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Effect of an impurity on interband optical absorption in solids~
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e explore the eFect of an impurity on the contribution to the optical absorption in solids from electronic
interband trarisitions. We view the impurity as a point probe which, through breakdown of wave-vector

conservation, allows the incoming photon to probe critical points in the pure-crystal band structure not
accessible by optical methods in the pure solid. After formulating the problem in a general manner, we

present numerical studies of a one-dimensional two-band solid to illustrate how the impurity can "activate"
critical points in the host band structure.

I. INTRODUCTION

The study of the optical-absorption spectrum of
solids is a primary means of obtaining information
about the electronic band structure of materials.
While there has been a very considerable
theoretical effort directed toward the calculation
of optical-absorption spectra for a wide variety of
pure materials, rather little attention has been
devoted to this question for impure solids or al-
loys.

The purpose of the present paper is to examine
the effect of a single impurity on the electronic in-
terband absorptiori spectrum of a solid. One role
an impurity may play is to "activate" indirect
transitions between pritical points of the host band
structure through breakdown of wave-vector con-
servation. Thus, the study of optical absorption
in solids doped with a small concentration of im-
purities may provide information about host band
structures richer in content than the absorption
spectrum of the pure material. It is this aspect of
impurity-induced optical absorption we wish to
study here. We remark that in the infrared region
of the spectrum, the use of impurities to activate
critical points in the host-phonon density of states
has been utilized both in absorption and Raman
studies of lightly doped solids. ' With the exception
of the paper by Velicky and Levin, ' discussed in
more detail below, this aspect of impurity-induced
electronic absorption has not been examined by
theorists, as far as we know. We believe this
area is potentially very useful, and deserves fur-
ther theoretical study.

As remarked above, theoretical studies of opti-
cal absorption by electrons in impure sobds seem
few in number. Some years ago, Caroli' presented
an analysis of optical absorption by electrons in
a dilute alloy that can be described by the Friedel-
Anderson model. That is, the host has a nearly-.
free-electron conduction band, and a localized
orbital is associated with the impurity site. This

localized state broadens into a virtual level through
admixing with the conduction band. The absorption
processes studied by Caroli are necessarily wave-
vector noncoriserving. However, since Caroli pre-
sumed the host conduction band to have a struc-
tureless density of states, Caroli's study shows
how optical absorption may be used to probe the
nature of the virtual level on the impurity site.
The emphasis is thus very different than that de-
scribed in our earlier remarks. We remark that
Caroii's results have proved most useful in the
analysis of optical data on dilute alloys with well-
defined virtual levels. 4 Kjollerstrom' has also in-
vestigated a model very similar in physical con-
tent to Caroli's, through use of rather formal the-
oretical techniques. More recently, Bennett and
Penn' have examined a more general model which
includes interband transitions. Their model also
makes essential use of a localized orbital at the
impurity site, and they present no detailed dis-
cussion of the processes of interest to us.

These models which focus on absorption medi-
ated by an isolated orbital on the impurity are use-
ful for a wide class of alloys. An example is di-
lute Cu¹, where the Ni impurity has a sharp vir-
tual level between the top of the d band and the
Fermi level. 4 However, for photon energies large
enough to lift an electron from the copper d bands
to above the Fermi level, no sharp virtual level is
seen by photons which excite electrons from the
copper d bands. Wave-vector nonconserving tran-
sitions. originate from this energy region nonethe-
less. It is these processes that should in principle
serve as a probe of the host band structure. We '

use the Cu¹ system as an example here; for a
wide variety of metallic systems we may expect
sharp virtual levels to be absent, yet optical stud-
ies of alloys may yield important information
abou't the electronic structure of the material.

A paper by Velicky and Levin2 addresses ques-
tions very similar to those that motivated the pres-
ent study. These authors examine the frequency
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variation of the conductivity of a model alloy with
a single, tight-binding conduction band in the host.
This conduction band has Van Hove critical points,
and their calculations show weak but nonetheless
clear structure produced by impurity-induced in-
direct transitions from critical yoints in the host
band structure to the vicinity of the Fermi level.
We find it most encouraging to see this structure
yresent for calculations carried out for a model
with. Van Hove singularities of a gentle sort. From
an experimental point of view, derivative spectro-
scopy can be used to enhance such features in
data.

Our study, reported here, is rather different
than that of Velicky and Levin. They calculate the
frequency-dependent conductivity of an alloy with
a finite concentration of impurities by first obtain-
ing the "average medium" one-electron Green's
function with the coherent potential approximation
(CPA). The conductivity is related to a two-parti-
cle Green's function by a well-known Kubo formu-
la, and Velicky and Levin use an approximate de-
coupling scheme which replaces the average two-
particle Green's function by a convolution over the
single-particle average medium propagators. In
the limit of low concentration, . their procedure
does not produce the exact result for the one-
impurity problem that forms the basis for the
present treatment. We prefer to begin our analy-
sis of this phenomenon by treating the one-impuri-
ty problem fully, to obtain features in the absorp-
tion spectrum that are correct in the limit of low
concentration, and we do not address the question
of extending the theory to finite concentrations;
the procedure used by Velicky and Levin is surely
a reasonable, approximate approach.

Our interest in this problem has been stimulated
by experimental studies of the NiCu system re-
ported by Tokumoto et al. ' 'Upon introducing a
small concentration of Cu impurities into the Ni
matrix, these authors find clear structure in a
regime of photon energies where the initial states
in the absorption process are inside the host Ni d
bands. This structure may provide a measure of
the Stoner splitting of the d bands in the ferromag-
netic Ni matrix, although data on the temperature
dependence of the observed structure would be
helpful in deciding whether this is so. It is in-
triguing to suppose that through study of the opti-
cal spectra of dilute alloys, one may probe prop-
erties of the host band structure inaccessible by
optical studies of the host itself, and it is this
consideration that prompts us to examine the ques-
tion.

The outline of this paper is as follows. In See.
II, we derive a rather general expression for «, (v),
the imaginary part of the dielectric constant of an

impure solid. Then we apply the general expression
to a model of a two-band solid, and explore some
of its features. The two-band model is a model
of an insulating material, but very similar consid-
erations apply to metals also. In Sec. III, we dis-
cuss a series of numerical studies of the model.
These studies show that the impurity-induced in-
direct transitions indeed produce structure in the
optical spectrum that reflect critical points in the
host band structure. In Sec. IV, we give a brief
discussion of our results. At the moment, we are
extending the analysis to more realistic three-di-
mensional crystal models.

II. GENERAL REMARXS

x g(e) «) (g)). (2.l)
In this expression V is the volume of the crystal,
nz the free-electron mass, i and j are quantum
numbers that label the one-electron eigenstates of
energy a, and a&, P„the x component of the mo-
mentum operator, and f, =(e~"& "'+. I) ' is the Fer-
mi-Dirac distribution function, with 8 = (keT)

If we define S(s), a function of the complex vari-
able z, by the statement

l (g lp„li)l' (f f ) (2.2)

then

e, ((u)=,~ Im[S((@+i')],
4me2

(2.2)

where q is a positive infinitesimal.
If we have a dilute alloy, it is convenient to ex-

pand the exact one-electron eigenfunction of the
alloy in terms of )he Bloch functions of the host
matrix. These Bloeh functions form a complete
set, and the Bloch function with wave vector k
from band n will be denoted by ink). We then have

We begin by writing the general expression for
e, (&u), the imaginary part of the dielectric con-
stant, for a material with cubic symmetry illumi-
nated with radiation of frequency ~. Then by pro-
ceeding quite generally, we cast the expression
in a form suitable for one-electron theory. The
section concludes with further remarks on the re-
lation between our approach and that of Ref. 2,
and casts the expresion for''em(e) into the form that
will form the basis for the numerical studies of
Sec. III.

Qur discussion will be entirely within the frame-
work of one-electron theory. Then (in units with
h = I& quite generally e, (v) is given by the expres-
sion
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n

(2.4)

and a standard manipulation may be used to cast S(z) into the form, with i&u„=27)'kzT(n+ 2),

S(z) =—p g g (n k' Ip„ln"'k'&(n'klp„lnk)G(nk, n "k', i&a„)G(n"k',n'k; i&a„+z).
III

'ftdff tff ~ ~ ~ f fl

(2.5)

In Eq. (2.5), if H is the Hamiltonian of the one-
electron problem, we define the one-electron
Green's function G(nk, n'k';z) through the relation

G(nk, n'k', z) = (nk
I [I/(H —z)] ln'k') . (2.6)

To obtain Eq. (2.5), it is important to note that
in the Bloch representation, the momentum matrix
element is diagonal in the wave vector:

(nk
I
p„ln'k') = 5„-„-,(nk Ip„ln'k&. (2.7)

This fact has a very important influence over the
structure of Eq. (2.5), and makes the numerical
evaluation of it quite tricky, as we will appreciate
later.

The sum over ie„in Ej. (2.5) may be evaluated

by standard contour integration methods. We
shall need to know the Green's function

G(nk, n'k', z) just above and just below the real
axis after this is done. To express the result in

convenient form, we write

G(nk, n'k', s sic) = G&(nk, n'k'; e) aim p(nk, n'k'; e),
(2.6)

so that p(nk, n'k'; c) gives the discontinuity of G

across the real axis. It is quite important to note
that in general G&(nk, n'k'; e) and p(nk, n'k'; e) are
not real. One may establish the identities

(2.9b)

G~(nk, n'k', s) =G~(n'k', nk; e) ~, (2.9a)

p(nk, n'k'; ~) = p( 'k', nk; z)',
so only the diagonal parts G~(nk, nk; &) and

p(nk, nk; e) of these objects can be shown to be real.
After a standard contour integration, for

S(++i@)we find

S(&o+iq)= p g « f(z)(n k Ipkln"'k'&(n'klpklnk&[G(nk, n"k';e —e —iq)p(n"'k', n'k;s)
nf ~ ~ ~ t n ggl

+ p(nk, n "k'; z)G(n' k', n'k; c+ &a+ i')] . (2.10)

Upon taking the imaginary part of S(&a+ i@), and making use of Eq. (2.9), one may demonstrate that the

terms in G~p make no contribution to the imaginary part. After a bit of manipulation, we have

Im[S((u+ig)] =7) ae
8y ~ o ~ off f/'

«[ f(~) -f(~+ ~)]&n "k'Ip. ln "k'&&n'k
Ip. Ink&

X P(kk, k "k'; k)k)k "'k', kk; k + tk)), (2.11)

so for e, (&o) we obtain a result that may be written

4m
+-'"Z Z

kk' n. ..n"
« f(s)[1-f(z+~)] Re[&n

"k'
I p. ln "k')&"k

I p. lnk&

x p(nk, n "k'; &)p(n"'k', n'k; e+ u)] (2.12)

This is our general expression for e2(&u). We proceed to apply the result to the model that will occupy
us in Sec. III. This model is a two-band model, with a filled valence band that extends in energy from 0

to -8'„,and a conduction band that extends from E to E,+ W„where 8', and R'„are the width of the con-
duction band and valence band, respectively, with E the energy gap. The Hamilton'ian H =H, +H„,that is
we ignore mixing between host bands produced by the impurity. For this model, the spectral density

p(nk, n k ;e)'is'diagonal in the band index. Then for both spectral densities to be nonzero, in the limit as
the temperature T- 0 we require & to lie in the range -S'„&E& 0 of the filled valence band, while the fre-
quency is in the range E & &&E,+ W'„+W, where interband transitions are excited. We then have, with

p„(k,k', &) and p, (k', k; z+ a&) the spectral densities in the conduction band and in the valence band (we let the
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temperature T- 0)

7r2 2 0

e.(~)= "~g «&e[&»'Ip. lck')&cklp. lvk)p„(k,k', e)p, (k', k;c+u))].
Vm (a)

kk' v

(2.12)

Before we proceed, we pause to comment on one
aspect of the work by Velicky and Levin, ' and its
relation to the present study. The point is of some
generality, and not influenced by the differences in

. the models explored in their paper and in ours.
While the result in Etl. (2.13) will be applied to

a material with a single impurity in the present
paper, it can equally as well be applied to a sub- .

stance with a finite concentration of impurities.
In the latter case, one should average the product
p„(k,k', e)p, (k', k; e + &u) over all possible impurity
configurations. %'e denote this average by the
angular brackets &

. ). Velicky and Levin proceed
by replacing the average of the product by the
product of the average. That is, they write

&p„(k,k', e)p, (k', k;e+u)))

= &p„(k,k', c))&p (k', k; 6+(d)) . (2.14a)

But one has (p„(k,k', a))=5„.„., p„(k,c), and similarly
for &p, (k', k;@+i')), so Eil. (2.13) becomes

e, (&u) =, , g!&&k!p„!ok)!'.

(2.14b)

where p, and p, are real. The final step in Ref. 2
is to employ the coherent potential approximation
to compute the averaged one-electron spectral den-
sities p„and p, .

The method in Ref. 2 replaces the alloy with
spatial disorder by an average medium that is
translationally invariant. The electron sees the
impurities through an "optical potential" construc-
ted through the CPA. In our view, such a treat-
ment overlooks one feature of optical absorption
in disordered solids that may be important, parti-
cularly in the dilute limit.

In Figs. 1(a) and 1(b), we illustrate schematically

I

I

I

I

FIG. 1. Two distinct processes which contribute to optical absorption by indirect transitions in disordered solids.
The intraband processes illustrated are produced by the impurity potential, and the interband transition is produced by
the p X term in the Hamiltonian. Since these two processes connect the same initial and final states, they interfere
coherently in the absorption process.
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two physically distinct processes which connect an
initial state k„ip the valence band with k, in the
conduction band, where k, 4k„.Since these two
processes connect the same initial and final states,
they necessarily interfere coherently. This is
why Eq. (2.13) contains the product
&vk Ip Ick'&&cklp. lvk& with k'&k. One may ap-
preciate from Eq. (2.14) that the decoupling scheme
used by Velicky and Levin drops these interference
effects from the theory. We believe these inter-
ference effects are surely present and influential
in the dilute limit, where the various plane waves
which are combined to produce the wave function
of the electron near the impurity are coherent in
phase, since they are mixed into the wave function
by an impurity potential at a fixed position in the
lattice. In more concentrated alloys (such as those
examined by Velicky and Levin), these coherence
effects may well be unimportant, since the pres-
ence of a finite impurity concentration leads to in-
terference between waves scattered from different
impurities. These interference effects may tend
to "wipe out" the coherence effects.

The remarks above are framed in language ap-
propriate to interband transitions in an insulator.
For electrons in a metal, the decoupling scheme
used by Velicky and Levin ignores the "scattering-
in" terms that enter the Boltzmann equation.
While these scattering-in terms do not contribute
in the dilute limit for the model explored in Ref.
2, which has s-wave phase shifts only, in general
their contribution is the same order of magnitude
as the terms retained. We are presently recalcu-
lating the optical-absorption spectrum for the
model used in Ref. 2, with the purpose of compar-
ing the results of a one-impurity calculation with
theirs, for the same model.

We return to the two-band model that forms the
basis of the present paper. For the Hamiltonian
of the electrons in the valence (conduction) band

H„„„wetake the form

where

G(;&,(k,.) =[.„„,(k) .]-, (2.17a)

o(c&& ) p g e:(k) (2.1Vc)

The Green's functions in Eq. (2.16) and Eqs.
(2.17) in combination with the expression for c,(&o)

in Eq. (2.13) will form th'e basis of the discussion
of Sec. DI.

III. APPLICATION OF THE THEORY
TO A SIMPLE MODEL INSULATOR

To proceed further, we need not only the form of
the one-electron Green's function [Eq. (2.16) and

Eq. (2.IV)], but we also need the form of the mo-
mentum matrix element &vklP„lck&. In this paper,
we explore a simple two-band model of an insulat-
ing solid. The conduction band is presumed a sim-
ple tight-binding band with wave functions construc-
ted from atomic s orbitals localized near each
lattice site,

&xlck}= g q (x-1)e'"'
vN

(3.1)

while the valence band is constructed from atomic
p„orbitals:

&xlvk)= Q ((&~ (x-1)e("'.
1

(3.2)

If we ignore overlay between atomic orbitals cen-
tered on different sites, then a short calculation
shows

P I
v"& = &s IP IP

independent of k, where

~G(P, (k, k', s) = [V„„,/~]G(;&, (k, s)G«&, (k', s)
&([1+V„(,&E„(,&cz)]

~ (2.17b)

where

a„(,&-g e„(,&(k)C„-C„-+"( & g C„-C„-, (2.15)
kk'

&s lp Ip &= d'~(p ~+~p (p (3.4)

which describes a single impurity placed at the
origin of the coordinate system. The valence elec-
trons see an effective potential of strength V„,
and the conduction electrons see one of strength
V,.

The Green's functions for the conduction band and
for the valence band will be denoted by G, (k, k', e)
and G„(k,k';s), respectively. For the model,
these have the well known Slater-Koster form

(2.i6)

Then we have

0
x Q dc p„(k,K'; e)p, (k', k;e. +(u) . (3.5)

l(3.6)

From the form of the Qreen's function

G„(,&(k, k', e) given at the end of Sec. II, one finds
the spectral density function may be written

p„...(k, k'; e) = ~-„„-,(&(e„,.&(k) —~)

+ (i/N)~ p„(„(k,k', e),



, 18 EFFECT OF AN IMPURITY ON INTERBAND OPTICAL. . .

where

&.(c)
2](i 1+ V„()F„()(e —fTJ) E„('~&(K)—e+Ig e„(~](k')- e +II[]

1 1
1+ i'„„&i.„&(~+iq) [~„t., (K) —~ —ig][~„&.&(P) —~ —iq])

' (3.V)

e "'((d) = (4)I'e'/Vm'(d')
~
(s

~p„~p„)j'

&( Q 5(a„(k)—e, (k)+(d) (3.8)

is the contribution of the pure matrix to e, ((d), and
the three terms e"'((d) a""'((d), and e'""'((d)
when summed give the absorption induced by a
single impurity. We have (for E,«d&E, +W„+W,)

t,' "((d) = (4(r e /V m (d')'~(s ~p„~p„)~

x g op, (k, k;~„(k)+(d), (3.8a)

e,""&((d)= (4)I'e'/Vm'(d')~ (s ~p„~p„)~
'

x Q hp„(k,k;e (k) (d), (s.sb)

and

e'""'((d) = (4)I'e'/Vm'(d')
~
(s ~P„~P„)~'(1/&)

x Q f da 6p (I k',;e)6p (k'. k; 6+ Id) .

(3.8c)

In Sec. II of the present paper, we noted that the
decoupling scheme of Velicky and Levin. ignores
certain interference effects in the theory. These
interference effects are contained only in the term
e (Ii:ii) ((d)

The terms which describe impurity-induced ab-
sorption do not appear to simplify into forms that
enable their structure to be analyzed in a general
way-; As a result, to proceed, one requires a
specific model of each of the two bands. In this
paper, we consider the simplest possible model
that can be explored iri some detail: aone-dimen-
sional material for which

When E(l. (3.6) is inserted into E(l. (3.5), we ob-
tain four distinct terms. The first describes the
interband absorption in the host, and the second
three describe the impurity-induced (wave-vector-
nonconserving) portions. We write the expression
for e, ((d) in the form

(&) &(0&((d) + (1/~)[e (Ic)(&)+&(Iii)(~) + &(Icv)J

(s.8)

where

g „(k)= ——,'W„(1—coska, ) (3.9a)

&,(k) =E + —,'W, (1 —coska, ), (s.ob)

I (s Ip„lp„)I'
((d E)' 'I( E+W, +W„-(d)'I2 ' (3.10)

The interband absorption feature shows the char-
acteristic one-dimensional square-root singularity
at the absorption edge (d=E„and at the upper
cutoff +=8 +8', +5'„aswell.

We pause to cast E(l. (3.10) in dimensionless
form. The same convention will be used in the re-
mainder of the paper. Let

W, =f,E,
(3.11a)

(S.lib)

(3.11c)

Furthermore, E(l. (3.10) can be written, after use
of E(ls. (3.11),

a,"'= cr, (]()x ' (3.12)

where 8'„is the width of the valence band, 5', that
of the conduction band, ao the lattice' constant and
E the energy gap.

This model has the virtue that many of the func-
ti.ons which enter the theory may be evaluated in
closed analytic form. In one dimension, at the
band edges, the one-electron density of states ex-
hibit square-root singularities. We may expect in-
direct impurity-induced transitions between these
critical points [say between the bottom of the val-
ence band (k =)I/a, ) and the bottom of the conduction
band (k =0)j to produce particulary sharp structure
ltl E2((d).

The model may be of practical interest, since
real three-dimensional crystals have sharp peaks
in their density of states, in a manner that mirnics
the one-dimensional solid. Indeed, these materi-
als may be useful ones to study optically, to ex-
amine effects similar to those discussed here.

For the model, it is a simple matter to obtain a
closed-form expression for a2(0&((d). One finds, if
we imagine our model material to be a collection
of linear structures with n, lines per unit area,

i,(o& ((d) = (4)Tn,e'/m'(d'a, )
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where

t = (47&)& 8 /III &I&)E ) ( (s j p„(p„)( '
a,nd

(x) [lj'(~ 1} I (1+f +f ~} l ]

(3.13)

(s.i4)

[~(~+w )]

E„(a+i)})=+i[ e-(c+W„}]'~', -W„&a&0

-[a(a+W„)]-'I2, e&0,

(3.16)

Save for the singularities atx = 1 and x = 1+f, +f„,
r, ()&) is smooth and featureless through the region
of allowed interband absorption.

To compute the impurity-induced absorption, we
require the function F„&,)(e +iII}, where E„&,)(e) is
defined in Eq. (2.i7c). A short integration shows

with a similar expression for E,(c +i)}).
Through use of Eq. (3.15), and the analogous ex-

pression for E,(a ei)}), both zm(I" (&u) and C3(I")(&d)

may be written in terms of an integral over energy
of a function known analytica, lly, for the model.
For example, for sm(I") (&u), we can write

(Iv)
(&d)

&) c v 1 1
4~i~', , 1+ Vg „(~,(k) ~ —iq) [~„(k)—e, (k)+ ~+ zq]'

0

1 1
) + )+ (1 &0) —Ql+Ev) [f (0) —C' &0)+ la —all] ) (s.i6)

a„(k)= (WJW, )[E,—&.,(k)] .
We write ea "'(&))) in the form

~ (lv) (~) ~~(Iv)( )~-2

(3.17)

(3.18)

with a similar definition of r(I" ()&), and also
&(Icv) ( )

We turn first to a description of our numerical
studies ()f y& v'(~), ~' "(x), and y 'v'(~). before
we present these results, we comment on the pro-
cedure used to evaluate the integrals which follow
from Eq. (3.16). The integrals are quite tricky to
evaluate, because of the singular terms [e„(k)
—c,(k)+ &d+ i)}] which give difficulty for photon
frequencies in the range E &(d&E +W, +W„,
where interband absorption is allowed.

Our basic strategy has been to evaluate Eq.
(3.16) directly (after converting the integral to one
on energy), with the parameter )}kept small and
finite. Values of g in the range of 10 'W„or 10~W„
were chosen for this purpose. A very fine mesh
was employed, with care taken. in the near vicinity
of the singularity. We then tested all results by
varying the value of g, to insure their insensitivity
to the choice of g.

The integrals we encounter have the general
struc tur e

( ) p

deaf(E}

(e -e,+i)7)' (3.19)

which we rearrange to read

This may be expressed in terms of an integral over
e =&.,(k) by noting the relation, valid for our sim-
ple model,

' [f(s)-f(
(~ -Co ~iI})', (4 —C() +'I)7)'

(S.20a)

or integrating the first term explicitly,

v&~.) I&~.)(, ,=—, , )
'& [f(&)-f(~&))l d[t —fohiri]

(3.20b)

With the use of Eq. (3.20b), we could obtain reli-
able results for the numerical integrations, as
g -0. The procedure works quite well, except
when &0 is close to the upper or lower limit c„or

of the integration, a situation of little interest
to us.

In Fig. 2 we show the diagrams which contribute
to the three terms r' "' r ", and r'I'" In r' "'
-the hole in the valence band scatters repeatedly
from the impurity (r(I") begins with the term first
order in V„),while the final-state electron in the
conduction band is unaffected by the impurity.
Thus, r' "' depends on only V„,and not V,. The
term r' "describes contributions where the con-
duction electron scatters repeatedly off the impuri-
ty, with the hole unaffected. As a consequence
r' "depends only on V„with its first contribution
proportional to V, . Finally, r' '"' sums all pro-
cesses in which both the electron and the hole
scatter from the impurity. The lowest-order con-
tributions to r'I'"' are proportional to the product
V,V„,so both scattering potentials must act for
r' '"' to be nonvanishing.
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(a)

V„

(b)

Vc

Vg

FIG. 2. (a) Diagrams which contribute to r~ ) . (b)
The diagrams which contribute to & c . (c) The diagrams
which contribute to & ~; there must be at least one
scattering event in both the electron and the hole line,
for a diagram to contribute to & ~~

In all the calculations reported below, we have
chosen W„=E and W, =28'„, In terms of the re-
duced photon frequency x defined in Eq. (3.1la),
the region. of allowed interband absorption extends
from x=1 to x=4. Dimensionless measures of

the impurity potentials are the ratios V„/W„and
V,/W„.

In Fig. 3(a), we present the results of our calcu-
lation of r'~"'(x), for the case where a repulsive
potential V„=+2W„actson the hole in the val-
ence band. One sees a background absorption
rather similar to that from the host matrix [Eq.
(3.12)]. Superimposed on this background are two
well-defined features, one very near x=2 and one
near x= 3. These features are structure that
arises from impurity-induced indirect transitions
bebveen critical points in the host band structure,
as we shall see. For the calculations in Fig. 3(a),
we have set g=2 X10 'W„, as indicated in the fig-
ure. In Fig. 3(b), we show a high-resolution study
of the structure near x = 2, with q = 10~W„. Com-
parison of this curve with a similar one for g=2
x 10 'W„shows we have )cached the point where the
principal features of the structure are insensitive
to g. We believe that in the limit q- 0, this struc-
ture is a step discontinuity in the absorption con-
stant; as g is decreased, the structure approaches
a step discontinuity.

In Fig. 4, we Iillustrate the indirect transitions
responsible for the structure in Fig. 3. The fea-
ture near x =2 arises from transitions between the
bottom of the valence band (at the zone boundary)
and the bottom of the conduction band (near the
zone center). The feature near x= 3 has its origin
in impurity-induced transitions between the top of
the valence band (zone center) and the top of the
conduction band (zone boundary).

We remark that the sign of r'~"'(x) is controlled
by that of the potential V„.If we change the sign
of V„,the sign of r'~"'(x) is changed also. From
this remark, and the remaining results presented
below, it is evident that impurity-induced struc-

O. SO—
r('") Foe V„=ax

i(Iv )

O. i5"

O. OO

-0.20-
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-0.2 I

-0.22- i.95

&
= ia-4W„-0 I9-

I

N2. 05

FIG. 3. (a) Function
(x), for the case

where V„=2W„, and +„'
=E~, W, =2%"„.As indi-.
cated, the value of rjwas
fixed at g=2&&10 3. (b)
The detail in x(sv) (z) near
x=2, for q=10 4 m„'.

-0 i5-
-0.23—
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Wy

FIG, 4. Illustration of the indirect transitions respon-
sible for the structures. present in Fig. 3.

ture in c,(&o) marks the energy difference between
pairs of critical points in the host band structure,
but the shape of the feature depends on the details
of the impurity potential.

In Fig. 5(a), we show a plot of the function
r'~"(x), for the case where the potential in the
conduction band is repulsive (as in the valence
band), with the value V, =+—,'W, . The general
shape of r'I" (x) is quite similar to that of r'I"'(x),
save for a difference in overall sign. Ke shall ap-

preciate the reason for this from an argument pre-
sented in Sec. IV. On the scale of Fig. 5(a), we
see no structure at x =2 and x=3, as in Fig. 3(a).
As one sees from Fig. 5(b), a high-resolution scan
of the region near x =2 shows structure present
similar to that in Fig. 3(a), with inverted sign.
The size of the feature is quite sensitive to the
strength of the potential, but we always find a fea-
ture small compared to that displayed in Fig. 3.
The reason why the structure is much less promi-
nent here is that the potential seen by the electron
in the conduction band has been taken very much
weaker than that seen by the valence electron. As
remarked above, a dimensionless measure of the
strength of the potentials is provided by the ratios
V,/W„and V,/W, . The calculations in Figs. 3 and
5 have been performed for V„/W„=2,. and V,/W,
= &, respectively.

Finally, in Figs. 6(a) and 6(b), we show the be-
havior of the term r'""'( x), for which both V, and

I/„must be nonzero. The calculations are carried
out for V„=2W„andV, =-,'W, . In Fig. 7(b), a high-
resolution calculation shows a clear shoulder is
present in v'~'"'(x) at x =2; the shape of the feature
here is quite distinctly different than either that in
v' "'(x) or that in r' "(x)

In Fig. 7(a), we plot the function r, ( )xthat con-
trols the absorption in the host matrix, while in
Fig. 7(b), for the case V„=2W„andV, = —,W„we
combine the earlier results to display the total
impurity-induced contribution to the absorption
constant. The features at x=2 and x=3, which for
these parameters receive their dominant contribu-
tion from w "', are clearly visible.

IV. GENERAL REMARKS

From the results of Sec. III, we see that placing
an impurity in a solid can "activate" critical points
in the optical density of states not accessible by
studies of the pure matrix. %e believe the syste-

(a)
r Ic) Fo Vc Wc /2

(q =2x10 s
Wv )

(b)

0.00 0.036—
0.035—
0.0SO—

FIG. 5. (a) Calculation
of &(lc) (~~ for the case
V = ~ 8', and (b) a high-
resolution study of
y&~&) (x) near &=2.
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FIG. 6. (a) Function
~(ln)(x) as a function ofx, for
Vc =&+c and Vv =2~'o (b) A
high-resolution numerical
study of & ~~(x) near x=2.
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F'LG. 7. (a) Function &0(x), vvhich describes the optical
absorption in the pure matrix (b) the sum of r ) (x)," (x), and &(~~)(x) for the case V„=2&and V, =& &.

matic experimental study of such features may
prove a most useful supplement to the conventional
optical studies of nominally pure solids. The fea-
tures we find for our simple model are clear and
distinctive, but they are also of modest magni-
tude, even for the rather strong impurity poten-
tials used in the calculations. The various methods

of derivative spectroscopy may prove a useful
means of probing such structures.

While the model that forms the basis of the nu-
merical calculations displayed in Sec. III is a very
special one, nonetheless from its study we can
infer some features of the phenomenon we expect
to be more general. We conclude the paper with
brief comments on some of these points.

We have seen that both the magnitude and the
shape of the impurity-induced features in the opti-
cal spectrum depend on the details of the impurity
potential, for our example. If we had taken V,
large enough, with a decrease in V„,then from
Figs. 3, 5, and 6 it is quite evident that the struc-
tures near x=2 and x= 3 would have a shape very
different than that apparent in Fig. 7. Little in
general can be said about the shape of such fea-
tures from knowledge of the host band structure
alone, although the position of the structures
clearly is controlled by the host band structure.

The most naive phenomenology would suppose
that the impurity-induced indirect transitions would
give a contribution to e~(&u) which is proportional
to the joint density oI states pr(ur) defined by

p~(ro)= fppp (p)p(p+~), .„,
where the integral is over the initial states allowed
to participate in the absorption process by energy
conservation alone. The comments in the preced-
ing paragraph show clearly that in general, we
do not expect this to be the case, since we find the
shaPe of the structure clearly depends on the de-
tails of the impurity potentials. To illustrate this
explicitly, we plot in Fig. 8 the joint density of
states for our model near x = 2. The shape of the
feature in the joint density of states bears no re-
semblence to the structure in any of the three im-
purity-induced structures in e, (&u), so in no case
we have explored do we find structures similar to
the joint density of states.

We can also see that the structure induced by the
impurity does not appear in the spectrum when the
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FIG. 8. Joint density of states for the model near
x =2.

impurity potential is sufficiently weak that its
effect can be described by the lowest order of per-
turbation theory. To see this, consider the im-
purity contribution to aa(tu) first order in V„and
V, . This contribution comes from r' "and y' "',
and upon isolating the lowest-order contribution to
each, we find for the impurity-induced contribu-
tion to e, (tu) the result

z,"'(to) =—(V„—V,)—a,"'(to) . (4.2)

The result in Etl. (4.2) is precisely that expected
from the rigid-band theory of alloys; the effect of
the impurity is to shift the energy of each valence-
band level by the amount V„/N, and each conduc-
tion-band level by V,/N. To see "activation" of
critical points by the impurity, the impurity po-
tentials must be strong enough for the rigid-band
theory to break down. We believe this emphasizes
the importance of dilute alloy calculations such as
that presented here, where the calculation treats
the influence of the impurity potential exactly, at
the expense of examining the effect of finite con-
centrations.

We note that the result in Etl. (4.2), while valid
only in perturbation theory, shows a repulsive po-
tential acting on the final-state electron has an op-
posite effect of one which acts on the initial state.
This is consistent with the calculations displayed
in Figs. 3 and 5.
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