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Random one-body approximation to the Hubbard model. I. Formalism
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An approximation scheme is presented for treating the Hubbard Hamiltonian through an effective self-

consistent random potential. The random variables determining the effective potential are statistically

correlated to simulate many-body correlations. The formalism is developed in detail for the half-filled

Hubbard model; it is shown that the proposed scheme reproduces exactly the metallic and atomic limits and

interpolates between the two.

I, INTRODUCTION

Many of the properties of diverse substances can
be adequately understood in the context of models
neglecting many-body effects. However, these
effects are of crucial importance in understanding
for example, magnetism, metal-insulator (Mott)
transitions, ' and the appearance of charge-density
waves. ' Coulomb electron-electron interactions
and to a lesser degree electron-phonon interac-
tions play the fundamental role in explaining these
phenomena and the resultant many-body problem
has proven extremely difficult to treat in any
quantitative fashion. This is true in spite of the
powerful and sophisticated many body techniques
that have been developed in the last 20 years' and
usually results are obtained after making over
simplified assumptions or for a limited range of
values of the relevant parameters. Furthermore,
the conceptual difficulties associated with inter-
preting the standard many-body formulas in terms
of simple physical pictures make it hard to develop
reasonable approximations when following these
traditional lines.

A possible way to overcome some of these prob-
lems while retaining the basic physical features of
the many-body system is to replace the nonlinear
many-body Hamiltonian by a random one-body
one. That is, the many-body system is replaced
by a system of independent quasiparticles moving
in a properly determined random potential. Such
a replacement naturally includes fluctuations which
is one of the two important aspects of many-body
effects. In addition, correlations, the other im-
portant aspect of many-body effects, can be in-
corporated into this approach by making the varia-
bles characterizing the random one-body potential
statistically dependent. Finally, due to the dynam-
ic nature of the system, this random potential
should be time dependent.

Although this way of treating the problem does
not help in obtaining exact solutions, it can be
very useful in finding reasonable approximate

solutions. This follows, since, in contrast to the
traditional many-body methods, this approach al-
lows immediate and direct introduction into the
formalism of the fluctuations and correlations be-
lieved to be important. Thus, one of the chief
merits of this method is its direct connection with

physical intuition which, as it turns out, allows for
the development of reasonable approximations with
simple physical interpretations. Such a replace-
ment also has the advantage of permitting a quan-
titative study of the problem over a much wider
range of values of the physical parameters, and,
in addition, it can be generalized to treat more
complicated systems such as those exhibiting both
electron-electron correlations and structural dis-
order, etc.

Qn the other hand, the method relies heavily on
physical intuition in deciding which are the more
important correlations and fluctuations and is not
always as accurate as some of the more sophisti-
cated many-body techniques. Also it is rather
complicated from the computational point of view,
and as a matter of fact, one finds it necessary,
at least as a first approximation, to omit alto-
gether the explicit time dependence of the random
potential in order to make headway in solving the
problem. This omission is called the static ap-
proximation and its consequences as well as pos-
sible ways to remedy some of its more undesirable
features will be discussed later.

Even within the context of the static approxima-
tion one is faced with extracting whatever quanti-
ties are of interest from a random one-body
Hamiltonian. Fortunately in the last several years
considerable progress has been made in this area'
and in particular, one can greatly facilitate the
computational effort involved by employing the
techniques that have been developed in the study
of disordered systems. The most important such
technique is the so-called coherent-potential ap-
proximation' which allows an accurate determina-
tion of (G) and a rather reasonable determination
of ( GG), where G is the Green's function of a
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particle moving in the given random potential and
the symbol ( ) denotes averaging over the random
variables characterizing this potential.

To make the above ideas more specific one can
employ either of the following two approaches: (i)
A properly determined self-consistent random
potential is introduced for which the quantities
(G) and (GG) are calculated. (The self-consistent
determination of the random potential will be dis-
cussed in detail later. ) (G) and (GG) are then
taken as good approximations for the many-body
Green's function 9 and 9 „respectively, and in
this way any physical quantity, such is the thermo-
dyriamic or response functions, which is expres-
sable in terms of 8 or 9, can be found. This is
admittedly an ad ho& procedure that is physical]. y
motivated as outlined in the preceding discussion
and which can be ultimately justified by its ability
to reproduce the established results in various
cases. Furthermore, at least in some instances,
it can be deductively rationalized by following the
second approach described below. (ii) Using Strat-
onovitch's" identity one can on occasion express
the partition function of the system as a functional
integral over "time"-dependent random Gaussian
fields. '- This formally proves the intuitively rea-
sonable statement that the many-body problem can
be recast as a one-body system moving in a time-
dependent random field. If one makes the approxi-
mation of omitting the time dependence of the
random fields, the functional integral is then re-
duced to the usual integral over random variables
and the whole formulation becomes essentially
equivalent to approach (i) above.

Hubbard' employed the above ideas in replacing
a many-body term by a random field in his origi-
nal treatment of the so-called Hubbard model.
Most of the subsequent work along these lines
has been done within the framework of this model;
however, it should be stressed that the basic con-
cepts, at least as expressed in approach (i)
above, are applicable (but not necessarily con-
veniently so) to other many-body systems. For
example, Chen et &l.' have treated the role of
electron-phonon interactions in electrical con-
ductivity using a simplified version of this ap-
proach.

In the present work we shall restrict ourselves
to the study of the Hubbard model, because this is
a relatively simple, well-studied system where our
methods are easily applicable and our results can
be checked against a host of well-established data.
The Hubbard model is also a prototype of many-
body effects in solids in the same way that the
tight-binding model (TBM) serves as a prototype
of band- structure properties. The Hamiltonian
used in this model is given by

lf= g e g,, + g V&p,t,a,.„+Up n; in; ~, (1.1)

where the sites (i) form a lattice: & takes two
values, + 1 for spin up and -1 for spin down; z, is
a constant, V;,. is usually taken (for simplicity) as
a. constant ~ for i, j nearest neighbors and zero
otherwise; a~~, a are operators creating and an-
nihilating electrons at a local Wannier state ji&)

centered around the site ~ with spin (7; and, finally
n; is the number operator a; a. . The last term
in (1.1) describes the interaction of two electrons
located at the same site. Note that the Hamilton-
ian (1.1) allows interactions only between electrons
located at the same site and this restriction may
prove a serious drawback for small values of
U/V. "0 Besides U/V, another parameter charac-
terizing this model is the number of electrons per
site n. Here we confine ourselves to the special
case a=1, which has been studied extensively;
however, our methods can be extended to treat the
case n+1.

Hubbard' (Fukuyama and Ehrenreich, "for ex-
ample, have also used this scheme to calculate the
susceptibility of the model) replaced the last term
in (1.1) by the random potential Q;,e;,n, where
the quantities e; are independent random variables
with a common binary probability distribution. In
particular, each c& was taken as either U or 0
with equal probability. This simple substitution
incorporates fluctuations but not correlations
among different sites and, thus, the possibility
of magnetic ordering is completely omitted. Fur-
thermore, although this approximation is exact
at the atomic limit, ~=0, it steadily worsens as
U/V decreases due to the increasingly rapid
switching of e;, back and forth between U and 0.
This gradual dynamic elimination of the effective
fluctuations (randomness) has been termed mo-
tional narrowing by Hubbard. The above static
approximation omits the motional narrowing ef-
fects completely and, as a result, the Fermi sur-
face is not well defined iri the metallic limit U/V
=0 with U&0.

Several authors'" "have since managed to
partly include notional narrowing effects by as-
suming that e;, can take the values Un, or Un

where n, +n =1 and n, ~n . The quantities n„
n were determined by a generalized Hartree-
Fock approximation derived in the framework of
the Gaussian random fold formulation of the prob-
lem [approach (ii) above] and it was found that in
the atomic limit n, =1 and n =0 while in the metal-
lic limit n, =n =-,. Thus, both limits were pro-
duced exactly at zero temperature. However, for
7.' &0, the atomic limit is not reproduced correctly,
and, in addition, the possibility of magnetic order-



E. N. ECONOMOU, C. T. WHITE, AND R. R. DeMARCO 18

ing, one of the important aspects of the model,
was omitted altogether. Some recent attempts
have been made to rectify this latter problem.
Thus, Plischke" and Qupta et al."have examined
the question of magnetic ordering by introducing
imperfect long-range order. This is not a satis-
factory way to treat magnetic ordering, however,
since the long-range order should actually develop
through short-range correlations. So, e.g. , the
common ease of absence of long-range order while
short-range orQer is still present is left out in
these treatments. Furthermore, neither of these
approaches include motional narrowing effects, and
so suffer from the type of problems mentioned
above in the metallic regime. On the other hand,
I,acour-oayet and Cyrot" have evaluated the ex-
change integrals J;, ; however, their calculation
was in general not self-consistent since these in-
tegrals were obtained by employing an electronic
spectrum that did not include the effects of partial
magnetic ordering.

In the present work we will present a random
potential approximation which is exact in both the
atomic and metallic limits for all temperatures,
and incorporates magnetic ordering in a self-
consistent, and, we believe, satisfactory manner
for the first time. The usual way of obtaining the
magnetic properties" assumes an electronic mo-
tion that corresponds to either perfect magnetic
ordering or no magnetic ordering at all, out of
which an exchange or superexchange interaction
J;; is calculated, which is then used in an approp-
riate spin Hamiltonian to produce the magnetic
effects. Such an approach omits the feedback of
the actual imperfect magnetic ordering on the
electronic motion and consequently it is not self-
consistent. This lack of self-consistency has
negligible effects for very low temperatures (ksT
«(J ~, where the order is almost perfect) or very
high temperatures (ksT» P], where the order
disappears altogether).

In many cases for the entire range of tempera-
tures of interest either kaT« ~J~ or ksT» P~ and
thus there is no actual need for a self-consistent
treatment. However, when kBT- P~, a self-con-
sistent treatment is necessary since the reduction
of magnetic ordering as temperature is increased
has a profound effect on the electronic spectrum,
as ha, s been shown in the limit (VaO, U-~)
by the detailed many-body treatment of Brinkman
and Rice." We have found that the electronic spec-
trum depends strongly on magnetic ordering not
only in this limit but for other values of U as well.
This change in the electronic density of states,
due to destruction of magnetic ordering will have
important physical effects if the spectrum is ther-
mally sampled at temperatures approximately

equal to ~J~, i.e., when k~T-J- ~E; —pI (p is the
chemical potential and E; is a typical energy in the
vicinity of p where the density of states changes
substantially with the destruction of ordering} a
self-consistent treatment like ours is indispen-
sable. In this instance several physical quantities
exhibit an anomalous temperature dependence,
e.g. , the resistivity is dropping precipitously. To
the best of our knowledge this point has not been
recognized in the literature and no satisfactory
calculational scheme is available to treat it. Yet
it seems to be important in view of the fact that
several materials such as NiS,""LaVO3p oxides
of V (Ref. 23), and Ti (Ref. '24), and some quasi-
one-dimensional organic metals" exhibit a be-
havior qualitatively similar to that predicted by
our self-consistent inclusion of magnetic ordering.
It should be pointed out that the above discussion
is not restricted to the case of magnetic ordering
only, but also, for example, applies to charge
density ordering or Peierls distortion in problems
of electron-phonon interaction. The present
scheme explicitly takes into account the effects
of the destruction of magnetic ordering on the
quasielectron spectrum for all values of T and
U/V and self-consistently determines the magnetic

properties.
We have calculated the conductivity 0, of the

system and found, as expected, that the destruc-
tion of magnetic ordering with increasing tempera-
ture affects the temperature dependence of 0', and
that this effect is more pronounced when U/ZV
-1; Z is the coordination number of the lattice.

In Sec. II we introduce concepts and relations
pertirient to the present work. Then in Sec. III
we introduce and develop one of our two basic
original contributions, namely, the incorporation
of magnetic ordering and its self-consistent treat-
ment. Next, in Sec. IV we express various quanti-
ties of physical interest in terms of the totally and
partially averaged Green's functions. Finally, in
the last section we summarize our formalism and
we introduce our second basic contribution to the
subject, namely, the approximate inclusion of
dynamical processes.

II. AD HOC RANDOM POTENTIAL APPROACH

The spirit of this approach is to approximate
the many-body 9, by (G,}, where G,(E) =(E H, )

'
and H is a one-body random Hamiltonian ob-
tained from (1.1) by replacing the many-body part
by an appropriate random one-electron part, i.e.,

(2.1}

where the quantities fe;,}are random statistically
correlated variables.

This ad hoc procedure can be justified formally
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Uni-a y (2.2)

where the bar indicates a quantum-mechanical and
thermal average Not. e that Eq. (2.2) can be ob-
tained by employing (2.1), assuming that the quan-
tities {e;,}are time independent, calculating the
free energy F, and then choosing the {e;,}so to
minimize F with respect to their variations.

It is well known that the Coulomb repulsion
term suppresses strongly charge fluctuations.
For this reason we introduce a second approxi-
mation which eliminates such possibilities alto-
gether, i.e.,

pg, ) +ni) =1. (2.3)

Combining Eqs. (2.2) and (2.3), one can show that

e;, = —,'U(1 —v p.„),
where

+io nit nil ~

(2.4)

(2.5)

Equation (2.5) is derived in the Appendix by em-
ploying the Qaussian random-field approach.

Each quantity p.j, can be interpreted as the a
component of a moment located at the site j.
These moments are produced by electrons that
are neither completely localized at every site i nor
of the Bloch type; instead they move in the self-
consistent potential defined by (1.1) and (2.1). If
the set {p»}satisfies Eq. (2.5) so does the set
{-p»}because of the updown spin symmetry A.
solution to (2.5) can be easily obtained if one as-
sumes that p;, = p„ independent of j. Then, there
are in fact three solutions: one with p~ =0 corre-
sponding to a maximum, not a minimum, in F, and
two genuine symmetric solutions, p,, = +

~ po j, cor-
respondingtoa minimum in I'. These are the
ordinary Hartree-Fock solutions which neglect
fluctuations altogether. They are shown schemat-
ically in Fig. 1 (a) where it is clear that they

by employing the Gaussian random field meth»
od.' ' Accordingly, the free energy of the system
can be expressed as a functional integral over the
quantities {e;,}, which are functions of a "time"
variable s.' Then one introduces the first approxi-
mation of this work, termed the static apProxima-
tion, which omits the time dependence of the quan-
tities {e„};the functional integral is then trans-
formed to an ordinary integral over the variables

The integration can then be performed by
the saddle-point approximation which picks out
the values of {e;,}which makes the integrand
maximum. The final result is that the free energy
I has the same form which would have been ob-

.tained by employing Eq. (2.1) with each quantity
e;, satisfying a generalized Hartree-Fock equa-
tion

&+ )l i( i( ii il

~ ~ ~

l~

~ ~ ~ 0 f' ~ ~ ~ ~ ~ ~ (g)

'(b)

(c)

correspond to a ferromagnetic arrarigement of the
moments. Another possibility corresponding to an
antiferromagnetic arrangements of the moments
is shown in Fig. 1(b). In this case fluctuations are
allowed but completely correlated so as to produce
again a periodic arrangement, but now with double
spacing. Observe that the self-consistent magni-
tude ~g, ~

is not the same in cases (a) and (b) of
Fig. 1 because the corresponding Qreen's func-
tions G;, are different. One may consider still
another example where all p j, have the same ab-
solute value p but their signs are random. In this
instance we can call A sites those with p,j, & 0 and
B sites those with p» 0, as is done in Fig. 1(c).
Thus, the electronic motion can be thought of as a
random A& alloy. With this random system, it is
not possible to satisfy Eq. (2.5) at each site, and
instead one can try to satisfy it on the average,
l.e.)

P

N„p = Q (np —n, )),
jgA

(2.6a)

-N~ g = (n,q
—n~),

jCB
(2.6b)

where N~(N~) is the total number of A(&) sites.
The quantities p.j, can be considered as random
variables where the probability distribution I', of
each p j, is determined from the ensemble of
values of p,j, as j runs over all lattice sites. In
the present cage

P,(p») = —,&(p» —g) +-,&(p»+ p) . (2. I)

Equation (2.6) can then be written in a more ele-

A B B A B A A

FIG. 1. (a) Vectors pointing up (down) represent the
quantities n;~ (n;~) at each site i of the 1 D lattice shown.
The vector sum at each site is the local moment. Two
symmetric uniform configurations are shown; (b) al-
ternating periodic (antiferromagnetic) configur ation;
(c) random configuration, where the up (down) vectors
represent (~~); ((n;~); ), a =A,B.
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gant form

= (n~ )) —(n )), ot =A. or B, (2.8)

where the symbol ( )J denotes an average over all
with ]L(. ~ = p, &=A Q p = + j p+

We denote by n, the quantity (n; t)", a,nd by
the quantity (n ~) then p = n,.

=+(n, —n ) as shown in Figs. 1(a)- 1(c). From
Eq. (2.3) it follows that n++n =1. Keep in mind
that p.;, can be though of as the z component of a
local moment operator m,- = P&;, where o; is the
Pauli matrix operator. Thus the site j being A
(&) is equivalent to &,, having the eigenvalue 1
(-1). In what follows we will use both the alloy
picture and this equivalent local moment picture.

Obviously the above scheme can be generalized
by starting with a more complicated probability
density for p,„, e.g. ,

Po(p,.o) = QP 6(p,o
—p,„),

(2 8)

where the system at /= 0 has been prepared in such
a way that n; i(0) = 1, and r is of the order of Hub-
bard's switching time. '

The self-consistency condition (2.5) or its ap-
proximate form (2.8) develops a serious flaw for
high T for all values U jZ& above a certain criti-
cal value. Let us for convenience consider the
atomic limit (V =0). Then Eq. (2.5) takes the
form

1
e-(8+//2)+ g e( BUP/2) (2.10)

The self-consistent solution of (2.10) starts with
P, =1 at T =0 and drops monotonically with increas-

and then determining the quantities p from self-
consistency equations of the type (2.8). Note that
the probabilities P~ must be found from symmetry
requirements and by minimizing the total free
energy of the system if necessary. An approach of
this sort could prove superior to the present bin-
ary one, although the practical implementation of
such a general scheme is far from trivial.

Here we restrict ourselves to the simplest but
still reasonable case where Po(p&0) is taken as in
Eq. (2.7). This random "binary alloy" approxima-
tion is clearly the simplest one which allows fluc-
tuations and it has the additional advantage of
being able to reproduce exactly both the atomic and
metallic limits, and thus will interpolate between
these two extremes.

The quantity P. can be thought of physically as a
time average of n; i(t) —n;(t) in a specially pre-
pared system, i.e.,

ing T until k~T=U. For k~T& U, P =0. One can
easily check that the thermodynamics is not cor-
rectly reproduced by (2.10) and in addition, a
phase transition is forced by this self-consistency
condition at T = U/k~ which is clearly spurious.
The physical origin of this problem is the incom-
patibility of the local nature of Eq. (2.5) and the
thermal equilibrium averaging involved in (2.5):
That is, through the thermal averaging, configura-
tions associated with other sites are automatically
included [as in (2.10)] in calculating n, i —n, ~, and
thus the p,,„and hence the effective fluctuations,
are spuriously reduced in size. A possible solu-
tion to this problem is to utilize a thermal en-
semble possessing only partial equilibrium, i.e.,
one for which the chemical potentials are not all
equalized. The formalism then becomes very
complicated and impractical. In the next section
we will present an ad ho& solution of this difficulty
which although not completely satisfactory, is
very convenient and seems to work reasonably
well.

III. MAGNETIC ORDERING

In this section we introduce one of the main
ideas of this work and develop the corresponding
formalism. Magnetic ordering can be incorporated
very conveniently within the binary A& alloy ap-
proximation since the latter is equivalent to local
spin& moments. All we have to do is to consider
the ~ component of the local moments at different
sites as statistically dependent. This statistical
dependence arises from short range interaCtions
among the z component of the local moments as in
the Ising model. " It is important to note that these
interactions can produce long-range correlations
as well due to the connectivity of the lattice. To
simplify the problem we will assume that all
correlations result from a basic nearest-neighbor
correlation; more explicitly, we assume that
the probability of any site being of type A or B
outside a figed configuration shell consisting of all
the nearest neighbors of a given central site is
independent of the character (A or &) of this cen-
tral site. This assumption is equivalent to only
nearest-neighbor coupling in the Ising model. Of
course, real systems have interactions beyond
nearest neighbors which are weak and decay with
increasing relative distance. As a matter of fact
the Hubbard Hamiltonian implies interactions be-
yond nearest neighbors. " However, the incorpora-
tion of these additional features produces only
minor quantitative changes while making the for-
malism complicated. For this reason we de-
scribe the correlations through a single parameter
P referring to a pair of nearest neighbors. " This
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(sF (3.1)

Thus we need to express E as a function of P. The
partition function can be written

(3.2)

where E, is the value of the free energy for any
set (p, ;,j satisfying Eqs. (2.7 and 2.8) and the sum

g(„,,} extends over all the sets of (p,;,] mini-
mizing F. For P=O, corresponding to Fig. 1(a),
g(&. } =2, since there are only two sets mini-
mizing F; similarly, for P=1 [shown in Fig.
1(b)], Q(„,. }=2; when P=2, Q(„,,}=2", where
N is the total number of sites, each one being
either of type A or B. However, in general,
g(„, ) depends on P in a complicated way. The
free energy of the system F =-(1/P) lnZ can be
written, using Eq. (3.2), as

(3.3)F=F, —ksTln
(PAL OI

We define the quantity S, =k~ in+(„. }, which de-
pends only on P, as the "lattice" or "magnetic"
entropy. Denoting by A ' the lim„„A/N, where

parameter can be expressed, as we shall see,
in terms of the nearest-neighbor coupling 4 of the
equivalent Ising model and is defined as the proba-
bility of a given site i being of type A (i,e., having

p;o = P) under the condition that a nearest-neigh-
bor site is of type & (i.e. , it has p;, = —p). Thus,
0 & P &1. The value P=0 corresponds to the per-
fect ferromagnetic configuration shown in Fig.
1(a) while P = 1 describes the perfect antiferro-
magnetic order shown in Fig. 1(b). Obviously
P& 2 implies that local antiferromagnetic ordering
exists while P& 2 corresponds to local ferromag-
netic ordering and P= —,

' is the pure paramagnetic
case. It should be stressed that when P exceeds a
critical value P, or when P is below another criti-
cal value P,', long-range order exists in the sys-
tem which is created out of the short range corre-
lations. Both P, and P,' depend on the lattice top-
ology and for the one-dimensional (1D) case, one
can easily show that P,'=0 and P, =1. For the
two-dimensional (2D) square lattice, P, =0.85 and
P,' =0.15, so in this instance, when 0 & P S0.15,
we have both long- and short-range ferromagnetic
order, but for P such that 0.15~ P& &, we have
only short-range ferromagnetic order. When &

& P& 0.85 only short-range order is still present
but now it is of antiferromagnetic character. Fin-
ally, when 0.85 & P &1, both short- and long-range
antiferromagnetic order appear.

P will be determined by minimizing the total
free energy of the system, i.e., from the condition

A is any extensive thermodynamic quantity, we
can then write (3.3) as

E' = E,' —TS,'. (3.4)

S', (P) goes to zero when P = 0, 1 and has a maxi-
mum at P= & and finding its explicit P dependence
is a problem mathematically equivalent to solving
the Ising model with nearest-neighbor coupling
only. For the 1D case,

S',(P) = -k~[PInP+(1 —P) ln(1 —P)], (3.5)

a result which can be verified immediately if one
notes that the bonds (but not the sites) can be as-
signed independently the values P and 1-P. For
the 2D square lattice one can use the Onsager's
solution" to find S,'(P). This is achieved by first
noting that both the Ising entropy per site SI
(which is identical to S', ) and the Ising energy per
site Hz, are solely functions of PJ and J; i.e.,
S', =f,(PJ )and HI= Jf,'(PJ). Further, HJ is directly
related to P through the relation H,' = ZJ(P —,')—
where Z is the coordination number of the lattice.
Thus P is a function of P J only and so by eliminat-
ing this quantity between S,' =f,(PJ).and

(3.6)

we can obtain S',(P). If P is known at a given temp-
erature one may invert Eq. (3.6) to find the ex-
change coupling of the equivalent Ising model. Note
though that for three-dimensional (3D) lattices the
function S',(P) can be found only approximately.
In Fig. 2, S,'(P) is shown for the 1D chain, the 2D
square lattice, and approximately for the 3D simple
cubic lattice. Note also that S& is an analytic
function of P in the range 0 & P& 1 for the 1D
case. For the 2D case S&' is not analytic at P
=P, =0.855 or at P=P, =1 —P, =0.145 where a lo-
garithmic singularity develops corresponding to a
second-order phase transition associated with the
onset of long-range order. Singularities appear
also in the 3D case, although exact results are not
available. Note that the Bethe-Peierls approxi-
mation" used to obtain the 3D result shown in
Fig. 2 increases the values of S& for high values
of P- 2 and shifts the value of P„P,'towards 2.

We need also to obtain E,' for any value of P,
which means that the Green's function G;,(E)
should be calculated in the presence of partial or-
dering as described by P. This is not an easy
problem and probably the lack of a satisfactory
solution to it has been the main obstacle delaying
the proper incorporation of magnetic ordering up
to now. To overcome this difficulty we have de-
veloped"" a generalized coherent-potential ap-
proximation which is very successful in incorpor-
ating effects associated with partial ordering.
This method is presented in detail in Ref. 28.
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Sg /K~
)l

.7==

PA)

where b, rr„ is the change in the total ground-state
energy when n of the &HZ && bonds become AA or
BB. Equation (3.10) coincides with the usual def-.

inition of J.
At this point it is reasonable to summarize

our results: The many-body Green's function G,
corresponding to the Hamiltonian (1.1}can be
approximated by (G,), where

G,(E) =(E —H, ) ', (3.11)

and the angular brackets ( ) denote configuration-
al averaging. H„ is defined as

(3.12)

I I I I

0 .1 .2 .5 .4 .5 .6 .7 .8 .9 1.0
= P

FIG. 2. Lattice entropy per site (see text) S', as a
function of the correlation parameter I' for the 1D
lattice, 2D square lattice (SL), and the 3D simple
cubic lattice (SCL), according to the Bethe-Peierls
approximation (BPA) [SCL(BPA)]. Arrows indicate
the critical points.

The basic Eq. (3.1) can be written

BP ~„- dP (3.7)

Since the average Ising energy Hq = &&(P- 2), we
can write

(3.8)

Thus the basic Eq. (3.7) can be rewritten in
terms of the exchange coupling J of the equivalent
Ising problem as"

J
Z eP (3.9)

— - sZ„/2n, (3.10)

If one eliminates P between Eqs. (3.6) and (3.9)
one can find J as a function of T. Note that it was
not necessary at all to introduce J; i.e., every-
thing could be expressed in terms of P. Neverthe-
less, we have introduced J since it is a more fami-
liar quantity, and also because as it turns out,
the numerical solution of Eq. (3.7) is somewhat
facilitated by considering the equivalent set of
Eqs. (3.6) and (3.9). From Eq. (3.9) one can easily
show that

with e;, given by (2.4) and fg;,) having a binary
probability distribution characterized by two quan-
tities: P, [see Eq. (2.7)] and P. The quantity P,

is determined from the self-consistency condition

(2.8')

Note that Eq. (2.8') is not identical to (2.8); the
difference is that in Eq. (2.8') P, is determined
self-consistently for each P at zero temperature
only and then used for all temperatures. The sub-
script 0 has been introduced to emphasize this
difference. The advantages of this ad Aoe modi-
fication are: (a) the thermodynamics in the atomic
limit are reproduced exactly; (b) there is no spur-
ious phase transition at high temperatures as with
Eq. (2.8); (c) the high-temperature entropy in the
intermediate U/V regime essentially reduces to
the correct result in contrast to what would be ob-
tained by using Eq. (2.8); (d) the calculational
effort is considerably reduced. It should be noted
that the quantity P, as determined by Eq. (2.8')
can be interpreted as a local moment only at
T =0, and that Pp depends on T implicitly through
P.

The quantity P is determined by minimizing the
free energy with respect to P or by the equivalent
set of Eqs. (3.6} and (3.9).

As already mentioned, we have developed"" an
approximate method which allows us to obtain
(G;,) where G;, =(o'i~(E —Hg '~ia) and H, is the
self-consistent random Hamiltonian (3.12). In
th@ next section we express quantities of physical
interest in terms of this and subsidiary quantities.

IV. QUANTITIES OF INTEREST

A. Density of states

The partially averaged density of states (DOS)
is given by

p, (E) = —(I,/m) Im(G;, (E'))p; ot =A, B. (4.1)

It is easy to see that pi(E) = p~(Z) and p~(E) = pi(E).
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The totally averaged DOS can be written in terms
of these quantities as

p(E) = -(1/w) Im(G;, (E'))

through our self-consistent approach. If J turns
out to be temperature dependent, the conventional
Ising treatmerits should be modified.

=-'[p i(E) +pi(E)l. (4.2) D. Various thermodynamic quantities

The DOS p(E) is very important because every
physical quantity depends on it; its determination
permits at least an approximate calculation of any
observable quantity of the system. In particular,
we are interested in the U, ~, and T dependence
of p, where the latter arises from the tempera-
ture dependence of the magnetic parameter P.
Knowledge of the density of states p at or about
the Fermi level is extremely important because
this information allows a qualitative prediction of
the physical behavior of the system.

The partially averaged density of states p, e
=A or B is a useful quantity also because it pro-
vides some information about the nature of the
eigenstates: namely, what percentage of them are
associated with sites of a given type (A or 8).

B. Local moment

At zero temperature the local moment p0 is a
function of U/ZV starting from zero at U/ZV =0
and going to one at U/ZV=~. For finite tempera-
tures we can define" the local moment m*(T) so
that 1 —m*'(T) = 4n; ~n; ~ . The quantity (4n;~n;~$,
can be evaluated within the framework of our
approach by taking into account Eqs. (2.1), (2.4),
and (2.7), which leads to the result

The energy can be obtained by considering first
its expression in terms of the many body Green's
function

~(E+ E(, ) f(E)i Img (E', k),
dE

(4.8)

and then replacing Q(E, k) by (G(E, k)). Explicitly
the unperturbed one particle energy FIf is given
in the present case by Eg = Q, V»e' '; going
into the Wannier representation, and taking into
account the equation (E —H, )G, =1 one can show
after some lengthy but straightforward algebra
that

H'= g dEf (E)Ep(E) —~~U[1 —p,m(T)],
a

(4 9)

where we have taken co+-,'U = 0, and m(T) is de-
fined by Eq. (4.4). The result (4.9) can be easily
interpreted physically by first rewriting it as
H' =Q, H,' —(e;,n;,) and then noting that the last
term corrects the double counting of the electrori-
electron interaction in the first term.

To determine the other thermodynamic quantities
we can use the general relation

4
4n; ~n;~

———(e;,n;,) =1 —m(T)m(0), (4.3)
&A. BA.

(4.10)

where

m(T) =(n;)),"—(n;)),".
The quantity (n;,); is given by

(n;,); —5 dtf(E)p, (E), a=A, H

(4.4)

(4.5)

n in; ) =g[1 —m*'(T)],BU (4.11)

which allows us to write

where ~ is any parameter in the Hamiltonian and
F is the free energy. Taking & = U, we obtain

Similarly,

(4 6)

F' = —TS )(P) +F,'(V=0) +~ dU'[1 —m*'(T)]
0

Thus, m*(T) can be expressed as

m *(T)= [Pom(T)P~';

obviously, m ~(T)- P., as T -0.
(4.7)

C. Exchange coupling

The exchange coupling J of the. equivalent Ising
Hamiltonian is of great physical interest because
it controls the magnetic behavior of the system.
We would like to obtain J not only as a function of
U/ZV, but also as a function of temperature

dF' ~F's' = — = — =sI&+s'8 t (4.13)

U

=-TS,'(P)+F,'(U= )+— dU'[1 m*'(T)],
OQ 'I

(4.12)

where Eq. (4.12) is more convenient for low U/ZV
and Eq. (4.12') more appropriate for high U/ZV.
The first term in Eqs. (4.12) is the "lattice" or
"magnetic" free energy and the rest is the "elec-
tronic" free energy. The total entropy is given by
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where S,' is obtained by differentiating the last
two terms of (4.12). Expressions (4.12) and
(4.13) are not convenient for numerical calcula-
tions because the integral over U requires solution
of the problem for many U. Besides, we were not
able to show in general that S ', F', H' as given by
Eqs. (4.13), (4.12), and (4.9), respectively, sat-
isfy the ba'sic identity H'=F'+ TS'; after a rather
complicated and lengthy derivation we did prove
though that this identity is obeyed in the limits
T —0, P-1 as well as in the atomic and metallic
limits.

One can follow a different path however to find
the entropy. In particular, having a reliable and
convenient expression for H' one can obtain S,'
from the thermodynamic identity T(SS,'/& T)p
=(&H'/&T)I, which is obtained from Eq. (4.13) and
H'=F'+ TS'. Then S,' is given by

S,' = —ke Q pe(E) [f lnf + (1 —f) ln(1 —f)] dE

+k~ —,'U P,
dZ
E [Pt —»J

dH' d H' d H' dP
(4.15)

Using the basic thermodynamic identities and the
fact that P is a function of P J only as c'an be seen
from (3.6} we can reexpress C' as

C' = C'+ C' —C'
dT (4.16)

where C,' =(9H'/& T)~ is the "electronic" contribu-
tion to the specific heat and C& is the Ising contri-
bution which equals J(sf, /BT)z.

E. Response functions

The calculation of the response functions is in
general a considerably more difficult problem,

&& [f lnf + (1 —f) ln(1 —f)] + Q(P),

(4.14)

where P(P) is a.n unknown function of P which
should approach zero as P-1. We have chosen
Q(P) =0, which makes S' exact in the atomic and
metallic limits for all T and highly accurate every-
where else. For 8=0, p~ =p~, thus, the integral
in Eq. (4.14) is well defined. However, in some
special cases (p~& —p~&} may be appreciable for E
close to zero; then the factor F- ' magnifies any
numerical or other error and the expression
(4.14) may become unreliable. In these instances,
one can use Eq. (4.12,) instead. Within numerical
accuracy, both Eqs. (4.12) and (4.14) lead to the
same physical results.

The specific heat C' is given by the relation

since they depend not only on the density of states,
as the thermodynamic quantities do, but on de-
tails of the eigenfunctions.

The present scheme provides an approximate
way of calculating response functions as a sum
of a magnetic part and an electronic part; the
latter can be obtained by considering only its
dependence on the density of states and omitting
other dependencies. This is not aS bad as it may
seem, since already incorporated into our density
of states is information about correlations and
fluctuations. This approach can be applied, e.g. ,
in determining the Pauli susceptibility X which is
given by

X =2Pg —
~~ P & d~+Xm,
af

(4.1V)

where X is the susceptibility of an Ising model
and p,~ is the Bohr magneton. Note that a more
complete treatment of the magnetic susceptibility
would require the reexamination of the entire
problem in the presence of a magnetic field, taking
intp account the renormalization of P., due to this
field, etc. These aspects were neglected in ar-
riving at Eq. (4.17); however, we are presently
investigating their inclusion.

As was noted in the Introduction, the present
scheme provides a more sophisticated approach
to the problem of calculating response functions.
It is well known that most of the interesting re-
sponse functions like the conductivity, dielectric
functions, magnetic susceptibility, etc. , depend
on the two-particle Green's function 8, . The latter
can be approximated within our scheme as (GG).
Since in general (GG) &(G) (G) this approach incor-
porates "vertex corrections" in addition to the
"self-energy" corrections already present in (G).

We have attempted to apply our formalism to the
calculation of the static conductivity of the Hub-
bard model (T, which involves within the frame-
work of our scheme, evaluating the average"
Q;,„(V„G~, V»G, ~). Within the ordinary coherent-
potential approximation (CPA), Velickye3 has shown
that the vertex corrections do -Dot contribute to
&, and subsequently, he greatly simplified the final
expression for 0, , which was'then recast by Chen
et &E.' into a form very convenient for numerical
work.

Our way of calculating averages is more sophis-
ticated and more accurate" than the ordinary CPA,
and consequently, the vertex corrections contri-
bute to the conductivity tending to reproduce at
least approximately the reduction of &, (E) in the
region of the spectrum whose correlations and
fluctuations are more prominent. Unfortunately
the numerical effort needed to determine
Q;z~, ( V„G» Ve, G,q) by employing our generalized
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u, (7') =jv, (Z) i dd.
-ey ) (4.18)

The temperature dependence of v,(T) can then be
used to define characteristic temperatures, e.g. ,
temperatures at which o,(T).is discontinuous, tem-
peratures at which a metal-insulator transition
takes place, etc.

In Paper III of this sequence" we present re-
sults for the conductivity obtained by employing
the above approximations. We think that the prob-
lem of response functions should be examined in
greater detail within the framework of oh' ap-
proach and we intend to do so.

CPA makes the calculation prohibitive. Thus we
have omitted the vertex corret.'tions, as in the
ordinary CPA, and have mritten our result for
+c~„(E) in terms of a self-energy Z(E) defined
from the relation (G(E)) = Go(E —Z(E)) where G'

is the Green's function for the periodic la.ttice.
This last step was made in order to use the explic-
it formulas given in Ref. 9 that express o'cpA(E)
in terms of the real a(nd imaginary parts of Z.

To partly remedy the omission of the vertex cor-
rections agd the subsequent overestimation of
o,(E), we have attempted to determine where the
eigenstates of our approximate random Hamilton-
ian are localized. At ari eigenenergy belonging to
a localized region of the band we have taken
&,(E) = 0 while for energies belonging to the ex-
tended spectrum a',(8) was not modified, i.e.,

(E) = &cpg (E). Note that the concept of a local-
ized eigenstate has meaning only within our static
approximation. Explicitly, if the omitted time de-
pendence of our random potential is restored, the
"localized" states would become delocalized,
since the particle trapped in these states can nom

hop. This follows because of the time dependence
of the capturing fluctuations varying from region
te region in a way analogoustothephonon-assisted
hopping mhich alloms a localized state to contri-
bute to. the conductivity because of the time depen-
dence of the lattice vibrations. Thus , is not ac-
tually zero in the region of "localized" eigeristates
although me expect it to be considerably lomer than
in the region of "extended" eigenstates. %'e think
that ocpA(E) probably overestimates the conductivi-
ty while o',(E}as corrected above (by taking it
equal to zero in the localized spectrum) underesti-
mates it and thus the actual result lies somewhere
in between. Note that in the one-dimensional case.
all eigenstates are localized within the static ap-
proximation and thus the lower limit of &,(E) is
the trivial one, &,(E) =0.

Having obtained &,(E) one can find the conductivi-
ty as a function of temperature &r,(T) from the re
lation

V. CONCLUDING REMARKS

Using our statistically correlated random poten-
tial approach to the many-body problem, we were
able to recast quantities of interest as consisting
of an "electroriic" part and a "lattice" or "mag-
netic" part. In other mords, the elementary exei-
tations of the system can be separated into two
groups: (i) the "electronic" excitations associated
with quasiparticles excited across the Fermi 1'evel

leaving behind quasiholes; the effective quasipar-
ticle density of states p(E) is sufficient to describe
quantitatively this part of the spectrum: (ii} the
"lattice" or "magnetic" excitations associated
with changes &p in the thermally occupied quasi-
particle spectrum; these changes &p stem from
modifications of the parameter I', which, together
with Po(P), determines the effective random one-
body potential. Note that the "lattice" excitations
could have been described quantitatively in terms
of &p and the number of equivalent configurations
of the random one-body potential; however, a much
more convenient and physically transparent de-
scription is achieved by noting the equivalence of
the "lattice" excitations to the excitations of an
Ising model

I

Hg J . 0fgg() $)
$, 6

with a properly defined, possibly temperature de-
pendent J; i+& is any nearest neighbor of i and
the prime indicates that each pair should be count-
ed only once. In the present work we have kept
only nearest-neighbor magnetic couplings, al-
though more generally

I

+I g drip(doddij

Thus, the determination of the quantities of
physical interest has been reduced to obtaining the
density of states p(E; U, T), which describes the
"electronic" excitations, and the coupling J'(U, T),
which describes the "magnetic" excitations; we
explained above, how these quantities are found
self-consistently for each value of U and 7.'.

After our present inclusion of "lattice" or "mag-
netic" ordering, there remains only one last phy-
sical irigredient omitted by our random potential
approach to the many body problem: The time-
dependent or dynamical nature of the effective
one body potential. In what follows we describe
in physical terms the expected modifications of
our previous conclusions as a result of the time-
dependent character of the effective random po-
tential. Although much of the motional narrowing'
processes have a1ready been included in our self-
consistently defined P„still the random potential



3956 E. N, . ECONOMG U, C. T. %HITE, AIV D R. R. De MARCO 18

is not static. In other words, the configuration of
A 's and B's over the lattice sites [see Fig. 1(c)]
is not frozen but changes. with time, sro that an A

site can become B (and vice versa}. Note that
whenever a site changes from A to B, A. -B, an-
other site should charige from J3toA. , B-A., so
that the total number of electrons with spin up
(or down) is conserved. Such processes can be
described by a Hamiltonian 4 H of the form
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APPENDIX: GAUSSIAN RANDOM-FIELD APPROACH

where p'&' is the usual Pauli matrix which changes
a down local moment at i to up, or equivalently
a B site to 4 [see Fig. 1(c)]; similarly o', makes
the transformation A. -5' at the site j. Thus the
time-dependent character is incorporated by add-
ing the Hamiltonian 4B to our self-consistent
static random Hamiltonian. This addition will
transformthe Ising part of the latter II~
= -Z&)) ~(ye(de'gz to

t;f
)dr errrr -' de s;,s,.—: =" (s,,s,:, es,.„sr„))

Z= Dp Dvexp -~U v2 s
s p

+sr (s)]de) Z(S, rr),

where H is given by (1.1), P =1/ks T,

X(s, rr) =Trp, exp(- rr(s) ds);
0

(A1)

(A2)

T, is a "time" s chronological-ordering operator,

H(s) = g e,n;, (s}+ g V,~ a,t (s)a,,(s)
ha mfa

The partition function Z = Tr exp(- pH) can be writ
ten"

(6 2)
——,'(rQ (is;(s) +rrrr;(s))s;, (s) (As)

In arriving at the last expression the isotropy of
the Hubbard model has been used, which requires
that

tQ — 2(JQ s

Thus the time-dependent nature of the problem is
equivalent to changing the character of the "mag-
netic" excitations from Ising to Heisenberg.

The replacement of the Ising by a Heisenberg
Hamiltonian would modify in general the quantities
p(E; U, T), J(U, T), H, (U, T) which were determined
self-consistently using Ising-type magnetic exci-
tations. This question mill be examined in the fol-
lowing paper after specific results have been ob-
tained and analyzed.

To conclude: %e have incorporated in the static
random potential approximation to the Hubbard
model the possibility of magnetic ordering; the
latter introduces Ising-like magnetic excitations
and modifies the quasi-particle spectrum. %e
developed techniques to determine self-consistent-
ly both the magnetic coupling constant and the
modified quasiparticle spectrum p for every value
of U/ZV and T. Furthermore, it was shown that,
if the static approximation is relaxed, the mag-
netic excitations will become Heisenberg-like;
this will lead to some additional renormalization
of the self-consistent magnetic coupling constant
and the shape of the quasiparticle spectrum.

d= ] de, , exp — (rr] —())X,PU

where

(A4)

and

tH = ~ V~a; afa+~U~ LLLsa
fj

I

Z= Tr exp — B,
a

(A5)

(A6)

(A7)

To evaluate Z we first introduce the auxiliary
quantity Z(&) which is obtained by replacing U
everywhere by AU. [Thus, e.g. , Z=Z(1). ] One
can then easily show that

and fD pD]d denotes , functional integration over
the functions (]d, (s)), fp, (s)).

The static approximation is to omit the depen-
dence on the "time" s and thus reduce the func-
tional integral in (Al) to an ordinary integral.

One cari then argue that the quantities v;, which
,represent charge densities" at each site i, have
negligible fluctuations for positive U and conse-
quently, dan be replaced by a constant determined
from the total number of electrons in the system.

Using these two approximations, and choosing
for convenience fp 2Uwe can then write
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——lnZ = ——lnZ(0)

1

+ dX g-, U p&, n&, (A),
p $o

(A8)

where n;, (A) is the thermodynamic average of n~,
corresponding to the value ~ and is given by

I
n;, (A) = —— ImG„(E' X}f(E)dE. (A9)

The Green's function G;,(z; A) is defined the
usual way:

and E" denotes the limit lim, 0+(E+is) and f rep-
resentsthe Fermi distribution f(E) =(ebs+ I} '.
Note, since we have assumed one electron per
lattice site and taken ep =--,'U, the chemical po-
tential p is zero for all temperatures.

The partition function can be written by com-
bining Eqs. (A4}, (AV}, and (A8} as

Z =Z(0), d p; e 8~,
i

with

(All)

E=
4 Q(A- I) - Q dEf(E)[Di.(E) - Dl.(E}],

CO

(A12')

where D&, is the cumulative density of states per
site per spin,

~ E
D(,(E) = —— ImG„(E")dE',

1F

and D;, =- D&, when U=O. Equation (A12') can be
derived from (A12) by introducing D„(E;A) cor-
responding to &U instead of U and then showing

P= —g (p,', -1)+—g p&, din„(X).U 2 U

io p

(A12)

Equations (A9}, (A10}, (All), and (A12) have ac-
tually reduced the many-body problem to a ran-
dom one body one. The free energy I' can also be
expressed as

that

-Q J) dEf(E) ' ' = —Q p,), R),(X).
5Q ia

The last step is based upon the general relations
BG/&X=G&H/&yG and &G/8E=-G, where G

=(E —H) ' and g is any parameter entering H.
Note that Eq. (A12} does not agree with the cor-
responding expression obtained by Cyrot. "" The
difference is due to the additional approximation.
employed by Cyrot, '" of omitting the change in

G&, due to variations in p, z for j &i. Note also
that the general expression for the free energy
of noninteracting quasiparticles is

dE ED; E,
where D„(E) is the corresponding cumulative
density of states per site. In our case the cheoi-
ical potential p. =0; the first term in the righthand
side of Eq. (A12') corrects automatically for the
doublecounting of the interaction term in H, (a =+I);
the last term is compensated by Z(0). Thus, Eq.
(A12'} has the expected form

The integration in (All) can be performed using
the saddle-point approximation, which picks out
the most probable values of {p~], which we will
term p&p corresponding to the minimum of I',
1.e.]

(A18)

Again employing the relation s G/8X = G(&H/8X}G,

one can easily show that

(A14)

and finally by using this result in conjunction with
.Eqs. (A12} and (A9), we obtain Eq. (2.5) of the text

p.&, =n&~ —n;~ . (A15}

Note that Eq. (A 15) is a generalized Hartree-Fock
self-consistency condition since it states that the
most probable local effective potential energy that
an electron with spin 0 experiences at the site j
is equal to ep+Un~, .
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