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We construct a complete set of multipole wave functions for an electron in a crystral, appropriate to
describe single-center phenomena. The set consists of superpositions of the Bloch waves of given energy E,
weighted by a set of harmonics which is complete and orthonormal over the constant-energy surface
E”(I?) = E. We give prescriptions to label these harmonics. Numerical examples are discussed for the s-d
bands of Cu. The case of a spherical constant-energy surface, whose harmonics are the spherical harmonics,

reappears as a degenerate limit.

I. INTRODUCTION

A few years ago Fano suggested’:? a generaliza-
tion of concepts and techniques of the quantum-
defect theory of atomic and molecular spectra to
describe single-center phenomena occurring in
crystalline solids, namely, photoabsorption from
inner shells and isolated impurities. The initial
implementation of that approach® did not include
applications and was subject to restrictions that
are lifted in the present and in its companion
paper. One can find in the recent literature both
theoretical* and experimental® instances in favor of
a relatively simple theory which would connect
atomiclike effects and band properties. While we
are still far from a direct comparison with the
experimental evidence, we feel encouraged to
report on the substantial progress that has been
made thus far. This introductory section describ-
es our theoretical approach.

As the presence of a localized “center” spoils
the translational symmetry of the Hamiltonian
operator, the final state of a photoelectron cannot
be simply described by a single Bloch wave, an
eigenfunction of the perfect crystal Hamiltonian.
The effect of the vacancy created by photoionization
is assumed to be localized within a few crystal
cells about the “central” cell. We then divide the
crystal into two regions: (i) an internal region
which is perturbed; (ii) an external region where
the crystal is unperturbed. The two regions can
be treated with different approaches®: (a) in the
internal region we shall have to perform the nu-
merical integration of a molecular-type many-body
Schrodinger equation; (b) in the external region
the solution can be expressed analytically in terms
of the eigenfunctions of the unperturbed problem,
i.e., Bloch waves. Owing to the exclusion of a
finite volume, k vectors belonging to the Brillouin
zone @ must now be complemented by complex Kk
vectors. Using a standard technique of mathemati-
cal physics, we will expand a general solution in
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the external zone, about its center, into an appro-
priate, complete set of multipole waves and then
identify that particular solution which joins
smoothly to the internal zone solution. To this
end, we have to develop concepts and techniques
which will enable us to match a molecularlike
problem (internal region) to the description of a
uniform crystalline medium (external region).

Earlier studies of scattering by a potential of
finite range in a crystal’ have presented contrast-
ing features. Basically one follows the Lippmann-
Schwinger formalism in which the wave function
of the scattered particle is identified at large
distances from a localized potential with reference
to a particular K vector. On thé other hand, the
Bloch waves are then expanded into Wannier func-
tions which are deemed appropriate to the treat-
ment of a localized perturbation. These studies,
however, do not discuss the effect of the long tails
of the Wannier functions which are related to sing-
ular behavior of the Bloch waves in the proximity
of loci of dégeneracy in k space. These two as-
pects will be reconciled in our approach by consid-
ering superpositions of Lippmann-Schwinger solu-
tions identified by different k vectors which smooth
out the effect of singularities and thus confine the
importance of the tails of the Wannier functions.
It follows indeed from the complementarity of
position and wave vector that singularities of
Bloch functions in a limited region of k space are
not very relevant to the effects of a perturbation
localized in physical space.

The aim of the present paper is to show how
the coefficients of the superpositions of Bloch waves
[Eq. (2.3)] can be calculated in the case of a
specific physical system, namely, copper. The
quadratic interpolation scheme of Mueller et gl.®
has been adopted for this purpose because of its
built-in smoothing of the E—space singularities.
The study of the singularities itself involves broad
questions of band theory (convergence of the Wan-
nier series, symmetry classification of the Wan-
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nier functions, phase normalization of the Bloch
waves) which greatly exceed the scope of the pre-
sent paper and are deferred to the following one.

The paper is organized as follows. Section II
introduces multipole wave functions and harmonics
of the constant-energy surface in a crystal as the
appropriate generalizations of the spherical Bessel
functions and the spherical harmonics, respective-
ly. Section III develops a recursion procedure
which defines these harmonics and discusses the
numerical techniques. In Sec. IV some character-
istic features of the harmonics are analyzed for
the case of copper.

II. MULTIPOLE WAVES: REGULAR SOLUTIONS

In the presence of an isolated impurity the Ham-
iltonian of the system loses the translational in-
variance characteristic of a perfect crystal but
still possesses point-group symmetry about a
central cell. (We consider for simplicity lattices
with a single atom in each unit cell and a center
of inversion at the atom.) As in a molecular pro-
blem, we classify the eigenfunctions of the Hamil-
tonian according to their energy and to the sym-
metry species to which they belong. We use the
symbols I" and 7 to indicate an irreducible repre-
sentation of the point group of the lattice and one
of its rows, respectively. Because the number of
representations of finite groups and their dimen-
sionalities are finite, we need additional indices,
which range over an infinite set of values, in order
to classify a complete set of given energy E.

In the course of this paper we restrict our atten-
tion to the subset of real k vectors belonging to the
Brillouin zone ©. Multipole waves with energy E,
which are regular, i.e., not singular at the center,
are then obtained by a unitary transformation of
the solutions of the unperturbed crystal, i.e., of
the set of Bloch waves {¢,(¥; E)} with energy

E,(K)=E. (2.1)

This relation defines a constant-energy surface in
the Brillouin zone. We consider here one “band” at
a time and allocate the eigensolutions to a particu-
lar band by using the ordered labeling.®

In order to separate energy and surface vari-
ables, the label kis replaced by the corresponding
energy E and by orthogonal coordinates (&,7) over
the constant-energy surface.’® The Bloch waves
are then normalized per unit range of the new con-
tinuous variables:

1/2 . -
0 5B, g m= [ Roke b ) 2)

8(E, £,m)

The unitary transformation connecting the set of
Bloch waves {¢,(¥; E, £,7)} to the corresponding

set of multipole waves of given symmetry species,
replaces the two continuous parameters (£, 1) by
an infinite set of indices, (L, q), whose meaning
has been considered in Ref. 3. Indicating the uni-
tary transformation by {¢n|I'iLg); , we define

the set of regular mu1t1pole waves by the pres-
cription:

(R(I‘iLq)('f;Eu)= dtdn (pu(i’;E, £,m)
E (B)-E
X (&n|Tilg)g, . (2.3)

By definition, the set {(gnIFiLq)Eu} is complete
and orthonormal over the constant-energy surface,

Eq. (2.1). We set
a(kkawk ) 1/2

8(E £,1)

X PEO(K; E,), (2.4)

(&n|Tilg)g, = t_z elieu(®n

where {P{f #(k; E )} is a complete and orthonormal
set of polynomials in the fundamental domain ©
belonging to the non-negative density function'*
8(E - E,(k))/9, i.e., such that

5 J ak oz - BV PG B) PEPE )

= 6!“1“ 6”’61}.[,'6‘1«" (2.5)

The phase factor ¢%u‘® is related to the choice of
the relative phase of the Bloch waves for different
E, to be discussed in the compahion paper.

Note the close analogy between Eq. (2.3) and the
familiar integral representation of the spherical
Bessel (regular) function of order PAH

i ENY (D)=L [ db et Ry, (B). (2.6)
47 Jag
This function constitutes the component of angular
momentum ! of a plane wave, It describes the mo-
tion of a particle about a “center” in empty space.
The corresponding constant-energy surface E = k?
has spherical shape. Equation (2.6) still forms
part of the solution when a spherical potential of
bounded range is turned on. In this case, the
state of a particle with angular momentum [ is
described, beyond the range of the potential, by a
superposition of the spherical Bessel function (2.6)
and of the spherical Neumann (irregular) function.
The latter can also be expressed by means of an
integral of the form (2.6), butthe vector K now
ranges over an appropriate surface in the complex
domain.*?

The wave packet (2.3) generalizes Eq. (2.6) to
nonspherical constant-energy surfaces. The cor-
responding generalization of the spherical Neumann
function will be carried out in a future paper. The
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set {(¢n|TiLq) g } can thus be described as the
havmonics of the constant - -enevgy surface

The rest of the paper will deal with a numerical
example of the construction of the orthonormal
polynomials PEV(k; E,).

III. NUMERICAL CALCULATION
OF THE POLYNOMIALS Pg';')(i{;EM)

A. Orthogonalization procedure

To construct the set of orthonormal polynomials
in @ belonging to the non-negative weight function

(E-E (k))/  we may start from any convenient
set of linearly independent polynomials in k.
Followmg Ref. 3, we choose a set of polynomials
{v}f,\"(k)} that are (i) real'®; (ii) homogeneous of
degree [ in the components of k (iii) symmetry
adapted, i.e., transforming under the point-group
operations according to the ith row of the irre-
ducible representation I'; and (iv) normalized so
that

P E 2 i EP(F) LK) . ' (3.1)
i Is:

Each polynomial vg,t”(l?) can be factored as the
product of %! and of a symmetry-adapted spherical
harmonic of degree [ -~ 2s, which represents its
angular dependence; s need not vanish because the
constant-energy surface is not spherical. The
index X distinguishes different harmonics of the
same degree and symmetry species.

Symmetry-adapted spherical harmonics have
been first introduced for the cubic group by Von
der Lage and Bethe'® who called them Kubic har-
monics. Their generalization to all crystallo-
graphic point groups, mainly by Altmann and
collaborators, has led to a complete tabulation in
Chap. 2 of Ref. 29.

We indicate the overlap integral of any pair of
real functions £T#(k) and g‘T(k), over the con-
stant-energy surface E H(E)= E as

1 - -
(| Wy, D)= fﬂ K 8(E - E, (&)
Xf‘”’(lz)g(”’(ﬁ).r (3.2)

Each polynomial P‘Lr”(k E,) is then constructed as
a linear combination of the v‘,f,f)(k) with I <L by
the following recursion procedure. We start with
the lowest degree [, that occurs for the given I

in the process of symmetry adapting the spherical
harmonics. Generally /, is nondegenerate and we
can set

PO E )=U§;:)i>(ﬁ)/(v,oo| Wy, (D)o, M2, (3.3)

For each L >1,, we first orthogonalize all the {3}

W1l 0 a. e y0 wi < an
(k) with =L to all th P‘L‘“”(kE) th L'<L and

define
L'<L

WEPE =0 E0R) - Y PEIE E,)

e

X (PL.q.[ WEH(I“) l”w) . (3.4)
We then expand
PEA(; E,) = Z uf2E) L, (3.5)

where the coeff1c1ents d‘Z@ are to be determined
as the eigenvectors of the positive semidefinite,
real, and symmetric matrix:

@pn| We, (D) |uggn). (3.6)

’ > . . .
The d‘Z® are normalized in accordance with

W)Y df*=1, NER)
SA X

where W Lq(I‘) is the corresponding eigenvalue of
the matrix (3.6). The residual sign arbitrariness
of each d‘#? is removed by requiring its compo-
nent d‘* to be positive.

Both qt‘ffe overlap integrals in Eq. (3.4) and the
matrix elements (3.6) can be expressed in terms
of the elementary structural parameters

O WEu(r) [Dpgnd e (3.8)

These are the quantities which we will calculate

by numerical integration. Specifically, we re-
strict our attention to the examples listed in Table
I for the irreducible representations 4,,, T, , and
E, of the cubic group up to L, =4. This sample
of polynomials appears sufficient to illustrate
general properties that are of interest at this time.
Larger samples may, of course, become neces-
sary, for example, if one were to represent a
nonsmooth function of k over the constant-energy

‘surface.

TABLE I. Examples of basis polynomials for the group
O, (from Appendix of Ref. 3).

Ty E;

l Agg (i=1,2,3) (j=1,2)

0 Voo )

1 v%)

2 WY v§p
viy

3 0(3;)

: V4o ”%)
* Uiz vip
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B. Parametrization of the s-d bands of copper

We performed the calculation for the s-d bands
of metallic copper, for theoretical and experimen-
tal reasons. On the theoretical side, the band
properties of Cu have been extensively investigated
and it is believed that Cu is probably the best test

for the band theory of metals.'” On the experimen-’

tal side, the photoabsorption spectrum of Cu is so
well known that it is taken as a reference spectrum
for calibrations.

The band information relevant to our problem,
namely, the family of constant-energy surfaces
(2.1), was obtained by fitting the ab initio APW
band calculation of Burdick'® using the Slater-
Koster interpolation scheme.!® This method has
proved applicable to many types of crystals having
wide bands, which would not normally be consid-
ered to be tightly bound,?*:2! and has been used
recently?® to calculate two-dimensional band struc-
tures related to surfaces.

This procedure provides a cheap and accurate
band structure E ,,(I'E) over the whole Brillouin
zone but fails to provide the Bloch waves ¢ ,(T; E)
because it determines only the integrals

(a/D)|B,|a(F - ), (3.9)

1 being a lattice vector of the crystal, rather than
the atomiclike orbitals {a,(¥)} themselves. One
might envisage calculating these orbitals by Kohn’s
variational method®® which evaluates a set of
atomiclike orbitals {a,(?)} ab initio from which all
relevant informations about the band structure

ILL L. 4099

can be obtained. In a similar approach Chadi®* has
shown that the bands of Ge, Si, and GeAs can be
calculated with good accuracy from a few opti-
mized Slater orbitals.

The fitting of the lowest six bands at 38 points in
the basic domain w (or irreducible wedge) of the
Brillouin zone has been carried out by simultan-
eous variation of the parameters following the
techniques discussed by Connolly.?° All the inter-
action integrals (3.9) up to the second-nearest
neighbors have been included for a total of 32
different parameters. The total rms deviation of
the fit is 8 mRy, which is within the accuracy of
the ab initio calculation.’® The “best estimate
values” of the parametric integrals are listed in
Table I1.2> We used these values to evaluate the
rms deviation for all the 84 points in the Brillouin
zone where the first six ab initio bands are known.
The value of 8 mRy was again obtdained; only 10
points were found to have partial rms deviation
larger than 10 mRy.

C. Integration procedure

We calculated the integrals

<Ux,s,>«1 | WE,,(P) l vzgszze>

1 - -, - -,
= (r (ri .

5 fn dk o(E - E,(){ID, wiLh, (k) (3.10)
by the quadratic interpolation scheme® (QUAD) for
the examples_}isted in Table I using the dispersion
relations E (k) thus determined.

TABLE II. “Best estimate” values of the parametric integrals (in Ry).

Es,5(000) —0.187 924
Es,5(110) —-0.072 737
Eg,1(110) —0.014 983
Es, 3:2-,2(110) —0.006167
E,y,,y(ood) —0.579919
Eyy,xy(110) —-0.019 662
Eyy,2,(011) 0.006 759
Exy,22(011) 0.012 393
"Exy,3:2-,2(110) 0.011119
E342,2,3,2,2(000) ~0.575699
Eg2-,2,3,2_,2(110) —0.009420
Ey2_y2 x2_42(110) 0.018213
Ex(110) —0.073195
Ey x,(110) 0.001 886
Ey x,(011) —0.023 928
Eg,3:2-,2(011) —0.025669

E g x2-42(011) ~0.003 237
E, .(000) 0.531

Ey x(110) 0.104

E, .(011) -0.001

Ey,,(110) 0.101 505
Es,s(200) 0.010 271
Eg, 322-,2(002) —0,008 364
Eyy,1,(200) 0.003 904
Ety,x5(002) —0.000 040
E3:2-,2,352-,2(002) ~0.007 245
Ey2_2 ;2_42(002) 0.000 598
Eg£(200) —0.003851
Ex,x(020) —0.000 392
Eg, 3:2-,2(002) 0.009 268
Ey x(200) 0.029 783
E,,,(200) 0.013203
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It has been already stressed® that, mainly for
complicated band structures like those of transition
metals, a “quadratic” interpolation scheme might
be superior to any method which expands the
eigenvalues Eu(l';) locally only to first order.?®
In fact, a large number of critical points occur
in the band structure of transition metals. Analy-
tic critical points are treated exactly by the QUAD
scheme while in a neighborhood of a nonanalytical
critical point a smoothing of the singularity is
performed (for instance, a crossing of two bands
which might occur along special directions in the
Brillouin zone is approximated by two parabolas).
This operational trend matches the considerations
we made in Sec. L.

From a practical point of view, the QUAD
scheme can be easily adapted to the calculation of
integrals other than the density of states but
involving arbitrary functions of the k vector, such
as those in (3.10). On the other hand, the simple
summation over a few “special points”®7 in the
Brillouin zone cannot be used because the functions
in the integrand of (3.10) are neither smooth nor
periodic, with the periodicity of the reciprocal
lattice.

As it is always convenient to take full advantage
of the symmetry of the Brillouin zone (the Wigner-
Seitz unit cell of reciprocal lattice), the integral
(3.10) should rather be written as

<vllslh1 I WEu(F)[ 01232)2>

-1 éié(E E (K)) 1 "(r)v‘”) K)v'r? (k)
_(TJ A ~Fu ;('IT); s 128920 *

(3.11) -

Here w stands for any basic domain in the Bril-
louin zone (or any number of them) and »(T") is the
dimension of the irreducible representation T'.
The function in braces is in fact an invariant under
all operations of the point group of the crystal.?®
Specifically, this function is an invariant poly-
nomial, homogeneous of (even) degree [, +1, in k.
It can therefore be expressed as a linear combina-
tion of the totally symmetrlc symmetry-adapted
spherical harmonics, Xf,’ )_(k), of degree I<ly+1,,
multiplied by k2%1*%2, For example

33 T @i @)

1/
=8 m[(i) 15X (B) + —o
1L \13 1

189
i

+99X,‘f1)‘(£)] . (3.12)

X(4) (k)

It follows that one has to evaluate by the Monte
Carlo method only a minimal set of independent

integrals. For instance, in order to generate the
35 orthonormal polynomials P(LI;”(E; E,) wtih L <4,
one would need to know 31 integrals of the type
(3.10). However, these integrals can be expressed
in terms of only 11 independent integrals belonging
to the minimal set.

IV. DISCUSSION OF THE NUMERICAL RESULTS

Initial tests of the program were conducted
assuming a quadratic, spherically symmetric
dispersion relation E(§)=k2. A mesh size of 3 of
the T to X distance was found necessary and suf-
ficient to contain within our statistical fluctuations
a known systematic error of the QUAD scheme,*®
namely, a spurious valley in the density of states
followed by a spurious peak near the edge of the
Brillouin zone. It was also verified that the spher-
ical symmetry reduces the number of independent
polynomials of degree I from $(I+1)(I+2) to 21+1,
by causing certain polynomials to vanish identical-
ly on the constant-energy surface. This occurs,

e.g., for the second order of polynomials u‘Ale’(k)
=(? = (k%);/(1)z)/V6. These checks were success-
ful only when all averages were taken over the
same statistical sample.

The parameters of the calculation for the s-d
bands of Cu were chosen as follows:

(i) The linear size of the cubical cells was
fixed to § of the distance from I' to X. This cor-
responds to loading the eigenvalues E“(E) at 505
points in the basic domain.

(ii) The spectral region from 0.2 to 0.8 Ry,
above the absolute minimum of the lowest band,
was explored. We then partitioned this energy
interval into 100 histogram boxes of width 6 mRy.

(iii) The number of Monte Carlo sampling points
was fixed at 83x 200=102400. The average statis-
tical error then ranges from 1.3% for the narrow-
est band to 3.3% for the conduction band.

The calculations of the integrals (3.10) for the
basis polynomials listed in Table I took about 8
min on an IBM 370/195 computer. Figure 1 re-
ports the density of states contributed by the six
lowest bands (not counting the spin degeneracy).
The position of the Fermi level was determined to
be E=0.653 +0.003 Ry, which coincides, within
the rms error of our fitting (8 mRy), with the
value of 0.659 Ry obtained by Burdick’s ab initio
APW calculation, whose results served as input
for the present work.

The overlap integrals, which appear in Eq. (3.4),
and the expansion coefficients of Eq. (3.5), were
calculated up to /=4 for the three irreducible re-
presentations listed in Table I. These ~10*
numbers can be supplied on request. The following
characteristic features of the orthonormal set of
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FIG. 1. Density of states contributed by the s-d bands hS!
of Cu. The statistical sample contains 102 400 Monte

Carlo points; the width of the histogram boxes is 6 mRy.
The Fermi level is at 0.653+ 0.003 Ry. The inset shows,
for comparison, Fig. 7 of F. M. Mueller, Phys. Rev.
153, 659 (1967).

polynomials are noted.
(a) As mentioned above, all the

[i [2(1-2s)+1]=3(1+1)(I+2) (4.1)

=0
polynomials #{f{ (k) of maximum degree L=1 are
linearly independent over an arbitrary constant-
energy surface, but they reduce to 2/+1 in the
limit of spherical symmetry (here [I/2] means
integer part of 1/2). This is because all u‘LI;,f)(E)
with s>0 vanish identically in the spherical limit.
The ratios

sin’[630(E,)]= M____“(F)'W (4.2)
(vial We, ™)] vLsh>

with s >0 can then be taken as measures of the
degree of linear independence of the set {u‘,f;{’(ﬁ)},
for given I" and L. As a geometrical analog, the
parameter 8‘,};{ can be mterpreted as the “angle”
between the vector v Ls:’(k) and the subspace with
L’<L. The vector u(r"(k) is the component ortho-
gonal to the subspace L’'<L. It thus vanishes for

87)=0. We therefore, expect a quasispherical
surface to be characterized typically by small
values of this parameter. In Fig. 2 we report
examples of the ratios (4.2) for L=4 and T’ E{AI‘,,
E,}, for the conduction band of Cu in an energy
window of 0.180 Ry about the Fermi level. We see
that the lack of angular dependence makes the poly-
nomial v“lt’(k) more nearly linearly dependent on
the subspace with L’<4 than the polynomial vgfe’)
(k), for k restricted to a constant-energy surface
about the Fermi level. At Ep, 641’ ~0.5°. For a
narrow d band with complicated many-sheet sur-
faces, 641 can become as large as ~10°.

ENERGY (Ry)

FIG. 2. Square of the sine of the * angle” between the
basis polynomials (a) v41£ ’(k), (b) v 1 (k) and the sub-
space with L’ <4 is shown vs the energy about the Fermi
level. At Ep, 6 {4%~0.5° and 6 {f&’ ~2.5°,

(b) By the same token, the parameter (4.2) will
increase as the constant-energy surface becomes
increasingly warped when approaching the Bril-
louin-zone boundary. In the example of a nearly-
free electron, the ratio (4.2) would vanish as long
as k? is constant over an energy surface even if
this surface is interrupted by the intersection
with the zone boundary, but warping would in fact
prevent (4.2) from vanishing.

(c) A related set of parameters of the constant-
energy surface which is worth discussing consists
of the eigenvalues WLQ(I") of the overlap matrix
(3.6). As shown in Ref. 3, the density of states at
the 1 crystal cell can be subdivided into contribu-
tions from the various multipoles about the “cen-
tral” cell. The density of states contributed by
the T'iLq multipole can be expanded then into a
power series in . If one retains only the terms
of the lowest degree 2L in such an expansion, the
density of states contributed by the I'iLg multipole
turns out to be proportional to the corresponding
eigenvalue W, (T') of the matrix (3.6). This eigen-
value thus represents,to lowest order, the weight
of partitioning the density of states into multipoles.
Figures3and 4 show W AT) again for L=4 and
r={A,,,E}, (g=+,-) about the Fermi level. One
can see that W4,(Au)/__ (4,,)~10°, while this
ratio reduces to ~10 for a d band

ACKNOWLEDGMENTS

I wish to express my deep gratitude to Professor
U. Fano, who suggested this problem, for his



4102 G. STRINATI 18

T T
8000 Cu : CONDUCTION BAND (a)

Er

S '

t t

Cu : CONDUCTION BAND

ENERGY (Ry)

FIG. 3. The highest (+) and the lowest (=) eigenvalues,
(a) and (b), respectively, of the overlap matrix (3.6) are
shown for L =4 and I'=A, about the Fermi level. [Note:
the k vector in the integrals (3.6) has been expressed in
m/4a units, a being the lattice constant for copper.]

continuous guidance and support, and for his help
in preparing this manuscript. I also with to thank
Professor M. H. Cohen for many stimulating dis-
cussions, Dr. S. G. Das for providing the numeri-
cal programs and for help during the initial stage

T
8000|~ Cu * CONDUCTION BAND |

6000

& Ry)

Ee

4000

W,.(Eg) (K

2000
() 7]

& Ry)

W, (Eq) (K

ENERGY (Ry)

FIG. 4. Same as in Fig. 3, for T'=E,.

of the calculations, and Dr. D, D. Koelling for
discussions on the QUAD scheme. This work was
supported by the U. S. ERDA, Division of Physical
Research, under Contract No., C00-1674-131. This
paper was presented as a thesis to the Department
of Physics, The University of Chicago, in partial
fulfillment of the requirements for the Ph.D.
degree. )

!y, Fano, Phys. Rev. Lett. 31, 234 (1973).

2y, Fano, in Vacuum Ultraviolet Radiation Physics,
edited by E. E. Koch, R. Haensel, and C. Kunz (Vieweg,
Braunschweig, 1974), p. 84.

3G, Strinati-and U. Fano, J. Math. Phys. 17, 434 (1976).

M. Brown, R. E. Peierls, and E. A. Stern, Phys. Rev.

B 15, 738 (1977). ‘

SD. J. Phelps, R. A. Tilton, and C. P. Flynn, Phys. Rev.
B 14, 5254 (1976).

8For a description of atomic quantum-defect theory, see
C. M. Lee, Phys. Rev. A 10, 584 (1974), and references
therein.

'G. F. Koster, Phys. Rev. 95, 1436 (1954); J. Callaway,
J. Math. Phys. 5, 783 (1964); Phys. Rev. 154, 515
(1967); F. Gautier and P. Lenglart, Phys. Rev. 139,
A705 (1965).

8F. M. Mueller, J. W. Garland, M. H. Cohen, and K. H.
Bennemann, Ann. Phys. 67, 19 (1971).

9The reasons for this choice will be discussed in Sec. III
of the companion paper.

A extensive summary of geometrical properties of
constant-energy surfaces can be found in I. M. Lifshits,
M. Ya. Azbel’, and M. 1. Kaganov, Electvon Theovy of
Metals (Consultants Bureau, New York, 1973).

UR. Courant and D. Hilbert, Methods of Mathematical
Physics (Interscience, New York, 1966), p. 87.

2See, for instance, A. R. Edmonds, Angulav Momentum
in Quantum Mechanics (Princeton U. P., Princeton,
N.J., 1960), p. 81.

13p, M. Morse and H. Feshbach, Methods of Theovetical
Physics (McGraw-Hill, New York, 1953), Vol. I, p.
625.

4The usefulness of these harmonics for the treatment of
quite different classes of physical phenomena has been
pointed out by P. B. Allen, Phys. Rev. B 13, 1416
(1976).

5This is possible for those crystal point groups for
which the matrices of the representations can be taken
to be real.

. C. Von der Lage and H. A. Bethe, Phys. Rev. 71,
612 (1947).

17B. Segall, Phys. Rev. 125, 109 (1962).

8G. A. Burdick, Phys. Rev. 129, 138 (1963).

193, C. Slater and G. F. Koster, Phys. Rev. 94, 1498
(1954).

23, W. D. Connolly, in Electronic Density of States,
Natl. Bur. Stand. Special Publ. No. 323 (U.S. GPO,
Washington D.C., 1971), p. 27.

43, G. Das, Phys. Rev. B 13, 3978 (1976); B. Chakra-
borty, W. E. Pickett, and P. B. Allen, Phys. Rev. B 14,
3227 (1976).

2K, S. Sohn, D. G. Dempsey, L. Kleinman, and Ed Ca-



18 MULTIPOLE WAVE FUNCTIONS FOR... . II.

ruthers, Phys. Rev. B 13, 1515 (1976); N. V. Smith
and L. F. Mattheiss, Phys. Rev. Lett. 37, 1494 (1976).

W, Kohn, Phys. Rev. B 7, 4388 (1973).

%D, J. Chadi, Phys. Rev. B 16, 3572 (1977).

25A11 matrix elements of the Slater-Koster Hamiltonian
were made real by taking the orbitals ¢;(F) with even
parity (4s,3d) as real and those with odd parity (4p) as
purely imaginary. This fact has to be taken into ac-
count when using Table II of Ref. 19.

%We plan to use in the future also the “tetrahedron meth-
od” [J. Rath and A. J. Freeman, Phys. Rev. B 11, 2109
(1975)]. A new version of the method, which will in-
clude a quadratic interpolation, is in progress [S. G.
Das (private communication)].

4103

2p. J. Chadi and M. L. Cohen, Phys. Rev. B 8, 5747
(1973).

B This is referred to as the “generalized Unsdld theo-
rem.” See, for instance, M. Tinkham, Gvoup Theory
and Quantum Mechanics (McGraw-Hill, New York,
1964), p. 80.

2%We follow the notation of C. J. Bradley and A, P. Crack-
nell, The Mathematical Theovy of Symmetry in Solids
(Clarendon, Oxford, England, 1972).

g, B. Kennard, D. Koskimaki, J. T. Waber, and F. M.
Mueller, in Electronic Density of States, Natl. Bur.
Stand. Special Publ. No. 323 (U.S. GPO, Washington,
D.C., 1971), p. 795.



