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Variational approach to inhomogeneous electron liquids: Application to metallic hydrogen
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A variational approach is developed to treat inhomogeneous electron liquids at metallic densities using a
correlated wave function. The single-particle part of the wave function is obtained by band calculation with

the aid of a suitable effective one-particle potential. Many-body correlations are accounted for by a
correlation factor of the Jastrow form. The Chakravarty-Woo hierarchy of integral equations is derived and
solved for the one-particle distribution (density function) and pair correlation function. The results are used

to evaluate the energy. The method is applied to a static lattice model of metallic hydrogen. Calculations are
performed for different densities using the variational formalism and density-functional methods. Comparison
is also made to calculations performed with different techniques.

I. INTRODUCTION

The homogeneous electron gas imbedded in a
neutralizing-positive-charge background is one of
the most extensively studied quantum mazy-body
systems. In the earliest days, Wigner' ca}.culated
the energy of the system in the low-density limit,
where the electron-electron interaction dominates.
In the 1950s, at the advent of quantum many-body
theory, Gell-Mann and Brueckner" treated the
electron-electron interaction as a perturbation,
and performed a selected summation of the per-
turbation series, using a method similar to Feyn-
man's field-theoretic technique. The resulting
ground-state energy and excitation spectrum are
valid for high densities. Tht. ir work was. supple-
mented by the efforts of many, in particular Pines
and Nozieres, 4 ' who devised an interpolation
scheme for calculating correlation energies in the
regime of intermediate densities: the metallic re-
gion. More recently, we have seen work by Singwi
and collaboratorsv' for homogeneous electron
liquids at metallic densities using an equation-of-
motion method. The latter is generally regarded
as reliable and widely applicable.

Real metals are, of course, inhomogeneous.
'7here have been several attempts to extend the
formalisms developed for homogeneous systems
to take into account the inhomogeneities. In per-
turbation methods, one starts with a homogeneous
electron liquid and considers the effect of the ex-
ternal potential due to the ion lattice as a perturba-
tion. ' " In the density-functional formali'sm, ' one
exploits the fact that the energy is a functional of
the density. In the local-density approximation, "'
it is conjectured that the electron cloud is so
weakly nonuniform that each volume element of the
electron cloud can be treated as locally uniform.
Its energy can thus be calculated from the known
energy density for a homogeneous electron liquid.

The total energy of the inhomogeneous system is
then obtained by integration. "

Over the years, researchers in our group have
sought to treat Coulomb problems by means of a
variational approach based on the use of correlated
wave functions. The work carried out by Lee and
Feenberg" in the 1960s on the ground state of the
charged Bose gas was given a firm perturbation-
theoretic foundation by Brueckner, "and was fol-
lowed up by analyses on both the ground-state"
and low-lying excited states. '9 Results obtained
with all methods were proven consistent, and gave
credence to the variational approach. The appli-
cation of the method to Fermi systems, however,
told a totally-different story. Despite its success
in the field of liquid 'He and nuclear matter, ref-
erences to which are much too numerous to quote
here, attempts to apply it to Coulomb liquids'
always seemed to fall short of agreement with re-
sults of proven techniques. The fault lay almost
invariably in its inability to properly deal with the
statistical (or exchange) correlations. The diffi-
culty was finally overcome in 1976, when an inte-
gral equation was derived and solved by Ghakravar-
ty and %'oo" for a properly antisymmetrized cor-
related wave function, and correlation energies and

pair- correlation functions were calculated. Their
results were found to be in rather good agreement
with those of Singwi ef gl. throughout the range of
metallic densities. In this paper, we generalize
that method, and apply it to the case of an inhomo-
geneous electron liquid.

Section II briefly describes essentials of the var-
iational approach. Section III formulates the in-
homogeneous-electron-liquid problem in terms of
a metallic-hydrogen model. In Sec. IV, the energy
of the system is expressed in terms of multiple-
density correlation functions. These correlation
functions are defi'. ed for each choice of the varia-
tiona1 wave function. In the convolution approxi-
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mation they can be related to the density function
and the pair distribution function. The expressions
were calculated in an earlier paper, and are sum-
marized in Sec. V. Section VI gives integral equa-
tions for the density function and the pair-distribu-
tion function, and concludes the presentation of our
formalism. In Sec. VII, we solve the equation for
the density function for metallic hydrogen, working
out in the process the Hartree-Fock or band-the-
oretic part of the problem. It ends up with the cor-
relation energy as a function of the mean density.
In Sec. VIII the same calculation is carried out us-
ing a density-functional approach, both with and
without the density gradient correction. Numerical
results obtained with the variational approach are
then compared with those obtained with the density-
functional approach, and with results obtained by
other authors using the density-functional method
and perturbation theory.

II. VARIATIONAI. APPROACH

For the inhomogeneous electron liquid, there are
several advantages in using a variational approach.
It is these advantages which have motivated us in
the prolonged search for a successful variational
formalism. First, it does not require as input the
solution for a homogeneous liquid. The latter
emerges as a limiting case, and thus provides an
independent check on the general formalism. Sec-
ond, the variational approach offers upper bounds,
which in turn provide guidance on whether attempts
to introduce improvements are moving in the right
direction. Third, from the variational result one
can construct a set of correlated basis functions,
upon which low-order perturbation corrections can
be evaluated. It thus offers opportunities for sys-
tematic improvements. Finally, and perhaps most
importantly, such a theory gives us many-body
suave functions, not just the density function or
some other macroscopic description of the system.
It is then possible to define and to calculate matrix
elements arising from the introduction of external
perturbation, e.g. , impurities in the bulk, or
atoms and molecules adsorbed on a surface. Can-
onical transformations designed to eliminate these
nondiagonal matrix elements lead then to self-
consistent distribution of the positive charges,
electrons, and impurities or adatoms.

The first step in any quantum-mechanical varia-
tional procedure is to select a trial wave function.
The trial wave function should be of a form that
takes into account the essential physics of the sys-
tem. In addition, it is customary for the trial
function to contain one or more parameters which
can be varied to minimize the energy expectation
value. A prudent choice of the form of the trial

function is crucial to the success of the method.
For strong1y correlated systems, we construct

a variational wave function of the form

+ =&lie. (r )II (I)
Here ((rp„(r, )() denotes a properly symmetrtzed pro
duct of single-particle wave functions. For Fermi
systems, it will be a determinant. y, (r, ), the ele-
ments of the determinant, should be those which
give rise to the best possible independent-particle
description of the system. There should also be
spin variables. In the case of an infinite homoge-
neous system, they are plane waves multipiied to
spin functions. For an inhomogeneous system such
as a realistic model of metals, cp~(r, ) are Bloch
states obtained by solving a band-theoretic prob-
lem with a suitable effective potential. In the ab-
sence of the correlation operator E, the trial wave
function defines a Hartree-Fock theory. The ad-
justable parameters imbedded in the effective po-
tential serve as variational parameters. The min-
imization of the energy expectation value with re-
spect to these parameters, and with respect to the
form of the effective potential, brings the indepen-
dent-particle description to its optimum. This
outlines the variational approach toward formulat-
ing a self-consistent theory.

In the presence of strong correlations, be it of
the short-range repulsive type as found in con-
densed phases of helium and nuclear matter, or of
the weak long-range type as found in Coulomb sys-
tems, a Hartree-Pock description is no longer
adequate. A most obvious improvement can be
brought about by introducing a correlation operator
into the wave functions in the form of a two-par-
ticle product known as a Jastrow function:

E= fli, jl=e p
—Q x«(r«)) . '

f&f 2 f&y

This brings the wave function 0 into what is known
as the Slater-Jastrow form. Here u(r) is as yet
undetermined. The specific form of I' seeks to
build up all the relevant many-particle correlations
from two-particle correlation factors u(r). In the
high-density limit, Qaskell, '4 Pines, ~e and Feyn-
men' had all noted that the ground-state wave
function in the random-phase approximation re-
duces to the Slater-Jastrow form. Furthermore,
a recent t-matrix calculation by Lowy and Brown"
argues convincingly that two-particle correlations
play a dominant role in electron liquids. One
would expect that such a correlation operator could
adequately describe long- and short-range behav-
ior alike. The success of the Chakravarty-Woo
calculation for homogeneous electron liquids sup-
ports this conclusion.

It does not follow that the Jastrow correlation
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factor can be regarded as general .u(r, &), for ex-
ample, should probably depend on the spins. This
can be true even if the pairwise interaction is
spin independent. Also, the inclusion of three and

more particle factors could certainly improve the
wave function, as was shown in the case of liquid
helium. ~ The three-particle factor w(r, ~, r»,
r„}in

III. MODEL FOR METALLIC HYDROGEN

Consider the motion of N electrons through a
static lattice of N positive ions. The Hamiltonian
of the system is given by

m =1

1~ 1
,p=exp

p ~ «(x«} ~
p ~ «(«„, «„,r«(),

j&j j &J&k

e'
(6)

at least in the boson case, corresponds to taking
into account three-phonon perturbation correc-
tions. ~ Moreover, it cannot be expected that an
antisymmetrized single-particle product, namely,
a Slater determinant, can be factored out of the
true wave function. No amount of multiple correla-
tion added to u and w can compenstate for this ap-
proximation. In spite of all this, the Slater-
Jastrow form remains the simplest, and thus the
most appealing.

Once the form of the trial wave function is de-
termined, we calculate the expectation value of the
8am iltonian;

E[~]=(+iffl+&/(+l~&,

and minimize it with respect to 4' to obtain an up-
per bound to the ground-state energy and an ap-
proximate ground-state wave function. In princi-
ple, one should solve the Euler-Lagrange equation

6E[e]/6e = o. (5)

With the present choice of the wave function, C

=-Flip (r, )ll, Eq. (5) reduces to the set

6E/6[y (r)] =0, (6)

(7)

In a way, we have described the variational ap-
proach toward formulating a twofold self-consis-
tent theory. The solution of coupled Euler-La-
grange equations (6) and (7) represents an approx-
imate treatment of pairs of particles moving in the
mean two-particle field due to the remaining N- 2

pai'ticles, which conspire to form the medium.
In practice we do less. u(r) can be taken with

reasonable confidence as only slightly varied from
that determined for the homogeneous electron liq-
uid. For a first calculation, one can even lift u(r)
right out of the latter calculation. The single-par-
ticle functions cp (r), as stated earlier, can be re-
garded as band-theoretic solutions of a suitably
chosen effective potential V,«(r). One then mini-
mizes E( V,«(r)) with respect to V,f~(r), most con-
veniently by parameterizing V,«(r) and varying E
with respect to the parameters.

where r, denotes the position of the ith electron.
V„(r) denotes the electron-ion interaction poten-
tial, often taken in the form of a pseudopotential.
For metallic hydrogen, since the ions are simply
protons,

where R~ represents the position of the jth ion,
treated in the present case as a c number. (In
reality, of course, a static lattice model is not
appropriate for metallic hydrogen since the zero
point motion of these light ions makes a significant
contribution to the total energy of the system. ) Uz

represents the lattice potential energy, which will
be regarded in the static approximation as an addi-
tive constant. For metallic hydrogen,

e2

U=„, ln, m,
. (10)

In this paper, we shall always be referring to
metallic hydrogen. It is the easiest model to deal
with, since there is no question about the form of
V,z(r). There are many other calculations to which
we can compare our results. It should be pointed
out that metallic hydrogen has a special place in
solid-state physics. All theories predict that mo-
lecular solid hydrogen transforms to a metallic
phase at very high pressures. The zero-tempera-
ture transition pressure is estimated to be of the
order of megabars, but so far an exact value is un-
available, on account of uncertainties in the cal-
culation of energies in both phases. There has
been one unsubstantiated claim" of experimental
observation of the metallic phase. Other specula-
tions refer to a metastable metallic phase, and
argue for the possibility of hydrogen remaining in
this metastable phase at terrestrial temperatures
and pressures. Some talk hopefully of the meta-
stable phase going superconducting. Also, astro-
physicists have placed metallic hydrogen in the
interior of Jupiter and Saturn. For our purposes,
it suffices as to say that metallic hydrogen is the
simplest prototype of inhomogeneous electron liq-
uids. A thorough treatment of it will serve to make
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our formalism concrete.
The Hamiltonian ean be separated into two parts:

Ne' n(r)n(r ')
2 fr- r'f

H= h rj +H',

h(r, ) =(-g'/2m)v', + V.,(r, )++r,),
8 8

H -- W(rg)+
f~

~
f

+

(12)

(18)

n(r) =g I q& (r)f'. (19)

The single-particle density function is given by

The function W(r) is an as yet unspecified decoupl-
ing function. Physically it can be considered as an

average potential imposed on the ith electron by all
the other electrons. %'e shall consider only the
case where W(r, ) is local, although in general (as
in the Hartree-Pock theory) it ean be nonlocal.

A11 the many-body effects in H' come from the
electron-electron interaction, i.e., the second
term Th.e last term is riot affected (in the present
approximation) by the electron distribution, and the
first term compensates for the effect already ac-
counted for by the single-particle Hamiltonian
h(r, ). The traditional approach of choosing W(r, )
might be interpreted as requiring the effect of H'
be as small as possible. In that case, then, 0'
can be treated as a perturbation. For example, let
us ignore exchange and write the first-order cor-
rection (4 f&'f%), where 4' deriotes the ground-state
solution of Q", , h(r, ), in the form

(rl(r I@) = r( f )r(r')'r(r)dr-
Ne' n(r)n(r') „-

2' fr- r'f

fR)- R~f

n(r) represents the single-particle density func-
tion. One can then minimize the correction term
by solving

V&@fe'fq&/en(r) =O.

A single step leads to an optimum choice of W(r):

n r'

Thus the single-particle Schrodinger equation be-
comes

I
v', +(r„(r,)+r*f l- -,

l

r ')r, (,)

= &~,q, (r&), (1'I)

and the energy of the sytem (to first order) be-
comes

IV. ENERGY

Equations (1) and (2) define our trial wave func-
tion. For convenience, we shall often use the sym-
bol D to represent the determinant with single-
particle elements.

(20}

Spin variables and summations will be understood,
but not explicitly displayed, in accordance with
usua1 custom.

For Coulomb systems, our formalism takes on a.

cleaner look when expressed in the Fourier space.
Thus, with 0 denoting the normalization volume
and the prime indicating omission of k =0 from the
sum, we write

1—Q u(r, ~) = ~ u(h)( p-„p 1; —N), (21)

Thus, to complete the problem Eqs. (17) and (19)
should be solved self-consistently. In a more
sophisticated form, effects of exchange and cor-
relation can be included in Eq. (14).

Such an approach is quite appealing. One can talk
about an electron occupying a particular orbital-
an eigenstate of h(r}. In reality, the electrons
move collectively. The independent-particle de-
scription lacks clarity. Furthermore, errors in
W(r) enter E both directly and indirectly. Though
they can be removed by including second- and
higher-order perturbation corrections, there is no

guarantee that such a perturbatiori series converges
rapidly.

In our approach, even though W(r) is used to de-
couple the Hamiltonian, its role is not given lasting
significance. Vfe use it only as a way of motivating
the single-particle part of our trial wave function.
Once the latter is chosen, the decoupling scheme
is abandoned, and the variational calculation with
a many-body wave function takes over. Our total
energy should riot be too sensitively dependent on
the particular choice of W(r). This point wiII be
substantiated later in this paper.

The choice of the wave function, both the single-
particle part embodied in W(r, ) and the correlation
factor u(r, &), will be discussed in Secs. VII and

VIII together with numerical results.
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u(k) =fe'~'aa(r& s |,
elk ~ r)

e' e'
v(k)( p-„p -„—X),

(22)

(28)

normalizing constant, as

ll
~(k)p~p-r&l.

Using the notation

(» =-(~lol+&/(~l~&

(28)

8 ~ 4%8
v(k) = e'"' —' d r =

The wave function 4 now appears, aside from a

4*0%' dr& ~ dr~ 4*% &rx ~ ~ ~ dr~,

(27)

we now calculate (H), or (Q k(r, )) and (~').

First, we find

(-V, ) =-.
i 2

O'*V, 0 dl, ~ dr»+
2 (V (4'*)4 dr| dr» I

gl'r e ~ e gr1 N

-p E DV )D++D+V ]D dry. ' 'dr + D+D g E ~ T I" dr 'gr

V, D*DI'V, I' dry ~ ~ dr E D*Ddr, ~ ~ ~ dr„.

The fix'st line relied on 9, being a Hermitian operator. The second line was obtained with the aid of the
identity

2[V;(ED*)]ED+gFD*[V ((FD) j= 2E'(DV (D*+D*V';D)-D*D(Vp" ' V;F)+ V '(D*DFVp) ~

The last integral in the second line can be converted into a surface integral, which vanishes for periodic
boundary conditions. Hence,

E D*Ddr '' 'dr

Q k(r, ) =
2

F' D k(r, )D,*+D*Qk(r, )D dr, ~ ~ ~ dr»

+
2

- p fD4D(V, E IJ,E)dr, di~) fF D*Ddr, dr„
j

k2
+

2 Q D~D(V;F V;F)dry '''dr„
2m

Now,

. I .g V, F ~ V, F =-F', k .fu(k)u(l)p-„p;p -„-, ;
k, l

so finally

(
1k(r ) g &

2 4g k l+(k)a(E)(pkpl p-k-I& '
~ f

(28)

Next, we define the p-particle distribution function:

N1
Pp(rg, ~ ~ ~, r~) = (, 4+4' dry+i ' ' 'dr»N-pjI (29)
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and express &H') in terms of these distribution
functions:

( z') = fn-, (r}W(r)dr

P,(r, )P,(r, )z ) ) u

8
IK«- R, I

P,(r„r,) P,(r-()P((rn)-'.2
' dr, dr, .

(3o)

dx' = dr,

where the notation (i) underneath the integral sign
implies integration over the ith unit cell. Writing

W(r) =Q (o(r- R,), (31)

me find

The integrals are over all space. They can be re-
duced to integrals over just one unit cell:

2 e2

(«) 2 ('& («)

P (r, )P,(r, ) e P,(r„r, ) P,(r, )P—,(r,)-
(32)

There is a good reason for grouping the three
terms inside the large parentheses in the first bne.
We intend to pursue our calculation using a spher-
ical unit-cell approximation —one in which the
electron distribution in a unit cell wi11 be regarded
as spherically symmetric about the center of the
cell. W(r) will be chosen such that outside the jth
unit cell the contribution (d(r —R«) from electrons
in the jth cell will simply be e'/Ir- R«I. The first
line will thus vanish, as shown immediately below.

The second term in the. first line can be written
as

dr -~(r- R«)+ - P,(r) drIr- RqI

(t)(r R«) -+ -P,(r) dr =0.
(«) «(.«)

(33)

Finally, the last term in Eq. (32) can be written

2g M ()(k) (& P {(P )t& ( P )t) ( P-It& +) -(34)
k

Combining all terms from Eqs. (28) and (32), using
the results (33) and (34), we find

(36)

since r„being in the ith unit cell, is outside the
jth unit cell, and sees the spherically symmetric
distribution charges in the jth unit cell as if they
Vere concentrated at 8&. The last term in the
large parentheses can be put in the same form,
since for the same reason,

g 1 -P,(r)e' g 1 e'
(«& I

r- K«f «~y 2 IR« - R«I

Thus the sum of the three terms gives

Z, ;, =Q r, ,
—f „W(r)Z, (r)dr

Ne' P,(r, )P,(r, )+
2 nnil cell

I r) rn I

(36)

2)(e'
+ (& p gp t;&

-
& p), & & p-)-, &

-&)

1 S2
k f««(k)««(l)& p-„p, p -„-,&.

k, 1

(3V)
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The next task consists of evaluating the
multiple- density fluctuation matrix elements,
or the "multiple-density correlation functions"

V. MULTIPLE-DENSITY CORRELATION FUNCTIONS

In anticipation of present need, some time ago
we evaluated" the matrix elements

(pi pi '''pi )= f„r pi,pi pi rdr, dr/fh"rdr dr„ (38)

for wave functions appropriate for inhomogeneous
systems. It was accomplished by generalizing a
method developed for the homogeneous electron
liquid. The method first expresses these correla-
tion functions in terms of the Fourier transforms
of the distribution functions (29):

For high-order distribution functions (g ~ 3), a
"convolution approximation" is used to express
them in terms of P, and P, . The approximation is
designed to preserve the sequential relations re-
quired by Ithe definition of P„:

(pk) =P, (k),

( p-„,p-„, ) =P, (k, +f,)+P,(f„k,),
& pk p( p) & =Pl(kh+ka+ks)+P2(kh k2+ks)

+pm(k, k3 +k, ) +Pm(k~, k, +km)

+P,(k„k„k,), etc.

(39)

(40)

(41)

( P„(r„.. . , r„)dr„= (X- p + 1)P„,(r„.. . , r„,) .

For example, in that approximation,

p, (r„r, r )=p,(r, )p, (r )p, (r, ) ((+h(r„r, )+h(r, r, )+h(r, r, ) r(rh„r )h(r, r)+h(r, r, )h(r, r, )

where

h(r„r, ) =-g(r„r, ) —1 = g(r„r,),
and

g(r„r, ) -=P, (r„r,)/P, (r, )P,(r, ) .

+h(r„r, )h(r„r ) + fp, (r )h(r„r )h(r„r )h(r„~)dr )r, (43)

(44)

(45)

For general formulas, the reader is referred to Ref. 36. We shall display in this section only those
results which are needed for the present calcula tion.

In the convolution approximation, we find

(p),) =u, (k),

(p), ,p(,, ) =u, (k, )u, (k, )+u, (k„k2),

(p(, p), p), ) =u, (k, ) u, (k, ) u, (ks) +u, (k, ) ~(k r k, ) +u, (k ) u2(k» k, )+u, (k~) ~(k» k2) +us(k» k» k, ), ...,

where

u, (k) =P,(k),

(46)

(47)

(48)

(49)

u, (k„k2) = g P, (K, +k, )P, (K, +k, ) [g(K„K,)-g(K, -k2, K, +k, )],
Ky,K2

,(k„k, k ) = Z P, (K,'+K,' K,') II P, (K, +k, )[ (K,', K, ) — (K,' —k„K, +k, )], . . . ,
K],K] f=1

(50)

(51)
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P, (k) =N Z no 5(( o,
(G]

(53)

where (6 } denotes the set of reciprocal-lattice
vectors. From normalization,

nooo ~ (54)

1
g(K K }-1=ls 2 g2

efK1 r gefK2 ~ r2

x fg(r„r2) —1]dr, dr, .
(52)

For a periodic system,

g(r„r.) ~g(lr, —r.l)

to be taken from the homogeneous electron liquid
calculation. In that case,

g(k„k, ) = [S(u,)/N] 5-„„-„,„
with S(k) given by Chakravarty and Woo in Ref. 28.
Then,

(55)

u, (k) =N Q no 6), G
G

(56)

change and correlations. If we assume that the
inhomgeneity and anisotropy in the system are well
accounted for by the P, (r, ) factors, g(r„r, ) can be
approximated thus:

The other nG 's are to be determined.
The pair function g(r„r, ) describes the deviation

of P,(r„r,) from P,(r,)P,(r, ) as a result of ex-

g(k„k2) =N p no, n G,[S(lG, —k, l) —S(G2)]

k g+ k2, GZ+ G2 (57)

»

~-,p;,~os~;, [s(lc, -k, i)-s(G, )] [s(lG, -k.l)-s(G, )7 [s(lG, -k, l}-s(G,)]

kl+k2+k3, Gi+G2+G3+ G4s ' ~ ~ y (58)

The entire problem reduces to the determination
of no and S(k). Z ~(~}p~p-X

k

(61)

In the limit p -0, 0 (p, ) reduces to the Hartree-
Fock wave function, Hence,

VI. INTEGRAL EQUATIONS FOR ng AND S(k)

From Eq. (53),
P,(r, & =0)=g I v.(r)l' -=~'(r), (62)

n; =(1/N)( p-, ) . (58)
which we can obtain from a band-theoretic calcula-
tion.

To obtain (pG), we define as in Ref. 28 a gener-
alized wave function »»(g =D) -=n-= f P, (r, »0)e' »d» »(63).

+(g) =&(p,)D,

where

(60) In the limit g -1, 4(g) returns to the fully cor-
related form, which we need for calculating aver-
ages such as (po).

The quantity

(»»)» (@(w)l»»l@(»))-=l(@(v)l»'(»»)) =
f@ "(w)»»@(w)d» 4'*(p)@(p)dr, ~ dr„ (64)

obeys a differential equation which can be derived easily from its definition:

Z(&)((»)»,»-»(»»((;)»,(»»»-»-)»).
k

(65)
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By applying the convolution approximation to (PGPkp -„)„and using the matrix elements given in the last
section, Eq. (65}can be decomposed to read

I

u(k) [u, (k)„N, (G, -it)„+u, (-k)„u,(G, k)„+N, (G, k, -k)„]20

g ~(Gg)nG (p)ng (p. )nG G, G,(g)[8((G, +G,(, p, )-8((G-G, -G,(, p)]
Gg, G3

/

+
2 Q Q u(k)nG, (p. }nG,(P)NG,(P)sG G, G, G,(P)

Gg, G g, 63

& [8((C, -GI, p, )- 8(C„~))[8((G, -I(, I ) 8(G-„p,)][8((G,+k(, I ) 8(C-, p)l.
(66)

The convolution approximation in that simple,
homogeneous case gives

(6V)

The solution of Eq. (66) together with the boundary
condition (63) yields no(p, ), and in particular nG

(p=1). This can be done provided that S(k, g) is
known.

As mentioned in Sec. V, S(k), and in fact 8(k, p, ),
will be taken from the homogeneous electron liquid
calculation. In Ref. 26, using the same 4'(p, ) as de-
fined in Eqs. (60) and (61) and plane waves in D,
Chakravarty and Woo derived an equation for
( pep r), :

dC(P&P-k)u Q ~(I)(( p p p )

yield 8(k, P). In particular, the g -1 limit of
8(k, P, ) gives us S(k).

VII. RESULTS-VARIATIONAL CORRELATION ENERGIES

We begin with a band-theoretic calculation for the
one-electron problem. This is to select the Slater
determinant part of the trial -wave function and de-
termine g~G.

For metallic hydrogen, we consider a bcc lattice.
The unit cell is a regular octahedron. Since there
is only one electron per hydrogen atom, the band
is only half filled. Hence we would expect the
Fermi. surface to be close to a sphere. To a good
approximation, the octahedral unit cell can there-
fore be replaced by a sphere of the same volume.
The radius r, of the sphere is related to the density
p of the ions (and in this case the electrons)

( pp&p ~ )p
=NS(k, p), ,

N'8(k, p, )8(I, p, )

+NS(k, p, }8(l,p)[8((f+f(, g)

28882(k, p, ) for k+1=0

(66)
~3 ~r,'=1/P. (Vl)

E =E,(p)+E,(p, structure), (V2)

The error incurred in this approximation is of the
order of the energy difference between different
crystal structures, since we change the unit cell
as the crystal structure is varied. If the energy
of the crystal is expressed as

Consequently,

dS(k, p. ) N
( ) ~(„ )

dp, 0
l

+S'(k, g) Q u(q)8'(q, p, )

x [8(llt+ql, p, )-1].

(69)

(VO)

Since in the P -0 limit, S(k, P, ) reduces to the
Hartree-Pock structure function, which is well
known for an electron gas, Eq. (VO) can be solved
together with this limiting boundary condition to

the structure-dependent term E, can be shown to
be small compared to E,. Previous calculations
and general considerations show that E, is of the
order of a millirydberg.

Having chosen the unit cell a.s a sphere of radius
~„we proceed to construct the electron mean field
W(r), or its components &u(r- R, ) as defined in Eq
(31). The argument of ~(r- R&) is measured from
each unit cell j. In the spherical unit-cell approxi-
mation, the electron sees no contribution from a
cell when it is outside that cell; i.e., when (r R~(-
&r,. In other words, when (r- R&(&r„ar(r —R&)
cancels the ion contribution from that cell exactly:

~(r- R~) =e'/(r R~f, fr- R,-f&r, . ('V3)
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This result was already used in Eq. (33).
For lr- 8/l ~r„we shall consider two possibil-

ities. Let us for convenience put the origin at Rz.
In the first case, we take (d, (r) to totally ignore the
electron cloud:

late c,- at six points in the range 0&4 &k„and fit
the results to a Legendre polynomial series:

(d, (r) = 0, r & r, . (V4)
(V9}

This is not meant to be a. sensible choice —merely
one to demonstrate that our variational calculation
will at the end not be terribly sensitive to the
choice of W(r). The second choice is given by

n0(ri) 2 e» 8l 1/3
tk)2(r) =e', dr '- —— n0(r)

unit cell l
1' 1'

l
3 2 71

(V5)

Thus,

0 4
(2n)3 3

e/I t=( k kl) ke J( e, k'ek
k

0+2&2,

and the charge density is giveri by

(80)

with

'( ) =Q lq ( )l'. (V6)

This potential takes into account both the electron
cloud inside the unit cell and the Slater exchange
term. It depends on the Hartree-Fock charge den-
sity n0(r), thus requiring a self-consistent solution
of Eqs. (V5), (V6), and the dingle-particle equation
to be given below shortly. For an electron in an
arbitrary cell i, i.e., l

r- R, l
~ r„ the total effec-

tive single-particle potential is then

V„, (r) = V„(r)+ W(r)

~'(~)=(t Zt')Diet(&)I*

ky

3 4» I9-„(r)l'~ du
3 en~ 0

Even though the band-theoretic problem can be
solved in the spherical unit-cell approximation,
for nG we need to return to the bcc unit cell in or-0

der to define the reciprocal-lattice vectors (6).
To accomplish this, we take

n =A . n(r)e' 'dr
G

where A is a normalizing constant which normal-
iRes n000 to unity.

The Hartree energy of the system is giveri by

+ (0(r- R, )r=R,

+ g +~(r-.n, ))
/( t) lr-R/I

8 n'(lr -R,l)+e dr
R ll unit cell

2e' 81
3 2 (VV)

S'= ~, -N 8 r n'r dr,
unit cell

—= e0+2e» — W(r) n0(r) dr
unit cell

Z, , ~H n'(r)n'(r') - -,
de + dr cfr' n

2 un«ce»
l
r - r'l

(83)

(84)
Note that, about R) as the origin, V„, is spherical-
ly symmetric as expected if n' is spherically sym-
metric. Since 8& is arranged periodically on a bcc
lattice V,«(r) is periodic in the same way. It has
the same translational symmetry as zV(r) The.
single-particle schrodinger equation

e2
k(r)e„(r)= (- 1

e*+v,(, (r))e, (r)
u(r) =-(a/r)(I —e "), (85)

Next we introduce effects of the correlation factor
by integrating Eq. (66). Here, the choice of u(r},
or its Fourier trsnsforni u(k), must be made. In
Ref. 28, u(r) was chosen for a homogeneous elec-
tron liquid to keep electrons apart at short range,
though not completely, and to reduce to the RPA
form at long range.

=e q (r) (V8)
where

poses a band-theoretic problem.
In our case, the band ca,lculation is performed

using Kolin's variational method (see Appendix}.
The energy band is nearly parabolical. %e calcu-

a=(upas) '/', (86)

g~ is the Bohr radius, and b was varied to mini-
mize the energy at each density characterized by
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r, . We shall adopt the same u(r). Thus,

(87)

contributes significantly to the energy its effect on
the charge density is relatively small:

0
'%oo = oooo = ~.o ' (88)

It turns out that even though the correlation factor

with g and b dependent on r, . Values of 5 were ob-
tained from Ref. 28.

Normalization requires

(89)

For example, let us look at G=(0, 0, 0), or lG~=0
and G' = (1,1,0), or

l

G'
l

= 2.2797kr. Note that for
G"=(2, 0, 0),

l
G" l= 3.2230k&.„and other G's corre-

spond to still higher magnitudes. In

= p Q Q u(G, ) n G,(lu) n o,(g ) [s(l G, +G, l, g) —s(l G —G, —G, l, y )]
61 G~

1
2~ 3 uG (i")nG (i )nG (I )uG-G -G -G (u)[s(IGi-GI, ~)-S(Gi, ~))

G ~, G2, G3

x S G, -k, p. —8 G» p. S 63+k, p -SGs~ p (90)

then, since

S(k) =1, k &2k',

and thus

s1, if G„or .Ge =(0, 0, 0),
s(lG„l) —s(lG l) =

0 otherwise,

TABLE I. Coefficients of energy-band expansion
t.Eq. (79)], Fourier components of the Hartree-Fock
electron density n$, and the components of the total en-
ergy (in rydbergs per atom), for two different effective
potentials.

only a few terms in the above sum contribute sig-
nificantly. At r, =1.45, using 5/kr =0.7066 from
Ref. 28 we get

~ [s(lc+kl) —s(c)], , dk

= -0.259k'' . (91)

Substituting this and values of yg~ from Table I in
Eq. (90), we obtain

110 0 Op35
S11O d JLL

(92)

Ed. („=E',,, (~-0.00004 Ry. (93)

Table I lists all the relevant quantities in the
single-particle calculation for the case r, = 1.45aa.
The first column of numbers are for &o(r) = &u,(r),
and the second column for &o(r) =~2(r).

Upon integration with respect to g this yieMs
(ufo uxxo)/ufo 0 0035 . .

0
The very small difference between g G and n G

means that the correction on E$ to give Eq;, is als. o
very small. For the example above

E'0

E'4

~6

0
n000

nsso
0

0
n200

0
n2f 1

0
n220

0
nst0

0
n222

&(~)n0(x) dr

e n(r)n(r') ~ ~,I-'l

Edir0

11
Exc

-1.6460
0.2217

-0.0021
-0.0004

1.0000

0.1157

0.0479

0.0204-

0.0103

0.0072

0.0061

0.0

0.9070

-1.2026

-0.2956

-0.7355

-0.0152

-1.0463

-0.7309
0.2254

-0.0014
-0.0003

1.0000

0.0945

0.0402

0.0177

0.0092

0.0064

0.0052

-0.9172

0.8894

-1.1973

-0.3079

-0.7355

-0.0106

-1.0540
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As for the exchange and correlation contributions
to the total energy, Eq. (3V), we observe that when
the multiple-density correlation functions are ex-
panded in terms of n G, the leading terms with n ~
lead to terms identical to those in the homogeneous-

electron-liquid calculation. It is possible, then,
to separate E„,thus:

(94)

with

and

N~ 1 e2s,', = —s, f s(a)«(a)a'da- — s.„,ffs(a) s())[s(I a+ )I)- )] «(a) «())k (dad),

1 5'
P - G n GI G -G Gl G2n+1) (G2)

Gg 6~

I
+

s ~ 2 «o,«ta« o, o, f Is(l(), -al)-s(lc, +(),l)]G, a(«)s(d) aid
Gl G2

I
+ s, P g«sa-, p s, ,,f [s(la-, -al)-s([G, +G, l)]«(la+G, l)«(a)[a (-a-G, )]da

+, g n G nG2nG p;; .; jijl [s(les, -fl)- s(G, )][s(lG2-ll )- s(],)l
Gl;G2, G2

«[s(lo, +a+(I)-)]«(a)«())a (dad))

1 1
(2v)2 ~ n G n-G

G.

4 e'
[s(k+Gl) —l] dk . (95)

Their contributions in the ~,(r) and a&2(r) cases,
as well as the total energies E, are also shown in
Table I for ~, =1.45a~. %'e use atomic rydberg
units, e'=2, m=-,', 0=1, and measure length in
Bohr radii and energy in units of Rydberg.

Note that E is lower for [a)2(r). Since ra2(r) is
more realistic, we expected this result on the ba-

sis of variational principle. Note however, that
the results for &o,(r) and &o2(r) are not significantly
different. The rather large discrepancy in the band
calculation is to a large extent compensated by the
—j&d(r) n(r) dr term.

In Table II, we summarize energy contributions
obtained with &u2(r) for a range of densities: r,

TABLE II. Contributions to energy in rydbergs per atom for five densities.

r, (a~) 1.13 1.29 1.45 1.61 1.77

~(r)n(r) dr

0.0483 -0.1454 -0.2801 -0.3665

-1.1351 -1.0229 -0.9172 -0.8330

—.0.4040

-0.7843

82 n(r)n(r')»
(r-r'

i

&d]s

h
&XC

ginh
XC

1.1142 0.9870 0.8894 0.8129

-0.0060 -0.0080 -0,0106 -0.0138

-0.9025 —. 1.0076 -1.0540 -1.0688

0.0274 -0.1813 -0.3079 -0.3866

-0.9239 -0.8183 -0.7355 -0.6684

0.7519

-0.4364

-0.6133

-0.0178

-1.0675



4060 V. 'r. RA JAN A Ã 9 CH IA-%EI %00 18

-0,85 considers an auxiliary problem of N-independent
particles moving in an effective single-particle
field V,(r). As before, the energy-density func-
tional

-0.90-
E'(n( i)) =V( (rn)) ~ fV (r) n(r) dr (9V)

-0.95-

should be minimized with respect to n(r). The two
problems can be identified by taking functional de-
rivatives of E(n(r)} —T(n(r)):

K

w(z

- I.OO-

y ( ) y ( ) p n( )
d r d[nc(n)]

( r r'( -dn n=n( r)

(96)

—I.05-

Now, since the latter problem can be solved by
solving the Schrodinger equation

0

52 V'+ V.(r ))V. (r) = r.(r.(r), (99)

I I I I I I I I

I.O I, I I.2 I.5 lr4 l.5 l.6 l,7 I,e I
'.9

r, (o, )

one obtains the so)ution of the first problem by us-
ing the relations

FIG. l. Static energy of metallic hydrogen. g: Our
variational result; 0: Our local-density-functional cal-
culation; a: Our density-functional calculation with
gradient term; a: Perturbation calculation by Caron
gtef. 9};: Perturbation calculation by Hamnmrberg
et al . +ef. 10};~: Local-density-functional calculation
by Neece et al'. (Ref. 13).

and thus,

..—f V.(r)n(r) dr;

( (Vr))n=E (n(r))-f'V, (i)n(i)dr

(100)

(101)

from 1.13 to 1.77. The total energy is plotted
against r, in Fig. 1, where it is seen that a mini-
mum of -1.069V Ry/electron appears at p, =1.67ae.

E(n(r)) =. P r —fV,(r)n(r)di+ fV, (r)n(i)dr

e' n(r) n(r')
dr dl

VIH. RESULTS-DENSITY-FUNCTIONAL CALCULATIONS

In the density functional formalism of Kohn and

Sham, "as applied to metallic hydrogen by Neece
et aE. ,"the energy density functional

E(n(r)) = V(n(r)) r f V.,(r)n(r) dr

2

+ e„, nr — nc„, n nr dr.

(102)

Here we have used the spherical unit-cell approxi-
mation referred to in Eqs. (31)-(33), We use

+ c„, nr nr dr+
(R; —R,.(

(96)

&gc = &x+ &c y

with

(103)

is minimized with respect to the density function
n(r). In the local-density approximation, the ex-
change and correlation energy per particle e„, is
taken to be that for a homogeneous electron liquid
at the local density n. To solve this problem, one

and

(3/2')(9 w/4)' '
B

S

&, =-0.117,65+0,038 lnr~ Ry,

(104)

(105)
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TABLE III. Results of present work for different densities: (i) variational calculation, (ii)
density-functional calculation using local-density approximation (LDF), (iii) density-functional
calculation including gradient terms (DF). Results of other authors: (i) perturbation calcu-
lation by Caron, ' (ii) perturbation calculation by Hammerberg et. ai. ," (iii) local-density-func-
tional calculation by Neece et. al.'

r, (az) 1.29 1.61 1.77

Present
work

EW~urb'
b

Eye~~b
ELDF

Erat
ELDF
ED

-0.9025
-0,9060
-0.8995
-0.9049
-0.8824

-1.0076
-1.0117
-1.0032
-1.0096
-0.9866

-1.0540
-1.0585
-1.0476
-1.0554
-1.0307
-1.0589

-1.0688
-1.0742
-1.0592
-1.0697
-1.0423
-1.0727

-1.0675
-1.0731
-1.0553
-1.0673

*Caron, Ref. 9.
"Hammerberg et al. , Ref. 10.
'Neece et a/. , Ref. 13.

EDF(r ) ELoF(r )+aE(r )

where

(106)

~(r, ) = ja(m(r)) I'vn(rll' di.

The coefficient B(n(r)) can be approximated by its
value at the mean density p.

nE(r, ) fa(p)Ivy(r)~=*di

I

=B(p)p Qg n 6

t

=N pI3 p n~t (108)

By taking E( p) =3.3 &&10 'p '~s Ry from a recent
calculation by Gupta and Singwi, "we obtained
EE(r,), and thus Eo„(r,) as shown in Table DI.

In Table III we compare our three sets of re-
sults: (i) E from the variational approach, (ii)
E~o„ from the density functional approach using the
local-density approximation and e„from Chakrav-
arty and Woo, and (iii) Enp from adding to EgDF a
density-gradient contribution, to results obtained
for metallic hydrogen by other authors. Note that
En„(r, ) are above E(r,) for all r,. A few words on
each of the other calculations are in order.

the latter from Ref. 28, in Eq. (102) for our den-
sity-functional calculation. r, denotes the local
r„and is related to the local density n(r) by
fm(r, )'= /I(nr). The results are shown in Table III
for 1.13 &r, & I.VV as E„D„(r,).

It appears that our density-functional results are
looser than our variational results. This may have
resulted from the local-density approximation. To
correct for this approximation, one can add a
gradient contribution to the energy:

Neece et al."did the same calculation using a
local-density-functional approach. They used
Pines-Nozieres' interpolation formula for the cor-
relation energy, which differs from the correlation
energy used by us. However, their band calcula-
tion was also slightly different, and the differences
approximately cancelled to give results close to
ours.

Caron' calculated the energy of metallic hydrogen
using perturbation theory. He started with a homo-
geneous electron gas and treated the screened elec-
tron-proton and proton-proton interaction with a
perturbation theory to fourth order. The dielectric
function employed to do the screening is a variant
of that developed by Singwi. The ground-state en- .

ergy (in rydbergs per particle) was found to be

E =2.21r,'- 2.70V22r-'

+ (0.0622 + 0.012r, —0.004r ~) lnr,
—0.18V4- 0.0555r, +0.0024r~ —0.001r, .

The energies for different values of r, g,re given
in Table IG.

Hammerberg and Ashcroft" used a method sim-
ilar to that of Caron, with the exception that the
dielectric function was 'from random-phase approx-
imation. Interpolated results are included in Table
IG. Brovman et al."also used the perturbation
theory. Their aim was to calculate and compare
energies for several unusual lattice structures.
The results are not quoted here. The results of
Refs. 9 and 10 are also shown in Fig. 1. Ne note
in conclusion that there is rather good agreement
between our (variational) results and those of
Caron. e There is also reasonably good agreement
between our results and those of Neece et al."
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APPENDIX
and

y„r 'dr=1 (A6)

The method that we used for band calculation was
developed by Kohn. " As shown by him ' it is es-
pecially convenient for a spherical approximation
(spherical unit cell and spherical potential). It was
used by Tong '-'4' for a similar problem.

The band problem can be stated as

where

b, =q 7I, (L, +I. )f,

(A7)

(A6)

with

S2 v'+ V„,(r) ~y, (r) = e(k)y, (r), (Al )

(A2)

'and

1 dR, ,(r) 1

R~, dr y
(A9)

(A 10)

8 PI (r) e2 w, case 8 Pl,(-r)
Sr er (AS)

The system of equations (A7) has a nontrivial
solution only if

(A4)

where r, is the radius of the Wigner-Seitz sphere
and cos8 =k r/kr.

Expanding y~(r):

q, C, P, (cos 8)R„,(r)
pyLr) ~'(r) =g I V»(r)l (A11)

This gives us the energy spectrum e(k). Once
the C, 's are determined from Eqs. (A6) and (A7)
we can use Eq. (A4) to find the charge density,

where B, , 's are the solution of the radial Schro-
dinger equation with angular momentum E. g, =1
for even E, and q, =i for odd l.

Kohn showed that Eqs. (A2) and (AS) are equiva-
lent to requiring that the integral

[Vq,(r)]y,*(-r)e'""-*'d S (A6)
unit cell surface

is eztremum, i.e., '5K=0.

ln practice we use only 7-8 terms in Eq (A4). .
To see if this is sufficient, we check if Kohn s con-
dition4'=4'.

C,P, (cos8) + C, P, (cos8) + ~ ~ ~

C,P, (cos8) + C, P, (cos8) + ~
=. tan kr, cos8

(A12)

it satisfied for six different values of 8.
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