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A microscopic derivation of the theory of extended objects in crystals is presented. The extended object is
the classically behaving macroscopic object created through the boson condensation of phonons, which is
mathematically expressed by the boson transformation. A general method for constructing extended objects
with topological singularities is summarized. The extended object is classified by a topological singularity of
boson transformation functions (or the displacement fields) which satisfy the phonon equation. As examples,
dislocations, grain boundaries, and point defects are studied in detail. %Phile the dislocation correspond to a
line singularity, the grain boundaries and point defects are expressed as surface singularities in crystals. In
particular, it is shown that a point defect, which is defined by the closed-surface singularity with the sime of
the lattice parameter, gives a reasonable estimate of the energy for a vacancy, i.e., 1 eV. Furthermore,
based on a new' theory of boundary surfaces, a novel derivation of surface waves is presented. Finally, the
improvements over the conventional phenomenological theory of materials (the theory of elasticity) are
pointed out.

I. INTRODUCTION

Recently, we developed the quantum field theory
of crystals and dislocations' by applying a quantum
fieM-theoretical technique (called the boson meth-
od) to the system of interacting molecules. The
theory consists of two steps. In the first step, we
derive the perfect crystal from the Lagrangian
which is translationally invariant. As a result of
spontaneous- breakdown of symmetry, we obtain
three quantum modes with gapless energy spec-
tran, which are identified as acoustic phonons.
This is an example of.the Goldstone theorem and
acoustic phonons are GoMstone bosons. It is
shown that the crystal lattice structure is consis-
tent with the translational invariance of the theory,
since the phonons play the role of 'recovering the

original symmetry (the dynamical rearrangement
of symmetry). In the second step, we create ex-
tended objects in crystals through the boson con-
densation of phonons. Here extended objects
means classically behaving macroscopic objects
in a quantum ordered state, sometimes called
simply macroscopic objects. Throughout the pa-
per, we shall mainly employ the words "extended
objects. " In this step the boson transformation
method, which was first applied to the study of
superconductivity, was effectively used. When the
number of the condensed bosons is very large, the
objects created in the system behave classically
and one can develop the theory of extended objects
in the quantum ordered state. We have formulated
a general method to construct extended objects
with topological singularities. Specially, we found
that line singularities correspond to dislocations

/

and that the Burgers vectors should be quantized.
The aim of this paper is to present a detailed

account of the application of our general forma, lism
to the study of various extended objects in crystals
such as dislocations, grain boundaries, point de-
fects, etc. The dislocations correspond to the line
singularities, as was pointed out previously. It
wiQ be shown that the grain boundaries and point
defects are expressed by the surface singularities.
Since the boundary surface of a crystal is self-
consistently maintained, it can be regarded as a
macroscopic singularity. This viewpoint opens a
new way of calculating the quantities associated
with the crystal surface.

The plan of the paper is as follows. In Sec. II
we briefly review our formalism for extended ob-
jects in crystals which was derived in the papers
in Ref. 1. In Sec. III we summarize a general
method for treating extended objects with topologi-
cal singularities. The relations summarized in
this section are the basic tools for our discussion
in later sections. A detailed study of dislocations
is presented in Sec. Vf. Besides the general dis-
cussions on the properties of dislocations, an ex-
plicit expression for the displacement fields in-
duced by the straight dislocation is obtained. In
Sec. V we study the grain boundaries. Our result
shows that the boundary generally accompanies
some amount of expansion (or contraction) in ad-
dition to the change ih orientation across the sur-
face. Frank's formula for grain boundaries is
found to be valid under the condition that the ex-
pansion (or contraction) is negligibly small in the
vicinity of the boundary or the misorientation is
small enough to ignore the expansion (or contrac-
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tion). When we have a static surface singularity,
calculation shows that the force per unit area nor-
mal to the surface is zero, implying that the sur-
face is a free surface. This result is consistent
with our view point that the boundary surface is
self-consistently maintained. As will be shown in
Secs. IV and V, . we have continuity relations both
for dislocations and grain boundaries. In Sec. VI
we study an extended object, the singularity of
which is confined into a domain enclosed by a
closed surface. It is shown that this object can be
regarded as the point defect. Explicit expressions
for the field, volume expansion, and stress tensor
associated with the point defect are presented.
Calculation of the total strain energy gives the
reasonable value of 1 eV which is roughly same
as the energy for the formation of a lattice vacan-
cy. Section VII is devoted to the analysis of sur-
face sound waves. When we consider an oscillat-
ing free surface singularity, we find a new deriva-
tion of surface waves in crystal. The dispersion
relation for the surface sound wave in isotropic
media agrees with the Rayleigh's relation when the
amplitude is small. Our theory of surface waves
can be readily applied to other physical systems,
such as surface magnons and surface properties of
superconductors. In Sec. VIII we comment on the
relationship between the conventional phenomena-
logical theory of crystals and our formalism.

Although the theory is nonrelativistic, we shall
sometimes use four-dimensional notation for con-
venience:

-1 Oi
0 1)I

xp (xop xg j x3$ x3) (t$ xgy x3y x3)

x g xp ( tip xyp x3$ x3)

&" = (s/st, s/sx„a/Bx„s/sx3),

xp —x"p„—x„p"—x p —x,p„
and e„,» is the totally antisymmetric tensor with

6oy23 —13

a system of many kinds of molecule fields and
electrons. In our consideration, any specific form
of the Lagrangian will not be assigned. We only
assume that: (a) the Lagrangian is translationally
invar iant;

d x2(y(x)) = d xg(y(x+ o.)),
f

(2.1)

v(x+a;) =v(x), (2.2)

where v(x) is the ground-state expectation value of
the density operator n(x) = tt (x)P(x);

v(x) =(n(x)) . (2.3)

We introduce a complete set of orthonormalized
real periodic functions (y„(x);A. =-1, 0, 1, 2, ...j
with the lattice periodicity y~(x+a;) = y~(x). Our
choice is

fqr ~(x)) =((p, (x) =1, y, (x),

where y q(x) with A, = 0, 1, 2, 3
through the relation

v (x) =v, +v3y, (x),
3

y, (x)= Q (V ''), ,V, v(x),
3=1

Here v, and v, are constant

V~(x), " ), (2.4)

are related to v(x)

i =1, 2, 3.
(2.5)

and V;; is defined by

QV;& —= d'xV';v x V,v x, (2.6)

with 0 being the volume of the unit cell of the
crystal.

Since the Lagrangian is translationally invariant,
we specify the choice of the reference coordinate
system by adding the small symmetry-breaking
term ev(x)g~(x)P(x) to the Lagrangian 1'.(x). Then,
the condition of translational invariance, (2.1),
leads to the following Ward-Takahashi relation:

V,v(x) =ic d4y (n(x) n(y))V;v(y), (2. t)

where n is an arbitrary c-number vector, and that
(b) the interaction is such that it can create the
crystal with lattice vectors a.; (i =1, 2, 3), that is,

II. QUANTUM FIELD THEORY OF CRYSTALS

In this section we briefly summarize a quantum
field-theoretical formulation of crystals, ' from
which follows the phenomenological theory of ma-
terials. The phenomenological theory of materials
which describes classical behavior of crystals is
usually called the theory of elasticity. ' In the der-
ivation of this phenomenological theory a key role
is played by the boson transformation method.

Our starting point is the Lagrangian g(x) which
consists of a molecule field g(x): 2(x) =2(tt (x)).
It is straightforward to extend our consideration to

(n(x) rc(y)) =
~ dk, d'k e"" '

(23)4

where

x 6 x]yak +'''
(2.8)

k(x —y) =k ~ (x —y) —k, (t„-t, ), (2.9)

where n(x) —= n(x) —v(x). On the other hand, the
spectral representation of correlation function
(n(x) n(y)) can be put in the form
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F.(k, x) = g r~%)W~(x),

we can rewrite (2.8) and (2.10) as

(2.11)

(n(x}n(y)) = dk d'ke'&" "
(2m)4

and b, "(x,y, k) denotes a term which has a pole
singularity in the following form:

„( „) F„(fc,x}F„*(k,y)
( 0)

k', —uP„(%) —eC„(%)+iq'

Here F (R, x) are functions with lattice periodicity
F„(%,x+a;) =F„(k,x). The dots in (2.8) stand for
the terms with cut singularities and the symbol Q~
means the volume of the first Brillouin zone.

A detailed account of derivation of (2.7}and (2.8)
was presented in Ref. 1, and therefore is not re-
peated here. For the sake of simplicity, we pre-
sented in (2.10) the spectral representation at zero
temperature, although our consideration in this
paper holds true for system at any temperature.
In case of the finite temperature the thermo field
dynamics gives a quantum field-theoretical formu-
lation of statistical mechanics for interacting
particles. '

Expanding the periodic function F,(k, x) in terms
of y„(x),

g'„and the quasimolecule g'. They satisfy

x„(s}g'„(x)=0,

x(s)y'(x) = 0,
with, in particular,

(2.16)

(2.17)

(2.18)

(2.19a)

Q e,"(%)e,"'(k) = 6„. (2.19b)

Furthermore, when the theory is invariant under
the time reversal, we have

e,"*(k}= e,"(-k).
Let us define new phonon field operator by

X'(x}= g e"(- fV)X'.(x),

(2.20)

(2.21)

and introduce the matrix

The phonon equation (2.16) can be cast into a more
familiar form by the help of the polarization vec-
tors denoted by e,"(-iV}. The polarization vectors
satisfy the unitary condition

with

P y (x)A y yz ( )
X, V

(y) (2.12)

co&&(k) = g eP(k)&v2 (k)eg*(k). (2.22)

Using the unitarity of the polarization vectors, we
can then convert (2.16) into

(k) r ~%)r~*(k) . . . (2 13)„k',—uP (k) —eC„(k) +iIt

Q ~„(a)g,'(x) =0,

with

(2.23)

yq (x) = lim (- e ) P y ~(x)s ~, (0) . (2.14)

Let us now eliminate the symmetry-breaking
term by considering the limit e -0. Performing
this limit in Eq. (2.7) and using (2.5) and (2.13),
we obtain

~ (s)=-6, -~'„(-iv). (2.24)

We express the molecule field P(x) in terms of
the quasiphonon field yo(x) and the quasimolecule
field P'(x};

Since the terms with cut singularities which are
denoted by dots in a ~~ (k) do not produce any 1/e
singularity at the limit ~ - 0, we find that

&u2 (0) = 0, n = 1, 2, 3,

= P.r"(o)C '(0)r,"*(0),

y~(0)=0 for A. o1, 2, 3.

(2.15a)

(2.15b)

(2, 15c)

The completeness relation (2.15b) requires at
least three kinds (n =1, 2, 3}of bosons whose en-
ergies are gapless according to (2.15a}. Those
Goldstone bosons are the acoustic phonons. Thus
the set of quasiparticles consists of three phonons

y(x) = y(x; q', (x ), y'(x)}. (2.25)

y(x)- y(x+n) (2.26)

is induced by the transformation of the quasifields

Xl(x)- Xi(o"x) -=X&(x+o')+ Q (& '&");,I. ~ lg,

(2.27a}

The right-hand side of this relation is a sum of
normal products of g,' and P. Precisely speaking,
this relation means the equality of matrix elements
of both sides, i.e., weak relation.

As was proved in Ref. 1, the spatial. translation
of the Heisenberg operator
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y'(x)- y'(a. ;x) =- q'(x+o. ), (2.27b) j(x)=- [g~(x)V&(x)-VP (x) ~ P(x)]. (2.86b)
where [ n ] is a vector reduced from a in such a
manner that it belongs to the first cell 0 by ad-
justing integers n; in

The conservation law among the canonical energy-
stress tensor T„, reads as

n =[(7] ++n;a, , (2.2s)
8—P, (x}+Q V,T„(x)=0, (2.37)

and the matrix N is given by

&;, = g r,"(o)e,"*(o.) (2.29)

The dynamical map (2.25) thus implies

q(x+~) =g(x' X';(~; x), y'(~, x)) (2.30)

This relation tells us how the spatial translatj. on

is dynamically rearranged and restricts severely
the functional form (2.25}.

The property (2.30) for the dynamical map is
true for any Heisenberg operator consisting of
g(x}. Let Oz(x) stand for such an operator. If we

expand O„by means of the complete set $yq(x)],
we have

where

P, (x) = T„(x)=m~, (x), (2.38a)

P~(x) = —Q n~g(- iV)X,'(x)

+g g y~(x)r~~;(-iv)x,'(x)+.~,
(2.39}

T;;(x}= (;g ~ V&/+V;g~ - V;g)+8;;g.
1

(2.8Sb)

The operators I'; and 7.";, are called the momentum
density and stress tensor. When we put P, (x) and
T„(x) in the forms

oH(x) = g px(x)Ox(x; Xl(x), 0'(x)). (2.31) T (x}=g Cl"(-iV)v n7(-iV)Xl(x)

Here, 0& is the expansion coefficient whose mo-
mentum support is Q~. Since the transformation
(2.27) induces (2.26), Eq. (2.31) can be rewritten
in the form

O&(x) = g y~(x+n '(- iV)X'(x))

x O„(x;BX',(x), y'(x)),

where q(- iV) is a derivative matrix operator
satisfying

(2.32)

q, ,(0)= (x-'v'")„. (2.38)

The quantity BX,' in (2.32) stands for X'; carrying
any positive number of derivatives. The operator
O~ has the property; O~(x)-O~(x+n) under the
transformation (2.27).

In general, the lagrangian for interacting mole-
cule field has the form

9—n(x)+v ~ j(x) =0, (2.35)

where

a(x)=- y'~- y — vy'vg-V(y, y').
2 Bt Bt 2M

(2.34)

pere V is a functional of g and g . We then find
that the molecule current j(x) and density n(x) sat-
isfy the conservation law

+ Z P &~(x}l"';;~(-iv)Xl(x}+.",
(2.40)

then we can prove' that q„(- iV) defined by (2.39)
satisfies the relation (2.33). Therefore, without
loss of generality, we can identify q in (2.32) with

q in (2.39). The coefficients C';p(%) in (2.40) are
usually called the elastic constants, although they
depend on%. The conservation law (2.37}together
with the phonon equation (2.88) leads to the follow-
ing relations among coefficients:

C „(%)-=Q C;', $)k, k = [@~@)(o'(%)qg)]„,

(2.41)

Q V,[q g(x)I",g g(- iV)X', (x)]
X.&-y

=g g y (x)r, (- V)&'(- V)Xl(x) (2 42)
j,k

The dots in (2.39) and (2.40) stand either for the
higher-order normal products of go or for the
terms which contain P'.

Equation (2.41) relates the elastic constants to
the phonon energy and shows again that &o„(%}
vanishes at R=o.

The hermiticity of P;(x) gives

qp, {-tv)= q, , (iv) =g„(-iv).
n(x) = y~(x)y(x), (2.36a) The elastic constants defined by (2.40) have the
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following symmetries:

Cpm($) Cpm(f)

C md'(k} Clm «(f }

Cga«(1 ) C&m( g)

(2.44a)

(2.44b)

(2.44c)

X';(x) = Q q, j(- iV))(,'(x). (2.45)

From (2.28), (2.24), and (2.89), we find that

The properties (2.44a), (2.44b), and (2.44c) follow
from the symmetry of T„, the Hermiticity of
4;&(k) and (2.20) and (2.43). It is clear that at k
= 0, the elastic constants are real and only 21 of
them are independent.

We are now in a position to derive classical
equations. It is convenient to introduce at this
stage the phonon fields defined by

K;[u] =-g p„(0)f d' xd(x)

(2.52)

Id ", (x) = —Q p„(-iv) u;(x)

+ Q Qy~(x)r(x, (-iv)
}['+-1

x 7',(- if) u, (x) + ~ ~ ~,

(2.53)

n"(x) =v(x) + —Q v, p, ,(- iv) u, (x)

—Q fd'xd;{ )px;, ( Ã-) ,u(u)x.
j,k

And the ground-state expectation values of mo-
mentum density P(x), molecule density n(x), and
the stress tensor T,z are

with

A;~(e)X,'(x) = 0, (2.46) +Q Q y~(&)r~g(-iv)
X.&-y

x)i„(-iV) u;(x) + ~ ~, (2.54)
2

A;;(e)=-p;,(- v) .-c (- v),
I

where

p„(-iv) = 8„(-iv))i„(-iv)

(2.4V)

(2.48)

T"„(x)=Q C'„'(- iV)V„u, (x)
k, l

+ Q Q y,(x)1',"„(-iv)

x )i„(-i V) u, (x) + ~ (2.55)

x,'(x)-X,'(x) + u,.(x), (2.49)

is called the effective density. It should be noted
that Xo(x} is the. canonical conjugate of the first
term of (2.39). For this reason, we shall call
X'(x) the displacement field. On account of (2.48),
the displacement field is Hermitian.

The boson transformation is now performed on
the displacement field

These equations can be used to improve the con-
ventional theory of elasticity. The detail of the
discussion will be given in Sec. VIII.

III. TOPOLOGICAL SINGULARITIES

The macroscopic objects (extended objects) in
crystal are described by the displacement, which
is a c-number function satisfying the equation

/

where u, (x) is a c-number field satisfying the pho-
non equation Q A;, (a ) u, (x) = 0, (3.1)

Q ii„(s)u, (x) =0. (2.50)

It has been proved that the boson transformation
does not change the Heisenberg equation (the boson
transformation theorem).

In terms of the displacement field u(x), the
change of the ground-state energy and the total
momentum are

with
32

A, ,(s) = -p, ,(- iV) „,+ p C'„"(-iv)v, v . (3.2)
l, in

In this section we shall develop a systematic meth-
od for constructing the displacement u;(x} with

topological singularities.
The dynamical map between a Heisenberg opera-

tor O„(x) and the displacement field X (x) has the
form [cf. (2.32)]

tu[ul=& g fd x(u;(x)p~ ( (V)d, (x)
~ ~

l, in

(2.51}

O„(x)= g y (%+X'(x))O (x; &X'(x), P'(x)).

The effect of the boson transformation

X', (x)-X',.(x) +u, (x)

on (3.3) is

(3.3)

(3.4)
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0"„(x)= Q y)(x+X'(x) +u(x)}

u(x, (1))- u(x, (0)) = Q n'; a;, (3 6)

where n
& (i =1,2, 3) are integers. The above rela-

tion can be written in terms of the Burgers vector
8' as

B -=dsp BplI(x) = Q t2 ( a( )
C S

which implies that the Burgers vectors are quan-
tized. The integration is carried out along the
closed loop C. It is to be remarked that (S.V) is
not necessarily valid if the path C crosses the re-
gion where u(x) is not. single valued.

When u(x) is multivalued, its topological struc-
ture is determined by the function G„„(x)defined
by

(3.7)

Gts&(x) =(s„8„s„s„)u,.(x). (3.8)

The domains in which some components of Gt~„'&(x)

do not vanish are the domains of topological singu-
larity. To simplify the expression we introduce
the notations

C';,'(s) = p„( i-v ), -
c,',"(8)=c'„(-S),
C)0(s) COl(8) 0

(3.9)

xO„(x; eX'(x)+su(x), p'(x)). (3.5)

Let us consider a closed loop described by x,(s)
(0 ~s &1)with x,(0}=x,(1}. Since the observables
are single valued and the functions y&(x) are peri-
odic, we find that 8„u(x) is single valued and that
when u(x} is multivalued, it should satisfy

a„u,(x)=Q Q fd x 'a'„(x-x )c,&''(a')
X,p

x s,'G ts&(x').

In order to construct G„~' explicitly, it is con-
venient to introduce its dual conjugate defined by

d„'&(x) = ,'.„'-OG',&»(x)

The relation (3.15), in turn gives

G„'&„'&(x)= .'.-„'-~G(&,(x)

Making use of (3.8) and (3.11},we find that

(3.14)

(3.15)

(3 16)

a)'G&" (x)=0. (3 17)

It can be readily shown that the condition (3.17) is
sufficient for the relation (3.14}to reproduce (3.8).

Making use of above relations, we can develop a
systematic method for constructing the displace-
ment u, (x) with topological singularities. First,
look for G~„'~ which Satisfies the divergenceless
condition (3.17), and then construct Gt~„'& according
to (3.16). By means of (3.14), 8,u, (x) can be eval-
uated. The multivalued function u& (x} is obtained
through a path integral of ~, u&. Existence of the
path integral is guaranteed by (3.8) as long as the
path does not cross the singularities. In fact,
Gt~,' (x) = 0 is the integrability condition for u~(x)
outside of the singular domain. Although uq(x) is
path dependent, an explicit expression of the func™
tion u&(x) for x outside of the topologically singular
domain can be obtained.

Let us consider a case in which the topological
singularity is given by a world sheet y„(7,o') which
depends on two parameters 7 and a. Since G~~"~

does not vanish. only on this worldsheet, it has the
form

in terms of which we can write

A, ,(8)= Q C)',"(s )a „s, . (3.10)

GP„"&(x)=M" dSq„5~4&(x-y), (3.18)
I

where the surface integration is made over the
worldsheet. Making use of the notation

Since s~u(x) is single valued, we have

(s„8,—s,s „)8 u(x) = 0. (3.11)

Let us operate C,",-"(s)s„on both sides of (3.8).
Using (3.11)we have

g A, (8)S,u, (x) = g g C,.'P(S)8,GP„'&(x).

(3.12)

Therefore, when we introduce the Green's function
a„(x) by

s[ y„,y„] ay„ sy, ay„ sy„
Q[g, g] 87' 90' BT 3V

(3.19)

we can rewrite (3.18) in the following form:

G~"„' = M" de do "' 6'4&(x y(~, o)) . -
(3.20)

This leads to

8 "0'„'(x)= M ff dr dv
)
— '—+
( BPV 8 i3PV 9

pv 9(T 9T 87 Bg

Q A;, (8 )n „(x)= 5„d"(x), (S.IS) x 5't4&( yx(r, v)}. (3.21)

. we obtain
The right-hand side of the above expression shouM
vanish according to the divergenceless condition
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(3.1V). This condition restricts the choice of sur-
face y(v', o). When we assume that 7 is the timelike
parameter;

y.(~, o) =~, (3.22)

y„(7, o) appears to be a line at each instance 7.
The divergenceless condition (3.1V} requires that
the line expressed by y = y(a') should riot have any
boundary; infinitely long or closed on itself. We
shall see in Sec. 1V that this singular line corre-
sponds to the dislocation and M" is the Burgers
vector.

Next we consider a worldsheet y„(7,o„o,) which
depends on three parameters 7, 0'„and &,. Making This leads to

(3.24)

use of the notation

s[y~ y ys) sy. s[y y8] By. s[y., ys]
8[v, o„c~] 5& 8[a„o,]», 9[7,o,]

y(( I. y(&) y8] (3 23)
e(x, 5[g, g,]

we construct

Therefore, when yz(7, c'„o2}does not have any
boundary, G(g~ given by (3.24) satisfies the diver-
genceless condition (3.1V). The surface singulari-
ties which extends infinitely will be identified as
grain boundaries in Sec. V, while closed surfaces
with small size wiQ be found to be point defects
in Sec. Vi. It is easy to generalize (3.24) into

C(s(&)= p05(i C y(5) =C (5) =0 (3.2V}

C,& (k) -C„(0)-C«, ~ —p(5,~5,~+5,„5»)+A5«5, „,

ee„«"„(x&)= M"' fff de&(e, &(e, — ' ' —e " "' '
. —' "' ' )&&e&(e-»(e, e„e,)). ($.»»)

8[. ] a 5[„] s e[„]5)(
5[o„e,] 57 5[y, g,] S(i, S[y, g, ] Su, j

low-momentum apprerimation and isotropic ap-
proximation in order to compare our theory with
the conventional theory. In those approximations, .

we have

G&„.„&(.) = P I"ffff de»e, »;ay
8

xs[y((»y()) ya]
p(q)5[v, e„o,]

x 5(')(x-y(r, o „v„q)}
(S.M}

by introducing the weight function p(q}. In this
case, the singularity at each instance 7' is a closed
volume which is an accumulation of surface singu-
larities (parametrized by (V and u) with the weight
function p((V). The divergenceless condition (3 ~ 1V)
is satisfied when, for fixed q, y„(T,&r„o„q) forms
a closed surface.

Here we hive considered only those extended ob-
jects w'hich exist at all the time. When a singular
domain has no end points in the four-dimensional
space time, the divergenceless condition (3.1V) is
stiQ satisfied. Therefore, considering a world-
sheet confined in certain time interval, we can
deal with the extended objects which exist only for
this time interval. Those instantaneous or finite-
lifetime singularities supply us with a powerful
method for study of time-dependent macroscopic
phenomena in crystals; however, in this paper we
do not pursue this direction.

As will be seen in subsequent sections, the fun-
damental properties of dislocations, grain bound-
aries and point defects can be analyzed without any
approximation. However, we frequently employ

where po is the density, arid X and p. are the Lame
constant and the shear modulus, respectively.
With (3.2V}, (8.2) reads as

&(y(&P) = poP'o5(~ —pP5w —(~+ p)P( P~ ~ (3.28)

1 1 . A. + p, 1

71pl' " ~(&+2u} IpI' ' '
(8.31)into the relation

e&„(x)
(» ),f«'(&e'e' &=&,[&&1,

'"(3.32)

we obtain
I». + Sp 1 il. + p, xyx»

p(X+2p) Swr " g(x+2p) 8m' '

(S.33)

Feeding (3.38) and (3.2V) into (8.14), we arrive at
the useful formula for static case;

Therefore Green's function in momentum space
6»[P] defined by Q, A„(iP)a„[P]=5„, is

[ ] (Po v( I p I )5~»+(v( -v, }P~P»

po(Po v» I p I )(Po v( I p I )

where v& and v, . are velocity of transverse and
logitudinal sound waves in isotropic media;

v» =(u/p. )'", v( =[(&+2p)/po]'" ~ (3 ~ 3o}

In static cases, it is sometimes more convenient
to work with Queen's function in coordinate space.
Substituting
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ax. ~ 4v p+2) lr-r'I' "
~+)) 3(x' —xl)(xl xl }(xa xll) t(l) ( ')

A. +2/. )1~r (3.34)

IV. DISLOCATIONS

G~")(x) = M" do " d )g-y(o)).dy~(o)
Ok (4.3)

Applying the Stokes theorem to (3.7), we have

8(') =- ds„9"u, x = dSf, G,',(') x,
c Sc

where Sc is the area enclosed by path C, and
dS jg 2dxl A dx~. Since G l,' (x) = col jl!GOI!(x), (4.4) is
rewritten as

(4.4)

a~') = dS„G",„)(x),
sc

(4.5)

where dS, = e,&,gdx, A dh, . We parametrize space
coordinates x =x((„$„$,} such that a line specified
by (, = $, =0 coincides with the line y(o}. Substitut-
ing

dyll(o) (3)( ( )}
exl! a[tip t'ai tsl

x~($, -o)&(p,)5($,) (4.6)

In Sec. III we have shown that a line singularity
is expressed by

d"&(x)=~ ff a~a~ "' '!!"'lx-!(~~}!Pl/ a[7, o]

(4.1)

Using this expression we now discuss the salient
features of dislocations. '

First we shall show that M" in (4.1) which speci-
fies the strength of a line singularity is nothing
but the Burgers vector. To do this, consider a
static line singularity

y, (7, u) =r, y, (), o) =y;(o), i=1, 2, 3. (4.2)

Equations (4.1) and (4.2) show that the nonvanish-
ing components of G~„",)(x) are

sx, s[x„x,] s[x„x„x,]
2 "' s &, s[ t., &.] 8[ &„ &., ~.]

'

we arrive at

(4.9)

J3' = d( d 5 6 M'=M'.
sc

Therefore, M' is the Burgers vector. Let us de-
note the unit vector tangent to y(a} by ))(a). If

5 ~ vy(o) =0

(4.10}

(4.11)

happens to hold in a certain domain of a', this is
the edge dislocation in this domain, while

B q(o}=+
) a ) (4.12)

y', (T, o) = ~, a =1, 2, . . ., N. (4.13)

At each instance 7, y'„(T, z) appears to be a line.
In this case, G'„")(x) is given by

G~g)(x) = g M."

This leads to

a a]
d~do ' "' "]&~4)(x-y'(r, o)).

8[~, o]

(4.14)

corresponds to the right-handed and left-handed
screw dislocations, respectively.

We have already mentioned that a line singularity
(dislocatiori) shouM not have any boundary; infi-
nitely long or closed on itself. This is in accor-
dance with the experimental facts which show that
a dislocation line cannot end within an otherwise
perfect region of crystal, but must terminate at a
free surface, another dislocation line, a grain
boundary, or some other defect. When we have an
assembly of dislocations, the continuity property
of dislocations leads to a dislocation network. Let
us consider an assembly of dislocations (y'„], a
= I, 2, .. . , N. We assume that 7 is the timelike pa-
rameter. We then choose y', as follows:

into (4.3), we obtain
S l'd„"„)(x)= g M." 9$~ 9 9.3lp 9

d1 d0' —+90' 9T O'T 90'

Go)(x) = M'
&$, s[x„x„x,] (4 'I)

without loss of generality, we can choose ()„fs)
plane as the integral surface;

x 5&4)(x —y'(y, o))
a a a~(7)

= Q M, dT ' d4)(x —y'(v, o))

1 a[x;,xl]
dS, =2 [

"
]
e„,d$, d$, .

Since

(4.8) (4.15)

where u', (7) and o', (7 ) are the end points of the line
y'(v, o) at time 7. Using (4.13}, we have
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= g M."[6"'(x—y'(«', ))

—6"'(x —y'(t, ~',))1. (4.16)

On the other hand, the divergenceless condition
(3.17}with &=0 reads as

s~G„(x)=0,

which gives

(4.17)

d'xe, G„(x)=0.
V

(4.18)

Suppose now that a line [say y~(r, v)] has an end
pomt at v = a'(7} which is not shared by any other
line. When we choose V in such a way that it con-
tains no end points other than y"~(T, o'}, (4.16)
gives

d 'x 8&G,", (x) = M," for n = 1,2, 3 . (4.19)

(4.20)

where + (-) sign corresponds to the first (second)
term in the right-hand side of (4.16). This rela-
tion, which means that the strength of the disloca-
tion is conserved at each node, will be referred to
as the continuity relation. When we regard a net-
work of dislocations as an electric circuit, the

This contradicts with (4.18). Therefore, assembly
of all the lines should form a network which does
not have any end point. A joint point of more than
two dislocation lines is called the dislocation node.
Consider a node denoted by y(T). The lines which
are joint with each other at y(~) will be denoted by
y'(v, a') (b=1, 2, ..., M). Then, choosing Vto con-
tain no other nodes than y(v), we obtain from (4.16)
and (4.18)

continuity relation corresponds to Kirchhoff's law
of electric current. Conversely, the right-hand
side in (4.15) for all v vanishes when (4.20) holds
at each node, implying that (4.20) is the complete
condition for the divergenceless condition (3,17)
to be satisfied. Therefore, the lines y~„'~(r, 0'}

(a =1, 2, ..., N) at time 7 should form a network
without any end point and the continuity relation
(4.20) should hold at each node of the network.
Experimentally, the dislocation networks are ob-
served in various materials. '

Further application of the divergeneeless rela-
tion (3.17) shows that the Burgers vector

ya(o') =»asi (4.21)

in the coordinate system in which the singularity
lies on the 3rd axis. From (4.3) and (4.21), we
find that the nonvanishing components of G~„,)(x)
and Gt~"'(x) are

G(,",'(x) = M "6(x,)o(x,),
G,',~"I(x) = M "6(x,)6(x,) .

Substituting (4.23) into (3.23), we obtain

(4.22)

(4.23)

Bq: dsy 9 ui(x)
C

has the same value for any two integral paths C,
and C, which can be deformed onto each other
without crossing the singularity. In a mathemat-
ical terminology, Bc,= B~, when paths C, and C,
belong to the same homotopy class. ' Recently,
Kleman et al. ' have used the theory of homotopy
groups to classify the defects in crystals.

As an example, we shall consider an infinitely
long straight dislocation in an isotropic media.
Under the low-momentum approximation, the dis-
placement field due to the dislocation is obtained
as follows. In the case of a straight-line singu-
larity, we can write

su, (x) 1, p 2x &+g 4x',x,
t~

p, 2x, A. + p, 4x x',
2 2+ 2 22 41 2 2sx, 4w a+2p x', +x', X+2p (x', +x,')'&'. " X+2p x', +x', a+2' (x', +x~)'&I "

1 2
"

p. 2x1 A. + p, 4x1x2 '| p. 2x2 ~+ p, 4x2
4w A. +2p. x', +x,' z+2p, (x', +x',)') " z+2p, x', +x,'z+2p, (x', +x')') "

——M
1 3 X2 5.

2w x +x1 2
(4.24a}

suq(x) 1, ( p, 2x| A. + p, 4x', l u 2x~

Bx 4w ip, +2p, x, +x .A. +2p, (x~+x~} ) "
A. +2p, x, +x~

1 2 p. 2x2 A. + p, 4x1x2 t LLj, 2x1
4w z+2p x', +x', x. +2p (x', +x',)') " Z+2p, x', +x',

+ —M — 5.X1
27K x +x1 2

A, +P, 4x1x2
Z+2p, (x', +x', )'&~ "

h. +g 4xixg
A. + 2 p. (x i +xg)~)

(4.24b)
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& I;(x)
~X3

Therefore, outside of the singularity at xy xg 0, the displacement fields are

u x=—M'tan' —+
}(+»( x|X2 1, u 2 2 } +»( xi-XV, + —M 111 X i+X2)—

2'w xt }(+2}»x) +x2 4& }(.+2/, }) +2»( x)+x2)

(
1 Ml P'h 2 2 ~+V' xt X2 1 2 t 1) X21 X+/,2 2't

u2X = ——M 111 X t +X2 .+ + —I tan
4w x+2»( ' ' }(.+2»( x', +x,' j 2)T (x,j }(.+2}1 x', +x,'

u, (x) =—M'tan-' —i.1, , X2i
23 gi j

(4.24c)

(4.25a)

(4.25b)

(4.25c)

The integral constants are chosen so as to yield simple expressions for M,.(x). The formula (4.25) reduces
to the familiar results when we consider pure screw or pure edge dislocations. For screw dislocation
where M'=M'=0, we have

u, (x) =u2(x) =0, M, (x) = (1/23)M3tan '(x, /x, ).
For edge dislocation where M'=M3 =0, (4.25) leads to

u, (x) =-M' tan-'i —i+
1 g g

(x2i ~+ p xyx2
2 I, xi j A. +2@, x i+x2

(4.26)

(4.27)

u3(x) =0.

V. GRAIN BOUNDARIES

Common material is not a single crystal, but an
aggregate of small crystal grains. An interface
between two single crystal grains is called a grain
boundary. We regard grain boundary as a macro-
scopic object (extended object) which has certain
surface singularity. In Sec. III we have shown that
a surface singularity is described by

G(,".1(x) =M"' dd d ' a[1-, o„o,]
x 5&4}(x-y(1, (1„o'2)). (5 1)

We shall consider the static case;

yo(~, ~i, o2)=; y;(~ ~i, ~2)=y;(o»o2)

(3=1,2, 3), M"'=0. (5.2)

Then, the nonvanishing components of G~g~(x) are

G( }(x)= g M"' dv du ' s[o „&z2]

x 5&3}(x—y(c„(72)). (5.3)

The topological singularity at each instance is a
surface given by y(o„o2). As is shown below, the
matrix M~' is related to the rotations of the re-
gions separated by a surface.

We introduce the parametrization of the space
coordinates x =x($„$„t'3) such that surface speci-
fied by (3= 0 coincides with the surface y(c'„&x2).
Substituting the relation

5(3}(~ ~y(+ O. ))
xit 'x2t 3s[»» t]

(}[X) t X2t X3]

x~(h, —&x,)&(t, —o,)~(t, ) (5.4)

into (5.3), we obtain

G(c(}( ) g M Itt [ 2t t] [.$1 $2tt $3],(t )
[ hit k2] [ tt 2t 3]

I

Let us consider the line integral

(5.5)

B dsQ ~ j)tQ~ x ~

c
(5.6)

dx, t,x„(x)= f dtUG, 'iI"I(x)
c ~c

dSA,, Gg, x,
~c

(5.7)

where Sc is the area enclosed by the path C, and

I
dS]g = pdx;Adx), (5.Sa)

(5.Sb)

Path C is a closed path going below the surface
($3=0 ) from a point Q(g, $2', 0) to a point
P($~„$~„0), and then coming back above the sur-
face ($3 =0, ) from P to Q. The quantity B" is the
sum of the Burgers vectors contained in the in-
terval PQ. On the other hand, B can be ex-
pressed in terms of M ' as follows. The Stokes
theorem leads to
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Using the explicit form of G(0",'(x) given by (5.5) in

(5.7), we arrive at the relation
i=a'(V a')-a"(V a")+[V-a'{V a')]cos8,

-[V -a"(V ~ a")]cos8„+sin8s(Vxa )

—sin8„ (Vxa") ~ (5.14)

Let us consider the case a" = -a -=d. In this
case, the reference crystal can always be orien-
tated in such a way that 0„=8~ =,0, and therefore
(5.14) reduces to

Mnl y (5.S) B =2(V xd) sin-, 8. (5.15)

where V is the vector from point Q to point P;

VJ x(() a)a2, 0)-x, ($„$,0). (5.10)

ds„s,u (x)
c

gives the difference of the displacements u (V,)
and u"(V ), where path C is a closed path QP,P Q.
Then, considering the limit V, =V -=V again, we
have

. The matrix M ' determines the misorientation
of grains separated by the grain boundary. We
suppose that grain A and grain B are rotated by
~„=0„a and ~~ =0~a with respect to the refer-
ence crystal, respectively. Here a' (i=A, B) is
the unit vector which specifies the axis of rotation,
and 8;(i =A, B) denotes the angle of the rotation
around a' axis. Let us introduce vectors V, and
V; V, is the vector from a point, Q onthe surface
to a point P, in the grain B and V is the vector
'from Q toapoint P inthe grainA. The displace-
ment of the vector V, due to the rotation &~ in the
grain B is given by u3(V,), while the displacement
of V due to the rotation e„ in the grain A is given
byu"(V ). Therefore, inthe limit of V, =V =-V,

we have

uA(V) (i&.a i

(5.11)
u'(V) =(e'"' ' -1)V,

where 4; is the generator of rotation around the x;
axis. On the other hand, the line integral

This is the Frank's formula" for a large-angle
grain boundary. When d is contained in the plane
of boundary, the grain boundary is called a tilt
boundary. When d is perpendicular to the bound-
ary plane, it is called a twist boundary. In gen-
eral, a boundary is of mixed character, containing
both tilt and twist component.

The following comments require special atten-
tion. First, the statement that the matrix M"'
determines the misorientation of grains (A and B)
separated by the grain boundary does not imply
that the displacement fields in grains A and B are
different only in the orientation. In general, the
displacement fields on each side of the boundary
contain not only rotation but also expansion (or
contraction). Second, in the discussion from
(5.11) to (5.15), assumption that there is no ex-
pansion (or contraction) on the boundary surface
was used. Here "on the boundary surface" was
emphasized since certain expansion (or contrac-
tion) is permitted inside each grain. We shall
come back to this point at the end of this section
where expression of the displacement field in both
grain will be explicitly presented.

It is possible to derive a continuity relation for
grain boundaries in a way similar to the derivation
of continuity relation for dislocations. We consider
an aggregate of grain boundaries (a= 1, 2, .. . , N)
expressed by

ds„s„u;(x)=u;(V) -u,"(V).
c

Using (5.9), (5.11), and (5.12), we obtain

(ei8sa ~ 1 ere'' ~ J)fJ— ij

(5.12)

(5.13)

x 8[yx~yp~y&]
s[T, o((o&]

x5('(x-y'(~, o„o,)).,
(5.16)

When the system is static, (5.2) leads to

"G,",'(x) =Q Q M," do, do, y8 — 5('~(x y'(o„o, )—)
90'2 90'& B(x& 90'2

dS, ( y'x= -5(a~(x —y'(o„o,)),so Bo
(5.17)

where dS, =do'ycfo'2 %'e now construct the three-dimensional o space by introdhcing the spurious parameter
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o2. Then, making use of the Stokes theorem, we can rewrite (5.17) as follows:

B'G'„&(x) = Q Q,V."' ds — y' = 5"'(x y—'(o„o,))
a 8 8v 90'

a=g gM"2 d5 =x 2 BC2&(x-y'(o„cr,))
8

Bo' 90-
a

=+gee, e J dir &&e&(x —&r'(e„e)),
8 Cc

(5.18)

The path C, is the boundary of surface y&(o„o2).
A joint line of more than two grain boundaries is
called a nodal line. Consider a nodal line C para-
metrized as y(a). The boundaries which meet
along the line y(o'} will be denoted by y (o) (B
= 1, 2, ...,M). Then, the divergenceless relation
(3.17) requires that the following condition should
hold on the line

3'?( ?I 2) 11

~2( ? 2) )2e

$2(o?) o2) =0 ~

(5.20)

From (5.8), (5.20), and (3.16), we find that the
nonvanishing components of G'2",&(x) and G„'„'(x}are

G(2?&(x)- G( &(x) -M 25(x )
(5.21)

G (x) = -G "(x) = -M ?6(x,),
Gtc &(x) =-G,'& &(x)=M 25( )

G""&(x)= -G""'(x)= -M"'&(x ).

g g (a)M(", Bn?)(o) = 0 (c2 = 1, 2, 8). (5.19)
8

Here n(cr) = By/Bo is the tangential vector of line C

and + sign is specified by the direction of path in-
tegral in (5.18). The relation (5.19) will be re-
ferred as the continuity relation for grain bound-
aries. Similar to the dislocation network, it is
known' that grain boundaries make the cellular
structure. The continuity relation (5.19) indicates
that, in general, three boundaries meet along a
nodal line. As a special case, let us consider the
case 6 = 1, that is, there is only one grain bound-
ary. We notice that (5.19) is satisfied when only
one component of n (say, ??2) is nonvanishing and

M, 2 (o( = 1, 2, 3) are zero. Therefore, a grain
boundary can end within the crystal. This is an
example of the disinclination (or rotational dislo-
cation). "

So far the discussions in this section are far
from any approximation. We shall hereafter dis-
cuss the properties of a flat grain boundary by em-
ploying the low-momentum approximation and iso-
tropic approximation. Let us consider a flat sur-
face singularity given by

In terms of Fourier transforms, (3.14) reads as

'",'„'*'=g pi:,'(o) f ' '. ).d. (2)
2

&cG, "'[p]e'"'" (5 28)

where G2tO&[p] is the Fourier transform of G,„' (x);

r e&((&) fd eG &=r&(rr)e r' (5.24)

The nonvanishing components of G2to& [p] are

.'."'[ ] =-,'"'[ p) = "( )' (P ) (P )
(5 25)

G,',"'[pl =-G,''"[p] =-M"(2v)'5(~ )5(p ).
Substituting (5 ~ 25), (3.30), and (8.26) into (5.23),
we obtain

Bu, (x) „) u?(x} q2 ( )0+3 y 8& 0 3
2

(5.26)

(M?? + M22}5» ~1,(x2),

where

I (x ) =— dP —e "2*2.
2m 'P, (5.27)

Let us denote the stress tensor by o;,-; a'&, is the
jth component of the force per unit area on a plane
whose outward normal is parallel to the positive
x; direction. According to Hook's law, we have

Bu2 t'Bu; Bu &

QC(?)r? =I
I

+ I+ ??(~ 'u)
Bx (Bx, Bx( $

(5.28)

0, x3&0
0

1, x3&0
(5.29)

It is remarkable that the free surface condition,
o,2

=0 (i =1, 2, 3), is automatically satisfied as can
be seen from (5.28) and (5.26). We impose the
boundary condition for the integral I,(x2) as follows:
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Therefore, the displacement field u, (x) outside of
the singularity at x, =0 is given by

u(x) =0 for x, &0,

u(x) =Ux for xs&0,

where the matrix U is

U M 21 ~22ij -M"

(5.30a)

(5.3Ob)

. (5.81)

M" M" — (M"+M")
A. +2p.

If the displacement field M, (x) is expressed by an
orthogonal matrix T~ as

u(x) =0 for x, &0,

u(x)=(T„-I)x for x, &0,

(5.32a)

(5.32b)

cos8 sin8 0

T ~ =
I -sin8 cos8 0

0 0

(5 ~ 88)

~

~The requirement (5.32b) at xs=0 leads to.&»=M'»
M' =-M '=sin8 andM"=M"=0

From (5 ~ 80b) and (5 ~ 31), we have

u(x) =(r,—1) x, — (cose- 1) O

implying that the expansion (or contraction) along
the third axis is associated. There are two ex-
ceptional cases. First, when the rotation is in-
finitesimally small, deviation from the pure ro-
tation is the second order of 8. Therefore, the
displacement field can be approximated by pure
rotation. Second, on the plane x, = a x, +bx„one
can satisfy the relation (5.32b) by suitable choice
of matrix M'~. Specially, we can choose matrix
M'J such that the displacement near the surface is
pure rotation. This is easily seen from the fact
that the third column of the matrix U has no cori-
tribution at x, =0. Now it is instructive to recall
the derivation of Frank's formula (5.15). There,
it is implicitly assumed that there is no expansion
(or contraction) of the structure near the surface.
The above discussion shows that this assumption

the grain in x, &0 can be brought into the sa.me
orientation as the grain in x, & 0 by a, pure rotation,
that is, the grain in x, & 0 is the perfect crystal.
However, it can be proved that (I+ U) is not an
orthogonal matrix except for a trivial case U=0.
Therefore there is always the expansion (or con-
traction) in addition to the rotation. As an ex-
ample, consider the rotation around x, axis:

is not quite general. Even when the assumption is
satisfied, the effect of expansion (or contraction)
manifests itself for large angle case or in the re-
gions far from the surface. In our formalism for
grain boundaries, proper choice of the matrix M"
enables us to prepare a surface both with rotation
and expansion (or contraction) comp'onents.

VI. POINT DEFECTS

Gg'(x) = g V"'e, „.,""p(r)—
8

8
M E'~ye 0'(r)

&

g
xp

where r means Ix I =(x', +x22+x,')'~' and

9
p(r)=~ &(r).

(6.8)

(6.4)

In the following discussions, we assume that p(r)
and 0(r) are of finite range;

p(r) =o(r) =0 i'or r&R

From (6 ~ 8) and (3.16), we have

(6.5)

a'& ~(x) -V"' ~p(r) m" '-p(r)—lm

=V"' v(r) V™ -~(r).
8 9-

(6.6)

We regard a point defect as the macroscopic ob-
ject (extended object) which has certain c]psed
singularity in space. When use is made of the
low-momentum approximation, the displacement
fields around the point defect in an isotropic media
are evaluated as follows. Substituting (6.6} into
(8.24}, we have

In Sec. III, we have shown that a closed singu-
larity in three-dimensional space is expressed by

d„'J(x)= QM 'fff"J dv a~dad, q ,~"'~"'~'
p(g)

» 2I

x5 (x-y(r, o'» vm, q)).

(6.1)

When p(q) is of a finite range, the singular domain
is confined in a finite domain of three-dimensional
space. For example, the closed surface (3.24) is
obtained by the choice of p(q) =5(rj -R), 8 being
some constant. %e now consider the static spheri-
cal objects;

7 p (~i o'z
~ o'2~ '9)

= (r, q sino, cosa„q sina, ins„orj cosa, ),
0&q&~, 0&a, &v, 0 &v, &2v. (62)

Then, the nonvanishing components of G'„"„~(x) are
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8;(),„()
2(A. +p) g,„s 9

)
A. g g,„8 8'

+2&
s

~xr xm A+2@'
r b ~xi xb

m b b
g l g l b 1 b

1

(6 7)

dx' 1
(6.8a)

(6.8b)

In deriving (6.7), we used the relations

2(x9-x~')(x, -x;)(xy-xy) s»y -xy x, -x; xy -xt', ~J- xy

Hereafter we consider the case where singularity is on the sphere with radius R;

~(~) =-e(R -~), p(~) =6(~-1~).

When the formulas

f 1 {4w/r', r r
X —X

4v/~, r' &y

(6.9)

(6.10a)

(6.10b)

are used, the integrals in (6.8) are found to be

--R' — r &R1 1
3

I(x) =
-R'+~x' 0&x&A

(6.11a)

--', (x,/r)It'+, (x, /~')ft', r &Z

—3x~R + ~xq'v, 0&X'&R.

Substituting (6.11) into (6.'I), we obtain

(6.11b)

(6.12b)

~&I

(6.12a)

8' x+~gM"x, ++M" b-x+xM"
~ +, " QM»x, +g M"x, +x, pM«

A. +p. R3 8''I——,+ —,~x; M"x,x, for y&ft.
X+2p ~' r'& ', ,

These results lead to the following expression for the displacement fie1ds around the point defect;

2 6k+ Ill, . yb 1 SA, +8+ )p 1 3A. 2P.
u, (x) =- M xb- — M' xg-— M" ix, , 0&x&A,l

Rs R'

z+~
2~ g5 ~7] r b

———~x, M"x x
),b

(6.18a)

(6.13b)
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The volume expansion (or contraction) evaluated on the sphere due to the point defect is given by

4V = d5 ~ u(x).
r&g

Substituting (6.13b) into (6.14), we have

(6.14)

(6.15)

(6.16a)

(6.16b)

(6.17)

(6.18b)

33~+2' ~ s,
9 A. +2p.

This constant does not depend on the radius of integral sphere as far as r &R.
According to (5.28) and (6.12), the stress tensor o'„ is given by

—5+2 —
7 x) I x)+ M xg +x) M 'x)+ M' xg

X+q R5) lf li ib
A+2P rs A+2p r7)

1

+p~-
2

—s+ 2
—~~I2xix& M -p

2 3 ~+ 2 5 5 2(M' +M')

p, - ~ R3 X+ p. 85 X+p, iIGR3 785
+p,

2 3-~- 2 5, 25i& M" +p
2 l~ ~ —,2x, xi gM"x, xi

t

Rs A +p 8'~
X+2p, r A, +2p, r ]

The stress tensor o'&& tends to zero as r-~, which implies that no external pressure is needed to keep
this point defect in crystal. We define a„„by

xf x]0' ~g
i,g

Since (6.16) and (6.17) lead to

,i &(15 ~.2~ ~M r '15 ~+2p, ~M
rr-

2 9A. +10', R 24 A. +p, R I~Miix, xi 2 R 8 A. +~ R
3 A. +2p. r3 5 X+2p, r'j ~&™r 3 r 5 ~+2p. r'] ~

we find that 0'„„changes continuously through the singular surface r =B. Unless the choice of M'~ is re-
stricted, the stress o„„has certain angular dependence. When the angular dependence is averaged out, we
obtain a simple relation between the volume expansion (or contraction) and the averaged stress:

(6.19)

To simplify our discussion, let us choose diagonal I":
M' =M5gg. (6.20)

Then, the displacement fieM u;(x), the volume expansion (or contraction) b V and stress tensors n„and
o„„have simple expressions as follows.

Mx„0&r&B4 p.

u;(x) = 3 X+2@.

2p, +3k.
-3() 2 )M

—x, r&R,

2 p.+ 3A. 4m'

A. +2p,

4 p(2p, +3x)
I 3 ~+2p

vii=&
ii(2p. +3X) R' 2 g(2g+ 3X) R'

Z+2p r' "'"' 3 X+2g r' '"

(6.2la)

(6.21b)

(6.22)

(6.23a)

(6.23b)
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0

ll 4 ((((2(((+3x)g'
3

(6.24a)

(6.24b)

shall employ the low-momentum approximation
and isotropic approximation. Thus, we shall use
(3.27) and (3.29) for C~~)('(p) and L»[p].

Let us consider an oscillating plane surface sin-
gularity given by

~24; ~Q~ I ~ BQ;

t

Making use of (6.21}and (6.23) in (6.25), we get

(6.25)

8 g'(2p. +3A.)
3 (X +2p)'

2 p(2p. + 3A.)',R'
3 (X+2p)' r' '

Therefore, the total strain energy W is

(6.26a)

(6.26b)

In this case, V ~ u(x) =0 for ~&R. Therefore, hV
does not depend on the choice of integral surface
as far as integral surface does not cross the sin-
gularity at x =R. In other words, b, V is a topolog-
ical constant. ~ The strain energy density MI is

nG'„"~(x}=e„,pqM" ~ e(x, -A cosy), (7.4)

nGP")(x}=Mq, e(x, -A cosy)

G(&(x) = M")' d7 do, do,
s[~) o)) oal

x 5 (x —y(v, o„a2)), (7.2)

with

y, (7., o„o,) =v, y, (7., o„o,) =o, ,

y, (T, o„o,) =o„y,(g, o„o,) =A Re(e'~), (7.3)

where Re means the real part of the quantity and

$ =qo, —(dT. Then, we have

W = v x dsx=2p M2 —g3.2p, + 3A, 2 4'
X+2g 3

(6.27)
n „e(x,-A cosy},

~X
(7.5)

It is reasonable to expect that the volume expan-
sion (or contraction) due to the point defect is the
order of the unit cell volume per atom. Therefore
when we roughly take II =a (a; lattice constant) we
find from (6.22) that M is of the order of 1. Typi-
calvalues of A. and p, are known to be order of 10"
dyn/cm'. Then, the total strain energy is roughly
1 eV, which agrees qualitatively with the energy
for the formation of a lattice vacancy. "

VII. SURFACE WAVES

In Sec. V we have presented a new theory of
grain boundaries, where grain boundary is treated
as an extended object with surface singularity
created by the boson condensation of phonons. In
this section, we shall apply the theory to the prob-
lem of surface waves. In particular, . we shall
show explicitly that the dispersion relations of
surface waves in isotropic media is obtained by
considering the oscillating surface singularity
with free surface condition.

Jn terms of Fourier transforms, the displace-
ment field u~(x) with topological singularity is ex-
pressed as

S,u;(x) = g g 2,}.& .I P]C"(P)ip~G,","[Ple""
k, ) X, , p

(7 1)

Here p xp, t p+x, and 4,,[p] and G~o)[p] are
the Fourier transforms of the Qreen's function
h»(x) and Gt,' (x), respectively. In order to com-
pare our theory with the conventional one, ' we

where q =qx, —(dt. For the subsequent discussions,
we expand G„~, ' inpower series of A.;
G~, (x) ~H„",(x)+AK~„",(x)+ ~ ~ ~, (7.6)

a'„",'(x) = (M „5„,-M, 5„,)5(x,),

xf'(x) =-(eee „-ee; „)He( )e(x,)e. (7.8)

(7.7)

=i(2v)'M "»(P.—( )5(p, —q)5(p. ),
(7.9a)

= i(2v)'M"'q5(p, —~)5(p, -q)&(p, ).
(7.9b)

Substituting (7.9a) and (7.9b) into (7.1) and using
(3.28), we obtain

First let us consider only the zeroth order with
respect to A. The static condition u(x) = 0 for
A =0, leads to M"'=0. Then, (7.7) is the same
as (5.22). In Sec. V, we already evaluated the dis-
placement field, (5.26) with (5.27), and the stress
tensor, (5.28). There we have observed that the
free-surface conditions, o,, =0 (i =1, 2, 3), are sat-
isfied. In order to study the surface wave only,
we re(luis that u&(x) =0 for A =0. We therefore

and ~22 are zero
he reafte g.

Let. us now turn our attention to the first order
terms of A, The nonvanishing components of
K(„') [ p], the Fourier transform of K(~(~(x), are

I~ o..'[P] =-I~.".'[P 1
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Bu
——= Re

~

-aA Q Q CPM'~—
Bing

ax2

x[1,(x}5„+ Z, ,(x)] I,

(V.10a)

(V.10b)

x [l,(x)lit ~ +Sf~ ]),

,--' = Re~ W g ~'M" [1,(x)5„+Z„(x)]
l

+iA Q Q C"M'3—
kl g ' ~D

e ' 'e'",1 K x

2Ã, v2 (V. 1la)

d'P P~P.5(P.—~)5(P —q)5(P.);&.

1 1 E]=2 a K (q5~x-iKt5~s}(q5ai-'K~5as}e ' '
2g Kg

-K (q5g, -iK, 5q )(q5, -iK, 5 )e ' [e'".
K,

(V.11b)

The calculations of I,(x) and J',,(x) are conditioned
by the requirements I,(x)-0 and J,.~(x)-0 as x
= -~, and we used the notations

aug au;(x} (u aug

Bxo Bt q Bxl

where

(V. loc)

(7.1Od)

K', =q'-(o'/ ', ,

Ki = q' - (d /vi o

(V.12a)

(7.12b)

%e require that the surface given by x, =0 is a
free surface. The free-surface conditions, o„=0
(i =1, 2, 3) at x, =o, with (V.10a)-(7.10d) yield

0

vtK g 0 M =0.
0 ~q +K ) - 4K, K q ) (M

(7.13)

The first, second, and third rows in (7.13) corre-
spond to the conditions 0',3 =0, (F23 = 0, and o'32 = 0.
The conditions for a nontrivial solution are

(q2+K', )'= 4K,K,q',
I"=0.

(7.14a)

(7.14b)

(o =qv, e.
Here a is given by

(V.15)

V 't2a'-8 '+8a' 3-2 -t -16 1- -t~ =O.
vg vg)

(7.16)

Formula (V.15) with (7.16}is the well-known re-
sult for surface wave first investigated by Lord
Rayleigh. '3

In the derivation of the dispersion relation (7.15),
the condition 0& am& 1 was assumed [see (V.12)].
We can show that (V.16) has always a pair of real
solutions a and -a satisfying 0& +2& I. To prove
this, let us first set

%hen these conditions are satisfied, a surface
wave exists. Eliminating K, and K, from (7.14a),
we find that the disyersion relation for the surface
wave is

f(y) =y —8y +8y 3-2 —
~

-16 1 —I—vg) t'vg

vi] - Evr

(V.17)

Here y-=a'. Since (v,/v, )'= p/(X+2p), the quan-
tity (v, /v, )' takes the value between 0 and 3,

0&(v~/vr)'&2 ~ (7.18)

It is readily seen that

f{0)=-16[1—(v, /v, ) ]& 1,
f(1)=1&0,

(V.19a)

(7.18b)

and, for 0&y&1,

f'(y) = 3y'+16(1 —y) +8[1-2(v,/v, )'] & 0. (7.20)

The relations (V.20) and (V.21) imply that f(y) = 0
for certain y (0&y& 1). Therefore, we conclude
that there exists a surface wave whose phase ve-
locity is always slower than transverse and longi-
tudinal bulk sound waves.

It is instructive to summarize the differences
between our method of derivation of the surface
wave with the conventional one.

(i) In our method, while a, u~(x) is single valued,
u&(x) is not single valued. Therefore, u&(x) cannot
be expressed in the form of Fourier transforma-
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tion. However, in the conventional method, the
single valuedness of u,.(x) is assumed and u,.(x) is
the sum of a plane wave.

(ii) In the conventional method, the transverse
and longitudinal components are superposed to sat-
isfy the free-surface condition. The relations ob-
tained from the free-surface condition are ex-
pressed in terms of the transverse and longitudinal
components, and diagonalization process is neces-
sary in the derivation of the dispersion relation.
On the other hand, in our method, the free surface
conditions ay3 0 and a'» = 0 independently lead to
the dispersion relation as can be seen from (7.13).

Although we have considered only a linear sur-
face wave, the nonlinear properties of surface
waves can be easily taken into account. When the
complete form of (7.5) is used in the evaluation of
(7.1) and the free-surface condition on the oscillat-
ing surface x, =A. cos(qx- et) is imposed, certain
self-consistent relations among co, q, and A. are
obtained. These relations lead to a nonlinear dis-
persion relation for the surface wave.

We remark that our theory of surface wave can
be applied to other physical systems, such as sur-
face magnons, surface properties of superconduc-
tor, and surface excitations of "bag" in relativis-
tic field theory.

&",,'(x) = Q Cj)'(-i V )V uu((x)

+g g((() (x)l,', (-i V)q„,(-i V)u, (x), (8.2b)
X. ~-y k, l

1 . ~ ~

n "'(x)= —Q v, p;, (- i v)u, (x)

+g gq'~(x)r~;(-iV)n;~(-i V)u;(x). (8.2c)
i, j

1- -.—n "(x)+ —v ~ p('&(x) = 0,
Bt M

—P('(x)+ Q V, T('.)(x) =09

for i=1, 2, , .. . The relations (8.3) with (8.2) give

(s.sb)

1r,„(-iv)=-~ v,.y, „(-iv)
i

+ P g'„,y...(-~'v)), (8.4R)

These quantities are called the linear momentum,
stress, and'density, respectively, while the quan-
tities with superscript (2) are called the bilinear
momentum, stress, and density, respectively.

The continuity e(iuations (2.35) and (2.37) now

hold among quantities with the same powers of u:

VIII. CONCLUDING REMARKS

+ a'j x I",&y (-i V) ~(()(u (-i V),
(s.4b)

where QaI, )„=J„d' pxI, (x)v;q) ~ (x). The above re-
lations indicate that y&z and y;),& are determined

l
by I';;g.

The body force per unit volume is denoted by F
which is equal to the time change of the linear mo-
mentum

F(x) =-—p("(x).
9t

(8.5)

Hence, (8.3b) gives

p,.(x) =+ g v,v,",'(x). (8.6)

The usual phenomenological theory of elasticity
can be reproduced in our method under the follow-
ing assumptions.

(a) All the higher terms indicated by dots in (8.1)
ar e neglected.

(b) Terms containing the periodic functions in
P ', T,.', , and n ' in (8.2) are disregarded.

(c) The bilinear momentum and stress. are ap-
proximated by the energy-momentum tensor of the
free field.

(d) The momentum dependences of the effective
density p;~(%) and the elastic constants C';( (R) are
neglected.

pu(x) p(1) + p(2) +. ..i i (S.la)

(8.1b)

(8.1c)

7" (x)=T,', +T. . + ~ ~

n "(x)= v(x) +n ' (x) + n (x) +

We then obtain from (2.53), (2.54), and (2.55)

p(»(x) = —g p, , (- i v)u, (x)

+ Q Q q) ~(x)y; t,,(- i V )q„( iV)u, (x), -
(8.2a)

In this paper we have presented a general theory
of extended objects in crystals. As examples, dis-
locations, grain boundaries, point defects, and

surface waves were studied in detail. Besides the
general discussions, we have employed the low-.

momentum approximation and the isotropic ap-
proximation to evaluate the physical quantities
associated with the extended objects. The motiva-
tion for using these approximations is to compare
our results with those obtained by the conventional
method. In the following we briefly show how we

can improve the existing phenomenological theory
which is essentially based on the classical theory
of elasticity.

For this purpose, we expand P"„T";,, and n" in

powers of u;
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Under the assumptions (a), (b), and (c), we have

PP'(x) = —Q p;, (-iV)u, (x),
j

T I',&(x) = g C', ", (- i V)V u, (x),
l, m

n'"(x) = —g p, ,(- i v)v, u, (x),M e

Q if

(8.7a)

(8.7b)

(8.7c)

P',."(x)= —Q p„( iV)-u, (x)S;u,(x), (8.8a)

7'' h)=(~(&)-2+& (")P ( &+)" (*))t'u
k, l

+ &~~xVur x
E

T &2)(x) = Q T ',.',.'(x)u,.(x),

(8.8b)

(8.8c)

e (x) —= T ~,',)(x) = —g u; (x)p, ,(- i V)u, (x) + w(x),
(8.8d)

(8.9)

o

g„(x)= —Q u, (x)p„(-i V)u, (x) —u (x).
j2

Note that continuity relations are satisfied:

9 1-—n"'(x)+ —v p"'(x) =0,9t M

P~'&(x)+ Q V, T&.')(x) =0,a

—P I»(x) + g V,.T (3)(x) = 0,9

(8.10)

(8.1la)

(8.11b)

(8.11c)

where

so(x) =- Q Q c„(x)C'„"(-i%)e„q(x).
i,j l, m

Equations (8.8) are derived from the energy-mo-
mentum tensor of the free field with the Lagrangian

—e(x)+ Q V;[T '(x)u)(x)] =0.

We point out that the energy density (8.8d) agrees
with (2.51). The body force per unit volume, F(x),
can be calculated by means of (8.6) and (8.7b) as

(8.11d)
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E;(x)= g g C';", (- i V)V;V„u, (x). (8.12)
J' L, m

Thus, all the equations agree with the usual mac-
roscopic theory of a material (theory of elasticity)
provided that we further adopt the low-momentum
approximation (d) in which the effective density
p;;(- i V) and the elastic constants C';i (- i V) are
replaced by p;, (0) and C';P(0), respectively. Ob-
viously, at the low-momentum approximation, the
relation (8.7b) gives Hooke's law.

Our argument suggests how the phenomenological
theory can be improved. When the Lagrangian is
specified, quantities such as q;;(k), p;~(k), C'„(R),
and I';; z(k) can be calculated, for instance, by
means of the Bethe-Salpeter equation. The calcu-
lation of the higher-order terms in (8.1) can be
performed by means of the Feynman-diagram
method. Furthermore, the effects of the crystal
structure are taken into account through the ex-
pansion in terms of the orthonormal set fy~(x)],
as it is seen in (8.2). These improvements in our
theory will determine the detailed structure of ex-
tended objects in crystals, for example, the so-
called core structure of the dislocation.
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