations of
the point group O~ acting at the interstitial posi-
tions n+t, where t =—,'a(1, 1, 1).

The special points (I',X, W, L) and the special
lines (b, , A, Z, S,Z, Q) in the basic domain of the
Brillouin zone are shown in Fig. 2. Table IV lists
the symmetry assignment for the Wannier func-
tions corresponding to the eight possible types of
bands distinguished by reflection symmetry over
the nonsingular portions of the faces of the basic
domain. Note, again, the one-to-one correspon-
dence bebveen the possible types ofbandsand the

where the constant parameters n, P, y, and 5 are
linear combinations of the interaction integrals in
(7.1). The matrix (7.2) coincides with the matrix
(5.4) for two bands which are degenerate at the b.
line of the Brillouin zone of an fcc lattice, as it
must be because C~„ is the group of wave vectors
at A. We can thus proceed as in Sec. V by intro-
ducing polar coordinates (p, p) about the I' point.
Again, for small values of p, the eigenvectors
U~'~ (p, p) are independent of p and single valued
in p. Therefore, they have a jump discontinuity
whenever crossing the I' point. A similar behav-
ior occurs about the M point. We then conclude
that the Wannier functions, corresponding to each
one of the two bands, will fall off asr ' for large
values of r in any direction in the x-y plane.
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FIG. 3. Conduction band
of copper: schematic
map of the curves of de-
generacy (- ~ -) on the
symmetry planes delimit-
ing the unfolded basic do-
main.

FIG. 2. Brillouin zone of the fcc lattice, showing
special lines and points. The basic domain is defined by
the inequalities 0 &k, &k„&k,&2~/a and k„+k~+k,
&3~fa.

eight available one-dimensional irreducible rep-
resentations, four of 0~ and four of O~.

For this example, two alternative vectors h~
should be entered in Eq. (6.10):

(a) hs = (4v/a)(0, 1,0) for R =a„corresponding
to the SZ plane, which gives exp(ih„~ t) =exp(-f2')
=1. According to (6.10), the characters of the op-
erations g„and g, of the group of the wave vector
at the Z line are then equal. As a matter of fact,
these two characters differ only when W' is a point
of degeneracy. However, as we have shown in
Sec. V, degeneracy at W requires the preserice of
a curve of accidental degeneracy in the k, =0 plane,
which in turn implies the presence of a branch cut
surface containing the Z line.

(b) hs = (2v/a) (I, 1, 1) for R =C», corresponding

Irr. rep. Group

Agg

A~~
Agg

Ag„
A2g
A2g
A~
A~

0
OI
0„'

OIt

o~
oa
OI'

TABLE IV. Symmetry assignment for the Wannier
functions of an fcc lattice. [Here "+"or "-"indicates
that the Bloch function y&(r;k), with k be?onging to the
AZ and Zh, planes and to the Q line, respectively, is even
or odd under the symmetry operation, other than the
identity, of these planes and line. ]

(ar, „(r)~gular, .
y (r -n)), (8.1)

up to the second-nearest neighbors. .The Slater-
Koster interpolation scheme2 has served to fit
the ab initio calculation of Burdick, "without any
advance knowledge of the Kohn's orbitals {ar,&(r)j.
Details of the calculation are described in Hef. 1.
In Fig. 3 we report a schematic map of the curves
of degeneracy for the conduction band of copper.
In the neighborhood of the W' point the results from
the fitting have been replaced by the ab initio data
of Burdick's calculation, complemented by the
theoretical analysis made in Sec. V (example B)
7he fitting was, in fact, unable to reproduce the
bands at energies of about 0.5 By above the Fermi
level, such as those for k in the vicinity of the W

to toe Q line, which gives exp(iTi„7) =exp( f3'-)
Thus the symmetry character of the Bloch

wave with k belonging to the Q line decides whether
the Wannier function is symmetry adapted to O„or
to Oq.

The structure of the s-d bands of copper is quite
complex because of the large number of curves of
degeneracy occurring between various pairs of
bands. We regard these bands as prototypes of
composite bands and discuss in this section how
to apply the prescriptions of Sec. VI in order to
assign: (i) a definite symmetry to the Wannier
functions; (ii) a phase of the Bloch waves consis-
tent with the symmetry assignment. We consider,
these assignments explicitly only for the conduc-
tion band of copper (g =6), which contributes the
density of states at the Fermi level.

As a first step, we map the symmetries of the
Bloch waves on the four symmetry planes (ZA,
AA, AE, SZ) that delimit the basic domain of the
Brillouin zone and on the Q line. We have thus to
calculate the eigenvalues E„(k), and the eigenvec-
tors Ui" i (k), of the Hamiltonian matrix (3.4) for
k ranging over a fine mesh of points on these planes
and line. To this end, we have estimated the in-
teraction integrals
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point. In Fig. 3, the plus or minus sign in a par-
ticular symmetry plane indicates that the Bloch
function y, (r; k), with k in the plane, is even or
odd under the reflection through that plane; for
the Q line the corresponding symmetry operation
is C». A curve of degeneracy separates the odd
from the even region in a symmetry plane. " By
comparing Fig. 3 with Table IV we coriclude thata
consistent symmetry assignment for the Wannier
function of the conduction band of copper is I'(6)
=A. , of the group 0„' acting at the interstitial po-
sition t =-,'a(l, 1, 1) in the central cell.

The discontinuity of the Bloch function when k
crosses the square face on the boundary of the
Brillouin zone is caused by the presence of a curve
of accidental degeneracy which surrounds this
face and touches it at the four 8' points. The shift
of the %annier function of this conduction band of
copper from the center of the cell to an interstitial
position is probably related to strong hybridization
with the higher p bands. As a matter of fact, the
Bloch function cp, (r; k) is completely p-like at the
symmetry points X and L on the boundary of the
Brillouin zone and almost completely p-like at S'.

%e now rephrase the criteria of Sec. VI into
practical prescriptions for defining the phase of
the Bloch waves:

(i) Make all matrix elements (3.4) real by taking
the orbitals ar, (r) with even parity under inver-
sion as real and those with odd parity imaginary.
The eigenvectors Ut" ~ (k), obtained by diagonaliza-
tion of the Hamiltonian matrix (3.4) at a chosen
mesh of points in the basic domain, will then be
real, too. Each of them is thus specified to within
an overall sign at each k. We have chosen a cubic
mesh of linear size (2w/a)/16 for a total of 505
points in the basic domain.

(ii) Select a nondegenerate reference point k, in
the interior of the basic domain and fix the overall
sign of U~" (k, ) arbitrarily. In fact, as shown in
Sec. VI, only this arbitrariness remains in the
specification of the phase of the Bloch waves.
Moving outward from k& in all directions, we then
take the sign that makes U "~ (k) a smooth function
of k throughout the chosen mesh. Care must be
used in continuing the eigenvectors analytically
when following a path close to any curve of degen-
eracy in a symmetry plane or close to ariy curve
of accidental degeneracy bebveen equivalent rep-
resentations in the interior of the basic domain.
Typically a component of the normalized eigen-
vector U "~ (k) can vary by -1 over an interval
~4k~ - (2n/a) x 10 ' at a distance - (2n/a) x 10 ' from
the curve of degeneracy.

(iii) When the center of symmetry of the Wannier
function lies in an interstitial position, that is
when t&e 0, the real eigenvectors U~" (k) obtained

in (ii) within the basic domain must be renormal-
ized by a factor exp(-ik t).

(iv) Having calculated the eigenvalues E„(k) and
the eigenvectors U~" ~ (k) in the basic domain, ob-
tain their numerical values in the rest of the Bril-
louin zone by the symmetry relations

E~ (Rk) =Ep (k), (8 2)

V&,",~, (Rk) = exp [-f~&„"&(Rk)]
dim (p)

x g Po» (k)D&r~(R-~)
J- 1

(8.3)

for each operations of the crystal point group and
for all p, . The value of the phase factor exp [-ir &~~

(Rk)] has been discussed in Sec. VI, with refer-
ence to the construction of a symmetry-adapted
%annier function.

(v) With these definitions of phase, the Wannier
function g„(r) is real or imaginary depending
whether I"(p,) is even or odd under inversion. A
real %'annier function could be obtained instead by
multiplying the eigenvector U+ (k) by an addi-
tional factor of i for all k in the Brillouin zone.

g&r'~'&(r E )= && d]dq q&„(r;E,g, q)"s O)=s

x &goal I a,q),
r

dk 6(E Ep (k))yp(-r;k)0
~ ~fk ' tPP(I'l) (k.E )Je (9 1)

Here
(a) (P~~r, '&(k;E„)}is a complete and orthonormal

set of polynomials belonging to the non-negative
density function 6(E -E&(k))/0 with the Brillouin
gone Q as its fundamental domain. Examples of

(Pp '~ (k; E&)] for the s-d bands of copper have
been calculated in Ref. 1. By construction, the
polynomial Pz~p~(k;E„) belongs to the ith row of
the irreducible representation l" of the crystal
point group, i.e.,

dim(l )
P~r~ (R 'k;Ep) =g P~, ~ (k;Ep)D/$ (R)

(9 2)

for any operation 8 of the point group.
(b) The phase factor exp(ik t&) in Eq. (9.1) is

the same for all constant-energy surfaces E&(k) =E
of the p, th band and for all indices I'iLq which la-
bel the polynomials; it depends only on the band
index g. This factor depends on the phase of

IX. SYMMETRIES OF THE MULTIPOLE WAVE FUNCTIONS

We return now to the set of multipole wave func-
tions defined in Ref. 1 as
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q))((r; k) adopted in Sec. VI and was indicated in
Ref. 1 generally as exp [ie„(k)]. It serves to corn
pensate the shift of the %'anriiei. function to t& thus
restoring the symmetry adap'tation of the multipole
function to the point r.=O„as wQl be shown below.

(c) The multipole wave functioris are normalized
accor Cllllg to

l yre(rlsa) (r.E )ag(rr(rara')(~r. E) )

6 (E E )())( )(p5rrr ()g f r5@Ip 5aa r ) (9 3)

where the integration extends over the w'hole (in-
finite) crysrtal.

Ai mentioned in Sec. VI, we requir)e the multi-
pole wave functions to be symmetry adapted to the
crystal point group for the node of the Bravais

lattice belonging to the "central" cell that serves
as the origin. This node is intended to coincide
with a physical impurity, such as the inner-shell
vacancy left behind by a photoelectron. %e shall
now determine explicitly the symmetry species of
the multipole wavefunction (9.1) by replacing r by
R 'r on both sides. The transformed Bloch func-
tion q)„(R 'r; k) is given by Eqs. (6.2) and (6.6).
From these equations it follows that

(R-1~r. k)e((k ~ t)() ~I'(i()(R)~ ($.Rk)aQBk ~ a)()

(9.4)

Considering the point group invariance of the in-
tegration over k and of the constant-energy surface
and using the transformation (9.2), we have

rr)r)r )(((- r. a )-r)r(r))(a) . fd)rr(a a ()r))a (r. )r)r)r )r) )rr(a- )r. @ )

dim(P)
@(rara)I r.E )&[ro()](ft)D(r) (I) (9.5)

Therefore, the set $$( '~') (r; E„) [i = I, . . . , dim(1')]]
forms a basis of the Kronecker product rePresen-
tafion I'()i) x I' of the crystal point group acting at
n =0. This Kronecker product reduces in a simple
way because I'(g) iis one dimensional, as shown in
tablei of the coupling coefficients. 26 For instance,
(5t(s&~a) ( 8;E„),- (()Pa~a) (r; E~ )] forms an irre-
ducible basis of Ea when I'(g) A, a arid I'=E~ of.
the group 0„. Thus each multipole wave function
is readily assigned to a Specific eo of an irre-
ducible representation of the ci'ystal. point group.

%e novi consider the expansion of the multipole
wave functions in series of %annier functions, by
inserting the %annier expansion of the Bloch wave,
Eq. (2.2), into Eq. (9.1):

a) )(r;ar„))r= ' f d)rr(Z-)r„()r))

gp I'-n e "
n

X afk ' tgP(1'I) (k.E )

=pa& (r - n) (n+t)~1'iL(q) „.s(9.6)
n

We have here) introduced the lattice multipoles, de-
fined as

(n+t)( ~
I'iLq)s -=— dk 5(E -E)((k))0

x I) ri)(k E„)elk' ()+

(9.7)

I

Equation (9.6) involves the term-by-term inte-
gration of the infinite %annier series. Note that
the series (2.2) cannot converge uniformly every-
where in the Brillouin zone and term-by-teem in-
tegration must be handled with some care if the
p, th band has points of degeneracy. However,
term-by-term integration in Eq. (9.6) is justified
by the Lebesgue convergence theorem" under the
following conditions:

(i) The measure

1
mo(E)() =

~ dk ()(E -Eq (k))

dip
g (k)=g IVkE)((k)l

P

(9.8)

must be finite. This is certainly true because
rno(E&) represents the density of states contributed

. by the pth band per crystal cell.
(ii) The (spherical) partial sums of the series

(2.2) are uniformly bounded, i.e., their absolute
value must be sinaller than a chosen constant, as
the. riumber of shells included in the sum increases
without bound. This is Certainly true for tbe Four-
ier partial sums of piecewise smooth functions of
one variable. In fact, the worst situation one
faces in the case of one variable is the Gibbs phen-
omenon, from which one can easily visualize the
boundednesa of the partial sums. Although this
resu1t seems also plausible for piecewise smooth
functions of three variables, such as our Bloch
functions q)& (r) k), we lack a general proof of this
nontrivial theorem for several variables.
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X. PROPERTIES OF THE LATTICE MULTIPOLES
@+7 i',q),

The analogy bebveen the multipole wave functions,
Eq. (9.1), and the ordinary spherical Bessel func-
tions is most evident when the wave functions are
represented through their Wannier series, Eq.
(9.6). In fact, in the degenerate limit of a spheri-
cal constant-energy surface, E =k', the lattice
mult'ipoles (9.V) reduce to

(n+tp (lm)s =(— 4''jg(k[n tp+~)Ig„]

(10.1)
In this section we carry the analogy further by

discussing a few properties of the lattice multi-
poles, which hold for a generic constant-energy
surface.

(i) By construction, ' the polynomials P~~' (k;E&)
are real and have parity,

P&~'& (-k;E„)= (-1)~P'~'& (k; E„). (10.2)

Hence

(n+t&~riLq)s =(-1) (n+t&~riLq)s„,

and i~g&r'~'(r; E„) is real because we have con-
structed real Wannier functions.

(ii) The lattice multipoles can be expanded in
power series of the components of n+7„:

(lo.s)

(n+tplriLq)s„= Q Qi&v~~~~&(n+tp)
l=L sX,

x (v,.&IWs (r) I P„) (1O.4)

For practical purposes we might proceed, in
any event, as follows:

(a) We split any Bloch function, q„&(r; k), as in

Eq. (2.6) and expand in Fourier series only its
smooth, well-behaved part, q&„(r; k). Term-by-
term integration is thus fully justified because
the Fourier series of y&(r; k) eonverges uniformly
everywhere in the Brillouin Xone. Moreover, the
rate of convergence of the series can. be improved
by properly defining q„(r;k).

(b) The contribution to the multipole wave func-
tions of the remainder, 4& (r; k) -=q&& ( r; k) —P&(r; k),
can be estimated from Eq (9..1) by explicit inte-
gration over the portion Qo of Q, where C» (r; k)
is appreciably different from zero. This contribu-
tion might be neglected, particularly when the
factor P~, in that equation has low value of L, and
hence oscillates slowly. The error thus made in
reproducing 61~ r'~'& ( r; E„)will be smaller than
the error in the Bloch function because of the
averaging action of the integration. From the
numerical point of view, any interpolation scheme,
such as the QUAD scheme, "can in fact serve well
for smoothing the Bloch functions.

in the notation of Sec. III of Ref. 1. The polynom-
ials v~&r~&(n+t„) are homogeneous of degree l in
the components of n+t„. As for the power series
of the spherical Bessel function j~(kr),"the ex-
pansion (10.4) starts with terms of degree l =L,.
Moreover, at fixed [n(, (vf~~&(n/a)( tends to zero
with increasing l, and roughly speaking, is rather
small for la» ~n~. Therefore, only the maltiPoles
Mitk relatively small L are aPPreciably different
from zero in the vicinity of Ne "central" cell
(n =0).

(iii) An estimate of the value of the lattice mul-
tipoles for ~n~ -~ can be obtained from their in-
tegral representation, Eq. (9.7), by using the
method of stationary phase. We follow the treat-
ment of Koster" and Callaway" and rewrite Eq.
(9.7) as

(n+t&~riLq)s

dr dkPq~, (&kEq)
2mQ

Q

&exp(i(k (n+t„)

+[E —E&(k)]7)). (10.5)

For ~n~ large, the principal contribution to the
integral comes from the neighborhoods of points
(v„kg where the variation of the exponent is
small. That is, (ro, kg are determined by the con-
dition

E =Ep (kg,
(10.6)n+tp =vo[VfEp(k)]&,

0

Physically, this condition means that an electron,
in a Bloch state with momentum k0 and energy E,
will reach the nth cell only if its (group) velocity
has the direction of n. Assuming that E& (k) is an-
alytic about k, so that it can be expanded in a con-
vergent Taylor series about this point, and keeping
only terms up to second order we readily get

Here C0 is a constant that depends only on the de-
rivatives of E„(k) at k,. In deriving Eq. (10.V) we
have made use of the property that& if (vo, kg sat-
isfies the condition (10.6), (-yo, -kg does too.
Moreover, if several points (vo, ko) satisfy (10.6),
Eq. (10.V) is naturally generalized to a sum of con-
tributions from the various points. Equation (10.7)

(-+t„[rLq) „~ ~

=C, 'P„"(k„E„)

sin[ko (n+Tp) -L»'/2]
)n+tp)

(lo.v)
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= 5(E —E )5 rrs5~~ i5&~s5&&n (10.8)

shows that, for large N,
I II I «N

[&n)IiLq& „)'-N, (10.9)

while
l n I ~»

-N . (10.10)

We have then )(n)1'iLq) Js™1/Nfor [n(-N, showing
that the W'annier series of the multiPole wave func-
tions, Eq. (9.6), converges faster than the corres
Ponding Wormier series of Block functions.

XI. DISCUSSION

Wannier functions have traditionally been re-
garded as a tool for discussing local phenomena
in crystals, e.g. , impurities problems, but only
to the extend that these functions are well "loca-
lized, i.e., only in a tight-binding. limit, when
their tails fall off exponentially. " In realistic sit-
uations, however, bands are degenerate and the
associated Wannier functions suffer "slow" decay.
Our main point has been to restore the practical
role of Wannier functions by remarking that the
undesirable tails originate from singularities of
the Bloch waves whose effects on the norm of the
Wannier functions are of the order of the valurne,
of a small Portion of the Brillouin zone [Eq. (5.10)].
To this extent, the contributions of the tails may
be neglected in the construction of superpositions
of Bloch waves, such as the multipole wave func-
tions (9.1).

The singularities of the Bloch waves have been
studied here in a few examples. Specifically, we
have determined whether or not a branch cut
surface must be introduced by determining the

is, of course, analogous to the asymptotic expan-
sion of the spherical Bessel function for large
values of the argument. "

That )(n+t& [IiLq)s J =0(1/ ~n)) follows on dimen-
sional grounds as for all spherical waves. The
"normalization" condition of the lattice multipoles

P s (I'iLq(n)(n(I"i'L'q')si

form of the Hamiltonian matrix (3.4) in small
neighborhoods of loci of degeneracy. Procedures
to obtain the expansion of the Hamiltonian matrix
in neighborhoods of points of symmetry have been
developed by group-theoretical considerations"
and used recently to obtain densities of states con-
tributed by neighborhoods of high degeneracy points
in complex compounds. " We plan to apply similar
methods to determine the behavior of the eigen-
vectors of the Hamiltonian about the loci of degen-
eracy.

The problem of establishing a rational normal-
ization of the phases of the Bloch waves had been
raised repeatedly over the years. """This prob-
lem appears to have been solved in Sec. VI, at
least for the class of crystals considered expli-
citly. Not surprisingly, the problem had to be set
in the context of unitary transformations of the
whole set of Bloch waves onto alternative bases.

Certain questions emerging from this paper re-
main to be explored. Firstly, as noted in Sec. VI,
one should consider whether and how the shift of
the center of symmetry of certain Wannier func-
tions to an interstitial position relates to chemical
properties of crystal, for instance, to hybridiza-
tion and bonding. Another open question concerns
the possible observable implications of long-range
order related to degeneracies in the spectrum of
the Hamiltonian (3.4), especially when a degen-
eracy occurs near the Fermi level, as in the case
of nickel.
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