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Emergence of long-range trawtttfer rates
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A theory of exciton transport in molecular crystals is constructed by developing exact memory functions for
pure systems and obtaining from them transfer rates for exciton motion which are particularly applicable in
the limit of strong intersite coupling. This extension into the strong~upling region is useful to stochastic-
Liouville-equation theories as well as to the generahzed-master-equation approach. Long-range transfer rates
are shown to emerge from the analysis. They connect sites unconnected by matrix elements of the interaction
and even the ordinary (Mariroffian) rate equation used for the long-time description of exciton motion is thus
shown to require modification for the strongwoupling case. Exact results are obtained for crystals of an
arbitrary number of sites and particular cases of oneWmensional systems of a small number as well as an
infinite number of sites are examined. Consequences of the new transport equations are obtained explicitly by
analyzing the moments of the probability distribution as well as the probabilities themselves, and the former
are used to extend an earlier theory of unified rates to strong-coupling situations in extended. systems.
Applications of the theory to experiment are discussed. The theory is directly applicable to the transport of
other quasiparticles, in particular to that of small polarons.

I. INTRODUCTION

III g (P
Jf

(1.2)

wherein P„(t) is the probability of the exciton being
at site m, and I' „are the transition rates, the
symbolic connection between the latter and the
J„„'sbeing E=Z /a.

The intermediate situation, wherein J agd e do
not have disparate values, is obviously difficult to
describe and much recent effort has been directed
at constructing theories capable of addressing this

The Frenkel description' of the motion of exci-
tons in a molecular aggregate in the absence of
phonons or other "bath" interactions is based on

dc„"=-ag J'„„c„,

where m, a vector of appropriate dimensions,
labels the molecular site, c„(t)=—(m ~ P(t)) is the
amplitude at the mth site, (m) is a localized state,
( P(t)) is the system state, and J'„„is the Hamilton-
ian matrix element (m)H )n); here and throughout
the paper 5 =1. If the molecular aggregate is a
crystal, i.e., has translational invariance, bands
and allied concepts become useful, being intro-
duced into the description through a Fourier trans-
form of (1.1).

This situation may be characterized by the limit
n/g-O, where tr represents the exciton-phonon
(more generally exciton-bath) interaction and 4
typifies the J „'s. In the opposite limit J'/a-0 an
appropriate description of the transport is general-
ly believed to be

regime. In this payer we present an analysis of
some questions that arise in the study of this in-
termediate region.

One of the recently developed formalisms for
probing the intermediate region uses stochastic
Liouville equations'4

dp~~ i (J~s &en - Jan P~s)

+5 B„p -8 p + (1.3)

whereas another uses generalized master equa-
tions'6

—~„„(t—t')P„(t') j. (1.4)

In Eq. (1.3) only the terms of interest here have
been displayed. The others may be found in Hefs.
3 and 4. These descriptions [(1.3) and (1.4)j of the
intermediate situation may be used either as
phenomenological approacheg or as theories w'hose
parameters are obtained microscopically. If the
former, they can be shown' to be essentially equiv-
alent to each other at least when the stochastic
Liouville equation is slightly generalized. ' How-
ever, as microscopically obtainable descriptions
they make predictions that are identical in several
cases but conflicting in others. The conflicts arise
from the difference in the particular truncation ap-
proximations invoked in the two theories. A dis-
cussion of these issues has been given earlier by
the authors. "b' In this paper we shall not be inter-
ested in these unresolved problems that arise in
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18 THEORY OF KXCITON TRANSPORT IN THK, . . . I.

the comparative study of the theories.
Whether (1.3) and (1.4) are taken to be in agree-

ment or in conflict with each other, they are
inadequate in certain limits of the physical param-
eters, when considered as microscopic theories.
The inadequacy af the theories may be appreciated
in the light of Silbey's objection against the use of
(1.4) with its particular approximate expressions'0
for the memories in extended systems in the ab-
sence of phonons. He has pointed out that the
weak-coupling approximation used in the past' in
(1.4) results in negative probabilities for such sys-
tems. This objection is certainly valid. However,
we have shown explicitly elsehwere" that negative
probabilities also arise out of the Grover-Silbey,
or generally the stochastic-Liouville-equation,
treatment when used with its approximate expres-
sions. We shall nat repeat the details here. Suf-
fice it ta say that such a demonstration should not

- come as a surprise. In most perturbation calcula-
tions it is the Schrodinger equation that is truncated
and the approximate wave functian thus obtained is
multiplied by its complex conjugate to give the
probabilities. The latter are therefore guaranteed.
to be positive no matter how hideous the truncation
approximation. Qn the other hand, even a gentle
truncation on the Liouvil)e equation for the density
matrix will generally give negative prababilities
unless special care is taken to assure positivity.
All the modern theories of exciton transport' '
truncate the density-matrix equation and nang of
them contains a procedure to ensure positivity of
the diagonal elements of the density matrix. Of
course the ranges of parameter values that make
the theories inapplicable for the above reasons are
different for the different theories. Thus the per-
turbation approximations used in the past along
with (1.4} and with (1.3}will give unacceptable re-
sults for extended systems if the randomness pa-
rameter is small with respect to, respectively,
the intersite matrix elements J and that part of J
which does not conserve phanons.

Thus we see that Silbey's objection' applies to
all existing theories of exciton transport in the in-
termediate region in one or the other limit of pa-
rameter values. It is therefore important ta study
the theories in those limits, and attempt to im-
prove them. The present paper concentrates on
(1.4) [although the results apply to (1.3) as well]
and studies it in the limit in which it gives the
least acceptable results, ' i.e. , the &imit of very
strong intersite coupling. It will be seen that this
analysis leads naturally to a relatively new and
highly interesting concept". that of long- range
transfer rates and memories, With the exception
of Goad's calculation'~ in which spatially exponen-
tial rates appear, we have uncovered no mention

of this concept in the literature. Several af its
consequences are worked out in this paper with a
view towards extending the applicability of the ex-
isting theories of exciton transport in the limits
outside the range of their validity in their present
form.

The paper is outlined as follows. In Sec. II it is
pointed out how long-range transfer rates appear
in a calculation on a simple three-site model re-
ported earlier. " In Sec. III exact expressions are
obtained for the memory functions in the general-
ized master equation (1.4) as well as for simple
transfer rates in a system of N sites (arbitrary N)
obeying translational invariance and periodic
boundary conditions. Pp.rticular cases of the re-
sults of Sec. IG are given in Sec. IV. These treat
a small finite "crystal" of four molecules on one
hand, and the infinite chain on the other. The new
features of excitan matian predicted Qy these equa-
tions are studied in Sec. V by evaluating expres-
sions for the mean-. square displacement presented
earlier, "by studying their effect on (and thereby
extending) the unified definition of effective trans-
fer rates given by Kenkre and Knox,"and by ana-
lyzing the full px'ababilities themselves, particu-
larly in the long-time limit. That section also
contains an illustrative application of the theory to
a recently proposed experiment. " Concluding re-
marks appear in Sec. VI.

II. APPEARANCE OF LONG-RANGE MEMORIES

AND RATES

The concept of long-range memories and rates in
the strong intersite-coup&ing limit may be immedi-
ately appreciated in the context of a simple maclel.
The author has shown earlier" thaf in a system of
three sites I, 2, and 3, with Hamiltanian matrix
elements (m(H[m) =0=(1(H)3) and (1[H[2)
=(3~H~2) =8, initial localizatton on one of the sites
leads to the generalized master equation (1.4) for
the probability evolution where, in addition to the
spatially local memories

w„(t) =W„(t) = 2J' cos(t J'W),

there arises the nonlocal memory

W„(t) =2Z' sin'(u/W) .

(2.1)

(2.2)

A direct derivation of (2.1) and (2.2) from the
Zwanzig formul. as' is given in the Appendix. We
term the memories in (2.1) local because their
spatial extent is the same as that of the matrix ele-
ments of the Hamiltonian. On the other hand, (2.2)
shows that a memory fupctian connects sites 1 and
3 desPite the fact that no Hamiltonian matrix ele-
ment exists between them. We therefoxe call the
memory spatially nonlocal.
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--, cos{tJW) if site 1 were initially occupied and
therefore to negative probabilities [see Fig. 1(b)],
whereas the exact solution as given by (2.1) and
(2.2), P,(t) = sin'(t J/vY), obviously does not.

The significance of the nonlocal memory is made
more apparent by comparing the Markoffian rate
equations that would be ordinarily written for the
three-site system"

(2.3)

(2.4)

to the result that would be obtained by introducing
damping into (2.1) and (2.2) in the usual manner
and identifying rates with the time integrals of the
memories:

dP & 2J

-2Z' 2

l.0

2J J
~g +2J2 ~ ( 31 13) t

e2 2J— ~s+2Ja ~ {&i+&s- 2') ~

(2 5)

(2.6)

0.0 4 /5
/

The exact results (2.1) and (2.2) should be com-
pared to those given by the weak-coupling approxi-
mation used in earlier calculations of the memor-
ies. The- approximate treatment would replace the
right-hand sides of (2.1) and (2.2) by 2J and 0,
respectively. It is easily shown that this would
lead to the solution P, (g) =+ +~(cosy J~

PIG. 1. {a) Local and long-range memory functions
for the open three-site system of Sec. II for the pure {un-
damped) as vrell as the damped case: the disappearance
of long-range transfer rates for wreak 4 is seen clearly
from the nature of the long-range memory and its in-
tegral. {b) Probability P3{t) of one end of the open three-
site "chain" in the absence of bath interactions and for
the initial condition that the other 'end is occupied: the
solid line is the exact solution and the dashed line is the
"vveak-coupling" approximation based on the truncated
memory.

Here e represents the damping caused by the ex-
citon-bath interaction. Equations (2.3) and (2.4),
which are the consequence of the weak-coupling
approximation valid for small J/u, are seen to be
modified by the introduction of the factors a'/(o. '
+2J~) and 2J~/(u2+2J2). These do indeed tend to
1 and 0, respectively, in the limit J/a-Q, reduc-
ing (2.5) and (2.6) to the weak-coupling results
(2.3) and (2.4).

One should also observe that the nonlocal mem-
ory function (2.2) is zero at k =0 unlike the local
memory function. [See also Fig. 1(a).] This is a
general characteristic of nonlocal memory func-
tions. Its consequence is that if the damping n is
sufficiently strong, the nonlocal memories have no
opportunity to rise to non-negligible values before
they are forced to decay to zero by the damping
agencies (viz. , the bath interactions). Therefore,
they make negligible contributions to transfer rates
in the weak J/o. limit. [See Fig. 1(a).] No non-
local rates need thus be considered when the bath
interactions are very strong. This corresponds to
the A,'f limit, ' and the validity of rate equations
used earlier' in the weak J/a situation is thus un-
affected. This may be seen explicitly through the
limits of the factor 2J/(n +2J ) mu'ltiplying the
nonlocal terms in (2.5).

This simple illustrative example shows how non-
local memories and rates arise and why they are
unimportant in the gung@ .j/e limit. In the following
sections we obtain expressions valid in the strong
J/e limit for more realistic systems.



18 THEORY OF KXCITON .TRANSPORT IN THE. . . . I.

III. MEMORY FUNCTIONS AND TRANSFER RATES
FOR THE N-SITE SYSTEM

1 ~)km (3.1)

The Fourier transform of (1.1) has the solution

c'(f) =(I/WN)e "', (8.2)

where the initial localization on a single site has
been used through (3.1) and, with J

Consider an exciton moving on a chain (linear,
for simplicity) of N molecular sites obeying peri-
odic boundary conditions„ the exciton energy in the
absence of intersite interaction being site indepen-
dent and therefore assumed zero without loss of
generality, there being no randomness of any kind
(n = 0), and the interaction matrix elements between
sites m and n being J „. In other words, the sys-
tem obeys (1.1). We shall cast its evolution in the
form of (1.4) and calculate the & „(f)'s exactly.

Define

AA2 $$ ($$+ IPj JR 1$ $$ J2 w. (0+0) Jc J$$+0 (3.10)

where the first identity follows from the definition
of A and the second from (3.3). If k and q have al-
lowed values "in the band, " i.e., if they are inte-
gral multiples of 2s/N, g too has an allowed value.
It follows therefore from (3.9) that for any k the q
summation always has pairs of A's which are equal
in magnitude but opposite in sign. '9 This leads to
a simplification of (3.8):

$$ „(a)=-P e '"'" "' -[ln$'(a)]), ($.$$a)-4k %-y '

the Laplace variable, one obtains

$$„„(a)=-Q (e
"'" "~/Q (a+iA")') ($.$)

where A"& =J"'~- J&. This is the required explicit
result for the memory function. Note that

(3.9)

for g =2m- (k+2q), since

(3.3)
)t'( ) = [' [ '+(A")'j, (8.11b)

Inverting (3.2), the probability P (t) = c„*c„is ob-
tained as

~ÃslN ~rftg P

n

6 „=-%' „ for men, (3.5b)

and the use of the system property of translational
invariance (8„„=6„„)allow (1.4) to be rewritten
as

dt 0
+ dt'8 (t- t")P"(f')=0, (3.6)

where P" and 8 are Fourier transforms of P and
9 defined through equations completely analogous
to Eqs. (3.1) and (8.8), respectively. Equating the
expressions for the Laplace transform of the Fou-
rier transform of P„(t) as computed from Eqs.
(3.4) and (8.6), respectively, i.e.,

1 ~ $m(k+ q -q') 1pk(+) N'vÃ, . „„~+i(J' J') vÃ—~+8'(~) '

where tildes denote Laplace transforms and e is

(t) Q e $$(J' J' )s-$ {q -$q$) (3 4)
$0

I

However, it is also possible to obtain an expres-
sion for P„(t) directly from the generalized master
equation (1.4). It involves the memories %'„„and,
when equated to (3.4), yields usable expressions
for% „. Thus, the definition

where the number of factors in the product in
(3.11b) is &N if N is even and ,'(N+1) if—itis odd. "
Galling this number 3f and defining quantities S'
through

Sk g (Akq. )
2

(Akq) 2(pkq') 2

e&e'
(3.12)

s,"= g (a")'(a"")'(z"")',
e&a'&e"

etc. , the quantities 8 (t) appearing in (8.6) can be
shown to satisfy

N

(P(e) =eQ rs'~"" "
r=1

(3.13)

The system considered in this section so far is
"pure, "i.e., it does not interact with a bath. If
bath interactions are now introduced phenomeno-
logically through a damping 0., the memory func-
tions are obtained by replacing e by (e+ a) in (8.6),
(8.11), and (3.13). Thus, for instance

'w„„(e)=-Q (e
'" "'/Q (a+a+iA")')

(3.14)

Unlike the "pure" memories, the damped memor-
ies have finite time integrals which are nothing but
the transfer rates in the ordinary (markoffian)
master equation (1.2). These rates E„„are im-
mediately obtained by replacing ~ by e in the above
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undamped expressions for the Laplace transform
of the memories or by 0 in the damped ones. Thus

(3.12) as follows:

/2 S3 K/2 8J2
1 (4.3a)

s-&a&m-

A

(3.15)

IV. PARTICULAR CASES

The application of the results derived in Sec. III
to particular situations is straightforward. Thus
it may be easily shown that for a dimer (a mole-
cule pair) Eq. (3.8) gives 'N(t) =2J' and Eq. (3.15)
gives E=2J'/a, or that the memory for' a closed
t»mer, I e, J=&ll& I2& =&IlIII3) =&2IH I3), is given
by 2J cos(t JW). We present below explicit cal-
culations for two specific cases: a ring of 4 and
of an infinite number of molecules, respectively.
The first case represents the smallest closed ring
for which spatial nonlocality appears, while the
second case shows the simplifications inherent in
a large system. In both these cases we shall in-
voke tight binding, i.e., J„„=J(5„„„+5„,)
which results from (3.3) in

J =2Jcosk,

(A"') ' = 16J' sin'( —,
'

k) sin'(q + —,
'

k) .
(4.1a)

(4.1b)

A. Ring of four sites

Notice the "two-term" nature of the rates, the
terms being proportional to n and 1/o.', respective-
ly. Two-term transport quantities have appeared
earlier in Refs. 3 and 4 and have been discussed in
Ref. V.

Equation (3.8) for the memories or more gener-
ally its "broadened" version obtained by replacing
e by e+ a, and Eq. (3.15) for the transfer rates
constitute the main result of this paper, and should
replace the "narrow-band"'0 expressions 2J'/c
and 2J'/o. , respectively, that would appear in the
large J/n limit as a result of straightforward cal-
culations' with the weak-coupling approximation.
One should note that the molecular chain considered
here need not be linear. All that needs to be done
for a two- or three-dimensional crystal is to re-
place m, n, and k, q by vectors in the direct and

reciprocal lattices, respectively.

$7r/2 + fr/2 16J42

1QJ2

gW p

Equation (3.16) gives

e 8J e +32J 4J'

8J2q2+2g4

16J'q + 0
16J2$ +2/ g +8J

QO p

Through (3.5) or directly through (3.8)

(4.3b)

(4.3c)

(4.3d)

(4.4a)

(4.4b)

(4.4c)

m„(e) - J +8J

w„(e) =2J (
——

)

(4.5a)

(4.5b)

which are inverted to yield the memories explicitly
in the time domain:

~.,(f) =w.,(f) =~ (t) =vi',.(f)

=2J' cos(t J2v 2 ), (4.6a)

~„(f)= ~„(f)=2J2[1- cos(tJ2M2 )]

= 4J sin'(f JW ) .
In the presence of bath interactions, Eqs. (4.6) will
be multipled by e ', and the long time evolution
of the exciton will be as given by

2J2 2J2
n ' ' ' o.(P2 +P4 - 2P, ) + (1 - t) (P3 —Pg),

(4 7)

and similar equations for I'„P„and P4. Note
that although (4.7) is Markoffian, it contains non-
local transfer rates. The first term on the right-
hand side contains the local rate while the second
contains the nonlocal rate, t' being the factor n'/
(o.'+8J') which equals 1 in the weak-coupling limit
J/o. -0.

From the relation e" =e'~'"' ' demanded by per-
iodic boundary conditions one obtains 0, 2n, n, and
23m. as the allow'ed values of k. The respective
values of J" are, from (4.1a), 2J, 0, -2J, and 0.
The quantities (A ')' are given by

B. Ring (or chain) of an infinite number of sites

Rewriting (3.8) as

4 „(e)= —Q 'fP'(e)e '"" ", (4.8)

(/i w/2 0) 2 4J2 4J2

(A3 w/2 q) 2 4J2 4J2

(/ilrq)2 0 16J2

(4.2a)

(4.2b)

(4.2c)

one obtains in the limit +-~,
2'

4"(e)=-2v e dq[e'+8J'(sin'-, 'k)(1 —cos2q)] '.
0

Therefore, the quantities S' are obtained from (4.9)
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Using contour integration along the unit circle one
finds

M(~) =-[e'+46J' sin'-,'k)]'I'. (4.10)

It is possible to invert the Fourier transform and
obtain 'W „(e) from (4.10). Thus the N-~ limit of
(4.8) gives

»+8~»vl»
(+)

( ) dk e i«(sl «)

2m 0

x 1- » cosQ

8"(~)= (e'+16J' sin'-,'k)' ' —e, (4.14)

which is recognized as the Laplace transform of
(1/t)(4Jsin-,'k)[ J,(4Jt sin —,'k)] or what is the same,
of LI (»n ~k}[JO(4Jt sin~k}+ J2(4Jt sin&k}]. Thus the
inverse transform of (4.15) is

'u'I'(t) = (8J'sin"-,'k}[Jo(4Jt sin-,'k)+ J,(4Jt sin-,'k)]

+ [L -'(&) l(16J' sin'-,'k), (4.15)

where the last term is the derivative of the 6 func-
tion and where L, ' denotes the Laplace-inverse.
To obtain the memory functions'„„(t) we use
(4.15) in (4.8), recognize a particular case of the
general result 2:

(4.11)

which, with the substitution m- 4 =4' can be re-
duced to a standard expression" involving Legendre
functions P,"&» of fractional order. The limit e - e
gives, as explained above, the transfer rates E „:

p —[( 1)l~ «I+&(~2+8J2)&I2pl «l(p)Z ( 3)]

&& [p"'r ()m N]+-,')] '-, (4.12)

where p = n '(a +16J2) 'I'(a'+8J2)'I'. Obviously
the memory functions 'CV„„(e) are given by (4.12)
with e replaced by the Laplace variable &. These
ean then be Laplace inverted to obtain expressions
in the time domain. It is possible, however, to
obtain the time domain expressions more conven-
iently by working directly from (4.10). Note that
the functions &«(t) are generally unphysical [al-
though %'„„(t)are certainly well behaved] as they
contain derivatives of 5 functions. Qn the other
hand, the functions 8'(t) appearing, for instance,
in (3.6) are always physical. They are generally
related to %'4(t) through

t2'(e) =~(~)-~'(~), (4.13)

as is obvious from (3.5). Using (4.10) in (4.13),
one gets

V. MOTION OF THE EXCITON

In the previous sections we have obtained new
Markoffian as well as non-Markoffian transport
equations for exciton motion in a crystal, and have
examined some specific cases of those equations.
In order to appreciate the new features of exciton
motion predicted by them we sha11 now study their
solutions by analyzing first the moments of the
probability distribution and then the probabilities
themselves.

A. Moments and effective rates

The mean- square displacement ((m'(t)))
-=Q„m2P (t) contains useful information and can
be obtained more easily than the entire probabil-
ities of site occupation. It has thus been ealeulated
by various authors ' "and has also been made the
basis of a unified definition of "slow" and "fast"
transfer rates for excitons. '4 Therefore, let us
first ask what effect the long-range memories and
rates discussed above have on {(m'(t))). We have
shown earlier" that, for the infinite chain,
((m2(t)}) is related to the second moment of the
memory functions (m2(t)) through

( )»
N

-=2 dt' m ~~ t' .
0 m=1

(5.1)

The moments of %'„(t) are obtained simply by
Laplace inverse transforming derivatives of N'(e).
Thus,

and use (3.5). We then obtain the required mem-
ories:

~.„(t)=2J'(J'„„„(2Jt)+J'„„,(2Jt)

+ 2[J„„„(2Jt}][J„„,(2Jt)]}
—2J'{2J'„„(2Jt)+[J„„(2Jt)]

&&[J „~2(2Jt)+J„„n(2Zt)]}. (4.17)

These are exact expressions for the W„„(t)'s in
(1.4) for a pure (o. =0) one-dimensional infinite
crystal. The usual introduction of damping gives
the "broadened" 'VP's applicable to the o, w0 situa-
tion by multiplying the right-hand side of (4.17) by
e ~'.»3 The correct transfer rates F „in a Pauli-
type master equation (1.2) are given not by (2J~/
n)(5„„„+5 „,) k~t ky time integrals of the
broadened 'N's, the explicit expression being
(4.12).

(
+-$k v + Oo

J„(4Jtsin —,k) = P e'"«J„(2Jt)J„„(2J't),
2 sin»k Q m'C'„(e) =-lim s'4 "(~)

k-0 8u
(5.2)

(4.16) A straightforward calculation using (5.2) and (3.8)
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gives

(m'(t)) =4Z'e "',
in the general case and, of course,

(m'(t)) =4g'

(5.3)

(5.4)

for the pure crystal. We emphasize that (5.4) is
exact and does not involve weak-coupling or phe-
nomenological assumptions. Since it leads through
(5.1) to"

«m4(t))) as the key quantity to be used in the defin-
ition of transfer rates, i.e., if instead of using the
procedure given in Ref. 14 one defines the effective
rate zp as the reciprocal of the time taken for
((x'(t))) to build from the value 0 to the value a4,

where x is the distance from the site occupied ini-
tially by the exciton and a is the intersite distance,
one obtains the implicit equation which should be
compared to Eqs. (6) and (7) of Ref. 14:

((m'(t))) =-Q m'P„(t}=4J't' (5 5)
ct/'N 1 + +47 e &/w

&m'(t)) =4&'e "'[1—(-')&'t'] (5.8)

which differs from the usual result that would arise
in the weak-coupling situation as the latter mould

not have the second term in the parenthesis in

(5.8). Equation (5.8), when combined with (5.7),
produces

d((m'(t))) 2

dg

(5 9)

If one now relinquishes ((m'(t))) in favor of

for ((m'(0))) =0, we have here the interesting re-
sult noted earlier by Silbey' that the weak-coupling
approximation to (1.4) gives the exact value for
the mean-square displacement although the pre-
dicted probabilities are quite different in the two
cases. In other words the long-range character
of the new memories leaves ((m'(t))) entirely un-

affected.
Recalling that the unified definition of coherent

and incoherent transfer rates given by us earlier'
is based on the evolution of ((m'(t))), we conclude
that those rates are in no way influenced by the
modifications introduced into the transport equa-
tions in the previous sections. Although this is
surprising, it obviously means that one must ex-
plore higher moments of the probability in order to
see that influence. We therefore calculate (m'(t))
or its Laplace transform

m44 (e)=lim
6'4'(e)

(5 6)
Bk

I

which is connected to ((m4(t))) =Q„m4P„(t) through

d((m (t))) 3 dt/[( 4(t/))
dt

+ 6(m'(t- t')) &(m'(t'))) ] .
(5 7)

Like Eq. (5.1), Eq. (5.7) is obtained immediately
from Eq. (8) of Ref. 13. The evaluation of (5.6)
yields

+
3

=
~ 5-10

We make the following two observations: (a}The
J dependence of the rate I) is not changed in its es-
sentials since in the coherent (o/J -0) and incoher-
ent (J'jo. -0) limits the proportionality of w to J and
J', respectively, continues to hold: thus there is
no essential change brought about by the present
theory in the unified description given earlier. "
(b) The effect of the long-range memories and

rates, although absent in the mean-square dis-
placement, is strongly present from a numerical
viewpoint already in the fourth moment and in the
effective transfer rates derived from it.

Evidently a finite number of moments of the
probability distribution contains only partial in-
formation about the exciton motion and these rate
definitions based on them provide only indicators
and not precise quantitative criteria.

B. Evolution of the probabilities: Four-site ring

We now analyze the evolution of the entire proba-
bilities first in the four-site system and then in the
infinite chain. From the results of Sec. V we know
that the exact evolution of the probabilities for the
pure four-site system obeys the generalized mas-
ter equation (1.4) with the memory functions given
by (4.6) provided the exciton is initially localized
or, more generally, provided an initial random
phase or diagonality condition applies on the den-
sity matrix. Bath effects are introduced by multi-
plying the "pure" expressions (4.6) for the 'W's by
exp(-nt) and their time integrals are the rates ap-
pearing in the rate equation of the Forster-Dexter
form This is e.xplicitly displayed in (4.7).

We shall study the motion of the exciton under
the condition that it is initially localized on site 1,
i.e., P, (0) =1 and P, (0)=P,(0) =P, (0) =0. The
standard way of calculating from the master equa-
tion involves the "modes" P~. The initial condition
may be written as P~(0) = —,

' for all k where we have
an equation similar to (3.1). From (3.6) and (4.4),
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P'(t) =

P II/2 (t) P3 II/2(t)

= -'e ' /2[cosQt+((2/20) sinQt],

P "(t)=[2e '"]I. '[(e2+8Z')(e3- (2e'

(5.11a)

(5.11b)

0.25

+ &16J —8j2n) '],
(5.11c)

where O' =J'- —,'n'. For any given values of J'and
(2 the roots of the cubic equation relevant to (5.11c)
can be found trivially and P "(t) obtained explicitly.
The four probabilities P„(t) can then be written:

L(PO + 2P II/2 +P II
)

P =P =-'(Po-P')

P = ((Po 2PII/2+PII)

(5.12a)

(5.12b)

(5.12c)

P'(t) = —.',
.PI(/2(t) P3 Il'/2(t) Le t(J /(()

(5.13a)

(5.13b)

P3(t) =
2 exp f-t(2&2/(2)[(22/(n2+8Z2)] j. (5.13c)

The prediction of the usual rate equation' employ-
ing golden-rule rates would be identical to (5.13}
except in that the exponent in (5.13c) would be
merely 282/n. At long times the probability P, (t)
which describes the occupation of the site farthest
from the initially occupied one is, explicitly,

P (t) —((1+e t('(2J /tt) 2g t(& /~)) (5.14)

in terms of the expressions in (5.11). We shall not
display any examples nor detail the system evolu-
tion as a function of the coherence parameter Z/o(
as they would provide information which is basic-
ally identical to that contained, for instance, in
Fig. 4 of Ref. 7(b). Of special interest in the pres-
ent context is, however, the long-time motion of
the exciton and, in particular, the effects on it of
the long-rarige transfer rates discussed in this pa-
per. Working from (4.7) we again obtain the
"modes" ~'.

I

l5

FIG. 2. Comparison of the predictions of ordinary
{Markoffian) rate equations for exciton transport in a
closed four-site "crystal": the solid line represents
the present theory and incorporates long-range rates-
while the dashed line is the result of the conventional
weak-coupling rate equation; the ordinate is the prob-
ability of the farthest site relative to the initially occu-
pied one.

the detailed passage from wavelike to diffusive
transport may also be studied explicitly from
(4.10), (4.14), and (4.17) for motion on the infinite
chain. However, since these issues have been dis-
cussed several times in the literature, we shall
restrict our analysis again to the long-time evolu-
tion as given by the appropriate Markoffian rate
equation.

The actual form of the transfer rates F „as
given in (4.12) is quite complex but we do not need
to use them directly for calculations. Working in
terms of P"(t), the important quantities are the
Q3's. Using the "broadened" versions of (4.14) and

employing (3.6) leads to

P'(t) =P"(0)exp t, t[(n'+ 16Z' s-in2-2'0)'/' —(2]],

(5.16)

at long times. %e point out at once that the usual
(Forster-Dexter) rate equation

(5.15)

from our present theory (which contains long-
range rates from site 1 to site 3) but

(t) —) (1 +8 t(2Z /oI) 2e t(P/(t) )

dP~ 2J (P.„+P. , —2P„),
dt

lea.ds, in place of (5.16), to

(5.17)

from usual rate equations (containing only local
rates). Here g equals a2/(o. 2+882) as in (4.7).
Equations (5.14) and (5.15) are plotted" in Fig. 2.
Note that the long-range rates result in faster
transfer and that (5.15) is the weak-coupling limit
(J/u -0) of (5.14).

S"(t)=P"(0)exp(-t[(«'/~)»n'-'~l) (5.18)

1P„(t)= dI e ""P'(t),
0

(5.19a)

which is indeed the limit of (5.16) as 8/a-0. The
relations

C. Evolution of the probabilities: Infinite chain

The short-time evolution as given by the full
memories in the generalized master equation and

(5.19b)

and the result (5.16}allow the general solution to
be written explicitly,
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P„(f)=—1
2' dk g P„(0)exp(-ikm)

n

x exp {-f [(a'+ 16Z' sin'-,'k)'~' —a jj .
(5.20)

For initial localization on site 0,

1P (t) = dk exp(-ikm)
277 0

x exp{-f[(a'+16J' sin'-,'k)~'- ajj .
(5.21)

The explicit evolution of the probabilities is con-
tained in (5.21) and its weak-coupling (J/a -0) lim-
it indeed yields the well-known result

P„(t)=e '~" ~"&I (t4Z'/a), (5.22)

characteristic of (5.1V). Here I is the Hessel
function of imaginary argument.

Another interesting prediction. of the new rate
equations occurs in the context of an experiment
recently suggested by Fayer. " The idea is to
create a spatially sinusoidal population of excitons:

P„(0)= (1/N)(l+ const cosmic), (5.23)

where 2wa/q is the wavelength of the spatial varia-
tion of the exciton density and to monitor the decay
of the spatial inhomogeneity in time, the observed
signal being proportional to the square of the am-
plitude of the inhomogeneity. Our present theory
may be immediately applied to this situation by us-
ing (5.19) and (5.16) and taking the limit N-~ of
(5.23).

P~(t) =5„0+, const(-5, „+5, „)
x exp {-t [(a' + 16J' sin' ~)'~' —a j) .

(5.24)

The rate of decay of the mode is directly given by
the exponent in (5.24):

8 = (a'+16J' sin'-,'q)'~' —a, (5.25)

and equals one half the decay rate of the signal be-
cause the latter is proportional to the square of
the amplitude. This expression for the mode decay
rate is quite interesting. It is completely different
from the effective transfer rates defined in Ref. 14
or in (i) above, as it does not indicate directly the
rate of site-to-site transfer. However it has limits
similar to those of effective transfer rates. Thus,
for q = w it varies from 4Z for small a/J (the
"coherent" limit) to 4F for large a/j (the "inco-
herent" limit), where F=2g'/a. This dependence
is displayed in Fig. 3. Notice the simil~ity to
Fig. 1 of Ref. 14, although, as stated above, the

0 —
I

-2

el I I I I I I

-5 -4 -3 -2 -I 0 I

gn J

I I

3 4 5

FIG. 3. Rate of decay of the signal in Fayer's
transient grating experiment as given by the present
-theory under the assumption that the experimental time
{1/~) is larger that the coherence time {1/+):the co-
herent and diffusive asymptotes represent the J& 0'

and the & & J situations, respectively; different points
on the curve should be accessible through a varia-
tion in the temperature.

rates plotted in the two figures are totally different
from each other. The importance of 8 in (5.25)
stems from its being a directly observable quantity
in contrast, for instance, to w.

We emphasize in the light of these calculations
that Fayer's proposed experiment, when carried
out, could provide one of the most direct probes
of exciton coherence available so far. Our present
theory gives a simple prescription to assess the
amount of coherence from the results of such an
experiment. If the observations pertain to long
times (long with respect to 1/a) the rate-equation
'result (5.25) is applicable. The observed decay
rate will give 8; the initial spatial variation of the
exciton density (which can be measured directly), "
will give g; and J will be obtained from spectra or
similar sources Our equ.ation (5.25) will then
yield the value of e. %'hen compared to J, it will
indicate the extent of coherence in the system
which may be measured by the ratio 8/a. One
might check the compatibility of such a derived
value of n with values obtained' from optical spec-
tra. Furthermore, useful information will be ob-
tained by varying the temperature in the experi-
ment. It should result not only in a variation of e
but also of J through the "polaron" or "dressing"
effect.4 This might provide an experimental test
of the recent calculations of Yarkony and Silbey '
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concerning the temperature variation of the effec-
tive intersite coupling.

The use of a Markoffian rate equation and of the
particular result (5.25) are inapplicable, and the
expectation of an exponentially decaying signal is
incorrect, if the experiment possesses a charac-
teristic time 7' mhich is not much larger'9 than
I/n In. such cases the non-Markoffian equation
with the memories (4.17) (but in the broadened
form) is called for. We present here a result in
the extreme coherent limit, i.e., if I/n is much
larger than the experimental time. We are per-
mitted then to neglect o., use (4.17) in the un-
broadened form and write instead of (5.24)

p»(t) = 6»'0+ -,' const(5» „+6» ~) J0(alt sin ,' q) . —

(5.26)

Here we have used (4.14) in (3.6). Observe that
(5.26) predicts a nonexponential decay of the signal
in this extreme coherent limit. In fact the signal
decays as the square of a zero-order J Bessel
function. Based- on a different analysis, Payer has
earlier predicted" a signal decay in the coherent
limit which is also nonexponential although it in-
volves I Bessel functions and is different from-the
square of (5.16). For the intermediate sii'uation
the present theory gives

P'(e) = (6»,/e) + —,
' const(5„„+6» „)

x {[(6+~) +1' slunk']t/2 ~] -1

(.5.27)

The curly bracket in (5.2V) describes the signal.
It is important to realize" that three different

times are involved in the experiment: w, I/J, and
I/o. . If I/Z»I/n, a Markoffian rate equation may
be used. Otherwise the generalized master equa-
tion must be used. In either case the Rlarkoffian
or non-Markoffian equation must have the long
range rates or memories given by equations such
as (4.17) if g«n is not satisfied.

VI. CONCLUDING REMARKS

Much effort has been recently spent on attempts
to understand the nature of exciton transport in
molecular aggregates. " The questions asked con-
cern mechanical issues such as whether the motion
is wavelike or diffusive as mell as the detailed
mechanisms responsible for transport. On the ex-
perimental front, singlet motion has been studied
through bulk and surface quenching experiments
as well as through photoconductivity investigations
and has been reviewed by Powell and Soos." Trip-
let studies have been carried out on the basis of
trap phosphorescence experiments by Fayer and
Harris" and with the help of magnetic resonance

techniques by Harris and Zewail. " Various other
observations have also been reported. '4 Gn the
theoretical side, in addition to the formal-
ism s3 ' ' '2 '2 ' discussed in Sec. I, there are
the quenching studies of Hemenger et al. ,

" the
analysis of magnetic resonance experiments by
Davidovich and Knox, ' the depolarization fluor-
escence theory of Rahman eE al. ,

"and the studies
of localization criteria by Aslangul and Kottis, "
to name only a few. The fundamental questions
asked in this active field are often similar to those
asked in polaron transport. ' To answer all these
questions, whether they concern basics or detail,
one requires a skeleton formalism describing the
mechanics of the problem. The stochastic-
Liouville equation and the generalized master
equation mentioned in Sec. I provide two such basic
skeletons capable of describing in a unified man-
ner wavelike and diffusive motion. Both approach-
es have their advantages and disadvantages. The
present paper makes a contribution primarily to
the generalized master-equation formalism and

secondarily to the stochastic-Liouville-equation
approach; the former by extending it to large sys-
tems in the limit of strong intersite coupling (such
as low-temperature crystals) and the latter by ex-
tending its master-equation part to cover the limit
of strong phonon-assisted matrix elements.

The principal results of this paper are the mem-
ory expression (3.8), and its variants (3.11) and

(3.13), and the rate expression (3.14). A resulting
effective-rate expression is in (5.10). Other con-
sequences are the generalized master equations
(2.1), (2.2), (4.11), (4.14), and (4.1V). Perhaps the
most useful results are the ordinary (Markoffian)
rate equations (2.5), (2.6), (4.7), and (4.12), the
probability expressions (5.14) and (5.20), and the
predicted experimental signals (5.24), (5.25), and

(5.26). The last three provide a natural application
of our theory as explained in Sec. V. Gther appli-
cations to quenching situations which are related
to the experiments in Ref. 32 and to the theory in
Ref. 35 will be reported elsewhere.

In a modest manner this analysis perhaps an-
swers the question of what happens to a master
equation when the Van Hove "X g limit" is not ap-
plicable as a result of large A, . In our context A. is
represented by J and our answer is that the transi-
tion rates in the master equation are then given by
new expressions such as (4.1V) rather than the us-
ual Fermi-golden-rule ones and that they develop
spatially long-range character leading generally to
faster transport. In a sense these expressions
contain implicitly terms of higher orders than are
present in the golden-rule expressions.

It might be of interest to remark here" that the
phenomenological broadening introduced by replac-
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ing & by q+ e in the Laplace transforms of mem-
ories or by multiplying the latter in the time do-
main by e ', is exactly equivalent to adding a de-
cay term proportional to -ep „to the evolutions
equations for all off-diagonal elements p „of the
density matrix:

F„„=—Q [4(m- n) —1] ',
&- n&1

(6.2)

j S'il'

(t) dy ~ P (0) e lame t4lrstn(a/R) (6 3)ff
0 n

We emphasize that this method of making the
transition to the Markoffian rate equation is, in
general, artificial as the usual source of irrevers-
ibility in the systems is bath interactions and not
the size of the excision system; this method would

iQ-(J,p,„-J,„p„,)- (1-6„,„)p „.
S

(6.1)

An explicit proof of this and related results has
been given by the author elsewhere. ~' The signif-
icance of this result lies in the fact that (6.1) is
nothing other than the "bare" or "undressed" equa-
tion that can be formally obtained exactly from the
microscopic dynamics by projecting the exciton
evolution out of an exciton-phonon or exciton-bath
system before using a polaronlike transformation.
This bare equation is also identical to the phenom-
enological equation introduced by Avakian et al.~
and may also be obtained by omitting phonon-as-
sisted terms from the Grover-Silbey or the Haken-
Reineker-Strobl equation.

The transition from the generalized master equa-
tion (1.4) to the Markoffian master equation (1.2)
that occurs for long times, requires comment in
the case of the infinitely large system discussed in
Sec. V. For that system there are two distinct
ways of obtaining a Markoffian equation with sensi-
ble rates E „. One is the natural physical way of
writing I' „as the integral of the "broadened"
memories %'„„(t)such as (3.14) which correspond
to the transport equation (6.1). This way presumes
that it is the bath interactions (symbolized by a)
that introduce irreversibility and make Markoffian
equations (i.e., integrable W's possible), and can
be used for a finite as well as an infinite number of
sites. Another' way, applicable only to infinite
systems, is based on the fact that the infinite size
of the system (the thermodynamic limit) eliminates
Poincare cycles and makes the ~ „'s integrable
without the addition of any bath interactions. Thus
E „may be given by integrating the pure memories
(4.17) or equivalently taking the limit e.-0 in
(4.11). One then obtains instead of (4.12) and

(5.20) the respective equations

result in zero or infinite rates for a finite system
as is evident by integrating equations such as
(4.6). Note, however, that (6.2) and (6.3) repre-
sent approximations to (4.12) and (5.20) when n is
small and lead in fact to (5.26} for the transient
experiment" discussed in Sec. V.

One might wonder whether our theory supplies
an answer to the question raised by Powell and
Soos" regarding singlet motion in molecular crys-
tals. This is, at the moment, no more than a
speculation. The observation supporting the spec-
ulation is that transport faster than what is pre-
dicted by the conventional rate equations' of
Forster and Dexter, which, in the opinion of the
authors of Ref. 31 is necessary for explaining ob-
served phenomena, is provided by our theory
soithout invoking any change in the basic transport
mechanism, i.e., in the interaction matrix ele-
ments J„„.

It is obviously not necessary to use only spatially
local matrix elements J „as we have done in most
of this paper. Expressions (3.3) for J" and (3.8}
and its variations for %'„„(t)do not require that the
J „'s be local. Thus, for instance, if

J —Je ~l ~ nfl (6.4)

one would still have (3.8) but (4.1b) would be re
placed by

(~")'=~'q'(q+ 2a) '(~'+ a')-3(~'+u'+q'+ 2nq)-2.

(6.5)

In such cases the weak-coupling theory already
predicts nonlocal rates because J „is nonlocal.
The present strong-coupling theory would predict
additional long-range rates.

Our analysis was begun in Sec. I with the remark~
that the older hybrid transport equations couM lead
to negative probabilities, where by the term
"hybrid" we signify unified or combined equations
such as (1.3) and (1.4). Needless to say, we have
no guarantee that the new hybrid equations will
never lead to negativities since a procedure to en-
sure posihvity has still not been employed. The
negativity remarks must be understood as' expres-
sing (particularly dramatically) objections to the
approximation techniques used andriot as the pri-
mary concern. Thus, the analysis presented in
this paper is aimed not at removing negativity but
at providing a better approximation to the actual
motion of the exciton. In the latter it is indeed suc-
cessful as should be clear from our discussion.

The modification that this development suggests
in the stochastic-Liouville approach is the use of
long-range rates in the second term on the right-
hand side of (1.3). Whatever comments have been
made concerning F„„d'aWn„(t) apply thus to B„„
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and di„„(&), respectively (see Ref. 6).
That the present theory would be applicable to the

transport of other quasiparticles is obvious from
the generality of the development. The field of
small polaron transport" is particularly amenable
to investigations within this framework.

We conclude this section by restating the main
result of this paper: at sufficiently long times ex-
citon transport in a crystal with nonzero bath inter-
actions (i.e., in any real crystal) will be accurately
described by a master equation such as (1.2);
however, the rates in this master equation will be
given by the familiar goiden-rule expressions only
if the intersite coupling J is much smaller than the
bath-interaction parameter e. In situations where
J «o. does not apply, the rates, in general, have
a long-range character and are given by (3.14).
Master equations incorporating these rates, in
contrast to those involving conventional golden-
rule rates, are compatible with stochastic-Liou-
ville equations su'ch as (1.3) used earlier as in
Refs. 3, 4, 9, and 35. At times shorter than those
for which a master equation is valid (1.4} with

(3.8) will describe the transport. The unification
of coherent and incoherent motion through general-
ized master equations begun in Ref. 5 may thus be
said to be completed through this explicit extension
to large systems. '

ACKNOW'I. EDGMENYS

This work was supported in part by the General
Electric Foundation.

APPENDIX

Very few exact evaluations of the Zwanzig mem-
ory kernel" exist in the literature. To show how

general techniques for such computations may be
developed, we exhibit here the direct derivation of
(2.1) and (2.2) from

&N p(&)
et

dt't L exp[-i(t - f')(1-6')L]

x(1-6')Ld p (t'), (Al)

which is the Zwanzig equation, ' wherein g is the
Liouville operator denoting commutation with the
Hamiltonian and 6' is the diagonalizing operator.
For the open three-site "chain" of Sec. II

(I.O)„=Z(O„- 0„),
(LO)22 =~[(OXS —02i}+(033—023)]

(LO)„=Z(O„-0„),
(AS)

(A4)

(A5)(Lo}im =~[(Osm —oii}-Ois] ~

and similar expressions for other corresponding
elements. They yie11

(1 —(P)LO =JO',

[(1—6')L] 0 =J (0+0"),
[(1-6')L)'0 =2m'0'= u'[(1-6')LO],

(A6)

(A7)

(AS)

where 0 is any off-diagonal operator and the oper-
ators 0' and 0" are given in terms of the matrix
elements of 0 through

0~2 -023 =Ops -0~2-02~ -03' ~

(A9)
0,'3 =023 —0~; 03~ =Oui —0

0& —023 '
l3 —

13 21 —
3g

-023 OQQ y 03$ 0$$ y 03@ 02' ~

(A10)

Equations (A6}-(A8}are the analog of Eq. (A2} of
the first Ref. 5 and are immediately useful in ob-
tainjng

e '"' ~ 0 =0-,' [1+cos(~Jt)] 0'(i/W) s-in(WZt)

-0" 2 [1-cos(WZt)] (A11)

for any off-diagonal operator 0. Taking 0 to be
(1-6')L6'p so that O„„=P„-P„,where P's are the
probabilities, it is shown in a straightforward way
that 0' makes no contribution to (Al) and that (A1)
gives (2.1) and (2.2).
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