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Plasmon structure in the x-ray absorption spectra of metals
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The effect of plasmon production on the x-ray photoabsorption spectra of metals has been studied in the
framework of the many-body perturbation theory. The plasmon starts to contribute very weakly at the

frequency E++eo~ (E„ is the absorption-edge frequency and co~ is the frquency of a zero-momentum

plasmon). The plasmon absorption edge at this frequency is, in fact, so weak that it does not have any
significant effect on the calculated spectrum and possibly cannot be detected. However, a new structure

appears at a higher frequency. This structure occurs as a dip of 5%-7% at the frequency Ez+ co~ where

so~ is the highest frequency of the plasmon dispersion curve beyond which plasmon production is precluded.
The physical significance of EF + eo is that it is the lowest x-ray frequency at which the plasmon excitation
can become a real process during x-ray photoabsorption in metals. The existence of the plasmon structure at
this frequency allows an estimation of the extent of plasmon dispersion in metals.

I. INTRODUCTION

For the past few decades there has been a great
deal of interest in the prediction and observation
of various elementary excitations (e.g. , plssmons,
magnons, polarons, etc. ) in solids. The effect
of plasmon excitation in a metal is demoristrated
in many of its electronic and optical properties.

- For example, the production of a plasmon during
the soft-x-ray emission of a metal. has been
studied quite extensively both theoretically' ' and
experimentally. "' A weak satellite band is found
to occur on the low-energy side (tailing region)
of the spectrum, shifted by an energy &o~ (class-
ical plasma frequency) from the high-energy edge
of the emission spectrum.

The effect of the plasmon production of the x-
ray photoabsorption spectra of a metal is not so
well known. Normally one would expect to ob-
serve a plasmon satellite absorption edge at a
frequency v~ above the frequency S~ corresponding
to the absorption of edge of a metal. However,
so far nothing significant has been observed' at
this frequency. The reason for this may lie in

any or all of the following three arguments. First,
the satellite edge may be weaker in absorption
than in emission as shown by the calculations of
Bergersen et al. ' In other words, the cancella-
tion effects responsible for making the intensity
of the emission satellite weak, may be evan
stronger for the absorption satellite. Secondly,
the slope at the satellite edge is less steep than
that of the main absorption edge because of dis-
persion of the plasmon frequency. Finally the
band-structure effects play a much more impor-
tant role at the absorption frequencies and may
make the weak satellite edge completely obscure.

However, it turns out that the effect of the

plasmon production can become more important
at a somewhat higher frequency, Ez+ &u~(k, ) where
[due to the plasmon dispersion relation ~ = sr~(k)]
k, and &o~(k, ) are the wave number and

frequency beyond which the plasmon dispersion
curve merges into the singl. e-particle excitation
region of the ur-k plane' (see Fig. 2). Calling
&u~ = v~(0) and &o&

———&o~(k, ), it is interesting to
note, in this regard, that the ratio &o&/&o~' is prac-
tically constant over the whole range of electron
densities for the usual metals (the ratio varies be-

.tween 1.50 for r, =2 and 1.48 for r, = 5). Thus,
once the classical plasma frequericy (d~ is known,
&~+ e~ for any metal can be readily estimated.

At this frequency, a new structure appeai's,
which, to our knowledge, has not beeri reported
before. This structure occurs as a dip of a few
percent and extends over a frequency range of one
or two eV, in the intensity of the x-ray photo-
absorption spectra of metals. The magnitude and
shape of this structure are not significantly dif-
ferent in the absorption band of most metals. Most
recently, attempts have been made by Senemaud"
and she has been successful in observing a weak
structure at the predicted frequencies in the Z
spectra of Al and Mg (following paper).

In the next section, the physical origin of this
plasmon structure will be discussed. It will be
interpreted by the combination of two reasons,
namely the discontinuity of the Fermi distribution
and the possibility of producing plasmons with con-
servation of energy in the intermediate state when
the frequency is higher than E~+ (d&. In Sec. III,
a qualitative approach to determine the shape of
the structure in terms of a formal model of ex-
citation of a plasmon mode with a single wave vec-
tor k will be presented. In Sec. IV, a calculation
in a realistic model of the x-ray photoabsorption
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spectra of metals will be performed in the first
order of effective electron-electron potential. Con-
clusions will be drawn in Sec. V.

II. ORIGIN OF THE STRUCTURE AT EF + w~

In this section, we present physical arguments
for why one should expect a plasomon structure at
the frequency &~+ &&. Consider, for the simplicity
of argument, the x-ray absorption spectrum of an
ideal metal where the band-structure effects can
be ignored. As shown in Fig. 1, three frequencies
can be distinguished in which the photoabsorption
presents a different character with regard to plas-
mon excitation. Figure 1(a) represents the photo-
absorption close to frequency E~ (absorption edge).
A core electron of energy &~ absorbs the incoming
photon of energy E~= E~ —&~ and jumps just above
the Fermi level E~. Due to the lack of extra en-
ergy of the photon, this transition cannot be ac-
companied by any plasmon production. This situa-
tion occurs up to frequency E~+ v& which is the
lowest frequency where a plhsmon can be excited.
This will be the frequency of a p'ossible satellite
edge. This situation is represented in Fig. 1(b).
The core electron is finally accomodated close to
the Fermi edge via an intermediate transition
through a state of higher energy E~+ e~. The
plasmon is produced in the intermediate state and
the electron drops from state &~+ ~~ to state &~.
Vile will see that this transition is necessarily
virtual (no energy conservation between the inter-
mediate state and the final state). To have such
conservation of energy, we need a photon of higher
energy and this energy will be shown to be pre-
cisely E~+ ~~. Figure 1(c)represents this third sit-
uation where the core electron is once more ac-
comodated close to the Fermi level in the final
state, but the intermediate state now hag suf-'
ficient energy to yield a plasmon by a real or ex-

trinsic process, i.e. , a process where energy is
conserved.

Let us show that the minimum plasmon energy
&u~(k) required to make the above process real is
&o~(k)=(u~ (or k=k, ). Let e, =p'/2m and e(-, g(
=(p —k)'/2m be the energies of the electron in the
intermediate state and the final state, respec-
tively. The conservation of energy between these
two states requires that e~ = &~-, ~ ~+ (u(k) or &o(k)

= -k'+ 2p
.k (hereafter we let 2m= 1). This implies

that k and ur(k) must satisfy the condition

co &-k + 2pk .
Because of the Pauli principle satisfied by the con-
duction electron, another condition on the final-
state electron is e~ -

y ~

& &~, or using (1)

P' —V& kz .
In order that both conditions (1) and (2) can be
satisfied simultaneously, the frequency and mo-
mentum (td, k) of the plasmon must lie inside the
truncated parabola of the v-k plane shown by the
shaded area in Fig. 2. In this figure, the plasmon
dispersion curve &o= &u~(k) is represented by the
thick curve extending from point A to B. The two
dashed parabolas satisfy the equation

(o = k(k+ 2p~)

and define the area of the single pair excitations.
Thus, the above conditions imply that for the pro-
duction of a real plasmon, the plasmon curve
must, at least partially, lie within the shaded para-
bola. Now as the energy of the incoming photon E
increases from the x-ray absorption edge fre-
quency Ez, so would the energy e~ (= p') of the
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'FIG. 1. X-ray photoabsorption process in a metal.
(a} Represents photoabsorption without any plasmon pro-
cess. (b} Corresponds to photoabsorption accompanied
by a virtual plasmon process. (c} Shows the same pro-
cess along with a real plasmon excitation.

FIG. 2. Area within the dashed curves in the cu-k plane
shows the region of single-particle excitation and the
thick solid curve AI3 is the corresponding plasmon line.
The shaded area inside the trunc'ated parabola depicts
the region where photoabsorption is accompanied by a
real plasmon process.
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ejected electron from ez (= pg). This would, in

turn, mean that the area under the shaded curve
would incr ease, and the line joining the points X
and F in Fig. 2 would move to the right as the
point F would move along the dashed curve in the
direction of the arrow. A plasmon production will
become possible as soon as point X crosses point
A. Obviously, this will occur when c~ ~ ~~+ a)~

and this is exactly the process shown in Fig. l(b).
Note that at this stage curve AiB does not yet entier
the shaded area. The plasmon production is thus
a virtual process at this fr equency. Curve AB
will enter the shaded area for a higher photon
frequency, and consequently a higher &&. This
will occur when point F reaches point B and as
indicated before, this is exactly the condition for
the deexcitation of the ejected electron by a real
plasmon process. This is what that has been
described in Fig. I(c). As it is obvious from Fig.
2, this condition is satisfied when a~=a„+ e~.
These considerations make clear the critical
roleplayed by the frequency E=E~+~~ and why
one expects to observe something unusual in the
x-ray absorption spectrum at this frequency.

Since we do not consider multiplasmon transi-
tions, the final state can be represented either
by a state vector ~p) (zero-plasmon production)
or by ~p —k, k) (orie-plasmon production). The
above argument simply indicates that above a
certain frequency, which we have shown to be
E~+ co~, these states can be degenerate. In other
words, electron II can emit and reabsorb a plas-
mon k; this corresponds to a resonance. However,
the electronic levels have a finite width I'(E~) due
to damping by plasmon production. This width
wil. l damp the resonance, and the resonance will
be spread over a few eV. At first sight it may ap-
pear that it would be hard to detect such a reso-
nance. This would indeed by the case if we do
not take into account the Fermi distribution dis-
continuity. Since the width I'(cs) of the core state
is much weaker than I'(c~), this discontinuity, in
fact, plays an essential role, making the final
states available only if E~ and &~., gi are larger
than c~. Actua11y it is the combined effect of these
two widths which is responsible for the new plas-
mon structure that we are reporting in this paper.

III. SHAPE OF THE NEW STRUCTURE:
SINGI.E-PLASMON MODE

In the next section, we will undertake a detailed
calculation of the x-ray photoabsorption in the first
order theory of the effective electron-electron
interaction. However, in order to obtain a feeling
for the nature and shape of the predicted struc-
ture, in this section we discuss the x-ray absorp-

(4)

where e(p) represents the matrix element for x-
ray absorption and where the frequency E is mea-
sured, as everywhere else in this paper, from
the bottom of the conduction band. The actual
frequency of the absorbed x-ray is thus E —~~
where cs is the core hole (negative) energy.

In Eci. (4), S(p, E) is the renormalized propa-
gator of the final-state electron which is excited
from the core level by the x-ray absorption. This
renormalized propagator has the form

E —e, —Z(p, E)+f.X

where 8 is the step function and where in the
lowest order of effective Coulomb interaction the
self-energy Z(p, E) can be expressed as"'"

Z(p, E)=, dke( ip.-k i -p~)

X V (k E —ti Ii), (6)

where V, (k, u&) is that part of the effective interac-
tion which is analytic in the upper half of the com-
plex e plane. Note that in this expression another
term containing &(P~ —

~
p —k~)V has been neglec-

ted since such a term would not contribut'e to the
absorption process. Remembering that in this
paper we are only interested in the plasmon pro-
duction; we will only keep the plasmon part of
V, which has the form""'"

V+(k, ur) =-, v(k)&o~(k)c(k)—
cO —(d~ k +f,X

where v(k) is the bare Coulomb potential 4ve'/k',
a&& (k) is the wave-number-dependent plasmon
frequericy (thick line in Fig. 2), and c(k) is the
weight factor determining the plasmon excitation
and is determined from the sum rule"

d(d (dV (k M) = -2v (~ g ) V(k)
0

applied to the total effective potential (plasmon

(8)

tion process within a simplified model o'f the
electron-plasmon system. In this model we as-
sume that the only plasmon mode which can be
excited is the one having its wave vector k point-
ing in a small element 4k. Such a model will
also clearly indicate that the predicted structure
is not a spurious effect due to some unphysical
nature of the approximations of our theory and that
the structure will be expected to persist even in
a renormali red theory.

One of the terms contributing to the intensity of'

the x-ray absorption spectra of metals can be
written as (see next section)
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and can be used in the propagator (5).
I et us now introduce our model and consider only

the wave vector k pointing in a small element
d k. It has a well-defined length and orientation
with regard to the momentum p of the electron.
The electronic self-energy (9) for this particular
model can be written

(10)

where

&~, = e(-, „) +(u~(k)

a a;=, &(k)(u~(k)c(k)bk .
2 2v)' (12)

With this simplified self-energy (10), the renor=
inalized propagator (5) takes the form

(E e, +fr)(E —e, „+i~)—~a-„'
where the 8 functions have been dropped by assum-
ing implicity that

p&P~,
~ p —k

~
&P~, and k&0,

From the propagator (13), we can write the spec-
tral function in the following form

part+ single pair part). One has c(0) = 1 and

c(k, ) = 0. It is also found that c(k) is practically
equa1 to one for all plasmon wave numbers except
in the region k ~ k, where it drops to zero very
rapidly.

The electronic self-energy related to the plas-
mon excitation then has the form

1

v(k) &o, (k)c(k) e(k, -0) 6( I p - k I —,~)
E e,; g ~

(o,—(n)+i~

the response of our one-plasmon model to a probe
of frequency E.

It can be easily checked that for a small hag
(= 0) and for e~ not very close to e& „, the spec-
tral function (14) has a peak at the frequency v-', 1
—= E= e~(zero-plasmon excitation) with a prob-
ability

A2-„[=—Aj -„(Ag „) for e& —e~ 1~ &(&)0]

which is practically one and that it gives another
peak at v-', -„—= E= e „(one-plasmon excitation)
with a probability

Ag „-[=—A-'g(A; „-) for e~ —e(,--„( (&)0]

which is close to zero. Thus, the probability of
x-ray photoabsorption with one-plasmon excita-
tion is much weaker than the corresponding prob-
ability without plasmon excitation except in the
vicinity of 4~ ~ =&~. However, if E& ~=&& i.e. , if

p is such that the electron can excite the plasmon
k with conservation of energy the probabilities tend
to be equal. In other words, as E~ ~ approaches
&~, the probability A& -„departs from one and A-', „-

from zero and they become practiacp, lly equal to
each other when &~ ~ and E~ are within the fre-
quency range of (oaf )'~' (related to the electron
damping). . For a~ =a~ „, one has the exact relation-
ship && ~ =&-, -„=&. Vfe say that at this frequency
the single-electron excitation process goes into
a resonance with one-electron excitation accom-
panied by a plasmon process.

The above considerations are depicted in Fig. 3.
In Fig. 3(a) the frequencies of the peaks are plotted
as functions of the electron momentum p for the
case ha»„= 0 and are given by the two intersecting

O
O~

—ReS(p, E) = A;- f 5(E —v»,
' -„)+A=, -„5(E—v; f ),

(14)

where

A; -„= —.
' [1+(~, e, , )/R;, ]

~s" --"
r

0 Pp Ps PR

(b)

0
O~

\

X
I

I ~~I I

IA ~ 4y0 0
(c ) (o )

1
v~ p

= ~(&p+ co, aR~ i, ),
with

R~ g
= [(~, —e, ,)'+ 4n.a-„]"'

This spectral function is directly related to cross
section for absorption by Eq. (4). Thus, it gives

Flo. 3. Schematic representation of the nature and

shape of the plasmon structure iri a simplified electron-
plasmon model (see text). (a) The i.ntersecting para-
bolas are frequency peaks for zero plasmon (thick curve)
and one plasmon processes plotted as functions of
electron momentum p with Ag~ =0.(b) Same curves as
{a) for finite 4a&. (c) The probabilities of the two pro-
cesses are shown individually. (d) This figure repre-
sents the total probability.
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parabolas. In Fig. 3(b) the same curves plotted
with a finite 4a-„. The widths of the curves in this
figure represent the probabilities of the response
for each frequency. These probabilities are shown
separately in Fig. 3(c), as functions of fretiuency
and the total probability obtained by adding the two
is depicted in Fig. 3(d}. [Note that if da-„goes to
zero the curves A'; ~ of Fig. 3(c) would tend to step
functions].

The important point to realize now is the effect
of the Fermi distribution. Since one must have
e~ & e~ and t~ „&ez+ &o~(k), t'he zero plasmon mode
excitation curve must have a cutoff below &~ and
the one plasmon mode curve must have its cutoff
below v, = e~+ &o~(k) as shown by the dotted curves
in Figs. 3(a) and 3(b). This also corresponds to
the origin of the low-frequency edges at frequency
E = c~ for the probability of an electron excitation
without a plasmon production and at frequency E
= ez+ (o~(k) for the probability of an electron ex-
citation with a plasmon production, as shown in
Figs. 3(c) and 3(d). These edges are well known,
in spite of the fact that the plasmon satellite edge
was never observed at its minimum balue &„+~~ .
In general, the structure produced by the addition
of the above two probabilities will be rather weak
as shown in Fig. 3(d). But this edge may become
quite important if v, is close to the resonance fre-
quency vs-=&~ = &~ ~ 1~+ to~(k), since at this fre-
quency the edge of the plasmon satellite is super-
posed on the cusp structure of the single-particle
excitation probability A&~ g. We may even hope to
observe the isolated cusp structure of A-', „ if v,
& v„. But by using the following phase space
argument we can show that the condition v, & v„
can never be satisfied for any plasmon mode.

Since v, = p~+e$k), the maximum value of v,
must be v, ~= p~+ oP&. However, we have seen in
Sec. II that the resonance condition p'= u&+ ~p -k~ '
would be satisfied if the ((u, k) values lie in the
shaded area of Fig. 2. The minimum value of the
resonance momentum for which the shaded area
enters. the plasmon curve is determined by p'„
-p~= uP~ (coincidence of I' and B). This shows
that the minimum resonance frequency v„"
=-P~ „=v,~ i.e., v~ must always be greater than
v, . The same result couM also be obtained by
an analytic argument.

The conclusion of this section appears in Fig.
3(d). It shows that a structure would appear in
the form of a dip at the frequency v, and would
become particularly important when v, is close
to v„ i.e. , when v, = v~= &~+ oP&. The next step
is to proceed to a complete calculation of this
structure in a realistic model where all k modes
exist. This will be done in the next section in
the first-order many-body perturbation theory.

IV. FIRST-ORDER THEORY

I (&)=e(&)&e.(&) (17)

with s'(&) given by (16). This expression allows us
to estimate the importance of any many-body struc-
ture as a percentage of the local spectral intensity.

The rules to compute the diagrams of Fig. 4 are
well known. ' One associates, respectively, to the
conduction-electron (solid) lines, to the core hole
(double} lines and to the potential (dashed) lines

]&+ ~~' A" ]i + ~~' "A Pi&+ '

I

FIG. 4. Diagrams in zero-and first-order in effective
Cou)omb interaction contributing to the x-ray photoab-
sorption process.

The calculation of the x-ray photoabsorption in
the first-order effective Coulomb interaction can
be performed using the same general lines as
those of Ref. 8. Using Fermi's golden rule, the
intensity of absorption can be written as

00

e(E)= —Re dte' 'e" (0 ~e (t)8(0) ~0) I
7T 0

(15)

where 0 represents the dipolar operator and where
the x-ray frequency E is measured from the bottom
of the conduction band (see Fig. 1). Using a first-
order diagrammatic expansion of (15) in the ef-
fective potential (7), we would obtain the diagrams
of Fig. 4. These diagrams are related to the ma-
trix element of (15}and give the four terms

(16)

The important term by which the plasmon struc-
ture can be described and calculated is ~„(&}(dia-
gram A). However, we are also interested in the
relative importance of the structure with regard
to the whole spectrum. For this reason we have to
use a reference intensity which will be provided by

e, (zeroth-order intensity}. Moreover, we know
that if we neglect any diagram or term contributing
to a definite order, we miss the strong cancellation
effects which validate the perturbative expansion.
We have thus also to include diagrams I3 and C.
We will also calculate the normalized intensity
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the factors

S(p, t, —t,) = g(t, t, ) g(p p,)e-*' t"i

Ss(t, —t, ) = —g (t, —t, )e "a"i ta',

V,(k, t, —t,)=(2v) 1 d~ eiaktl tp) V (k (g)

with V.(k, ur) given by (7). Factors

0(p) = (p I
in -v IB)

are associated to the radiation vertices (wavy
lines of Fig. 4) (n is an averaged polarization vec-
tor); an overall minus sign takes into account the
closed loop character of the diagrams. The above
expressions are introduced in (15) (matrix element)
and one integrates over times and momenta. In
these calculations e(p) can be approximated by

All the integrations contained in these expressions
can be performed analytically except the last one,
over IkI, which has been computed numerically.
For more details regarding these expressions
we refer to Ref. 8 where we show, among other
things, the way to handle those contributions to
the matrix element of (15) which are proportional
to t (shift of the whole spectrum). At this point,
we would like to emphasize that the term that
really describes the plasmon structure discussed
in this paper, is the first term off~ in Etl. (19).
First, let us note (in the spirit of Sec. III) that S„
can be written in the form

g„(E)= —— dp(p'] Im
D', Z(p, E)

which is the first-order term in the expansion of

0(p) = D for L bands, e(p) = Dp for K bands,

D being a constant.
Using the momenta labeled in Fig. 4, one obtains

for the zeroth-order term

D2
~ (E)+s (E)+0 A

7T
dp &p9

x Re
2

E - &, -Z(p, E)

This latter expression is precisely the renormal-
ized form of E(l. (18) and this is exactly the term
that we had considered in Sec. III. Thus, the term
in Etl. (19) that we should discuss in detail is
the term containing ImV, . Using E(l. (8), it can
be written more explicitly as

~ (E)= '—' d-( q R. '"P-P.. 'E-p'+ jX

= 27tD'fE}E'~' g(E &~) (18)

Here and below, the quantities within the curly
brackets have to be replaced by 1 for L bands.
This gives the well-known zeroth-order band shape
in E' ' for L bands and E' ' for K bands. Similarly,
one has for first-order terms

D2 'c
&„'(E)= dk k'c(k)v(k) ~t (k)2'

D2
tt„(E) = ——, dk dp( p']

x(g (Ip-kI —p, ) ImV, (k, E —&g g() s,
'

+ g(p- p~)[ g(lp-k
I
-p.) ReV (»E —~(y-j()

x g(E ez ~&(k))

t &E&[E—~, (k)]"'
([k + u&, (k)] —4k E

+ —infAj ),4k )'
where the second (smooth) logarithmic term ap-

—g(pt —Ip —kI)ReV, (k, e —E)] pears only in the & bands (set A = 1 for L band~}.
The denominator of the first term cancels for

xv5 (E ~, }),

dp&p'l

x e p-p~ ImV, k, E —e~
ac~ E

+ Rk(, (k, k —k!)ki!'(E —k!()

(19)

2D2
tt, (E) = 2, dk dp(p' —p ' k)

x 8 p —k -p~ ImV k, E —Eg pI +0 p-p,
x [g(/p —kJ -Pt, )ReV+(k, E —e )

I p-&I

-g (pt —Ip —kI) ReV, (k, e(- g) —E)j

x Q(E g )
6'

Ip-kl

&ot(k) = -k'+2kE't' .
Going back to the discussion of Sec. II we notice
that it is precisely the condition required for the
intersection of curves OF and AB of Fig. 2 (with
E= Et). The condition for the cancellation of the
above denominator is thus that the photon has at
least energy E=E~+ v&. It is the reason why
some peculiar behavior can be expected in the
spectrum at this frequency. In fact, all the other
first-order terms of E(l. (16) also have the same
peculiar behavior at this frequency. Once the
complete calculations are performed i.e. , once
the contributions from all the first-order terms
are included, we obtain the curve of Fig. 5 for L,
absorption spectra of Na, and that of Fig. 6 for the
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0
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0.60 &Op 0.80 ~c l.0
E-EF

FIG. 5. L photoabsorption intensity of Na showing the
structure due to plasmon production, near the frequency
Ez+ cu&. The dashed line represents the zeroth-order
result. The inset shows the normalized intensity I(E)
defined by (17) near the plasmon structure.

E-absorption spectra of Mg. Let us note that in

both cases, the structure appears in the form of
a dip of 5'-VVo near the frequency E~+ uP~ and that
it extends over a frequency range of one or two
electron volts. Our number ical computation also
indicates that if the plasmon dispersion were not
included, the structure would be much more pro-
nounced and would appear at the frequency E~

0.+ 40~.

V. CONCLUSIONS

L
C3

1
O
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Pb

1.04

3{E)
&,{E)

0.96

0
0
0.25 0.40 0,60

E- EF

IItdp
C

0.80
I

1.0

FIG. 6. K photoabsorption intensity of Mg. The plas-
mon struct re app ars near the frequency EF+ Mpc. The
dashed line represents the zeroth-order result. The
inset shows the normalized intensity I(E) defined by (17)
near the plasmon structure.

In this paper, we have studied the effects of elec-
tron interactions on the x-ray photoabsorption
spect:ra of metals in the framework of many-body

perturbation theory. Our calculations predict
the existence of a structure in the photoabsorption
intensity due to excitation of a plasmon during the
x-ray absorption process. It is shown that the
structure is expected to occur at the frequency
E~+ e~, the cutoff frequency for plasmon production
rather than at E~+ +0~, the threshold for plasmon
excitation. This structure is not easy to observe
primarily because it is weak and second, because
it occurs in a spectral region where the band-
structure effects are important. However, this
structure is interesting because it is probably the

only observable effect related to plasmon produc-
tion in x-ray photoemission. Since the structure
is supposed to occur at the frequency correspond-
ing to the cutoff of plasmon, its observation would

also give an experimental measure of the frequency
extension in plasmon oscillations. It is interesting
to note the Senemaud has been able to observe this
plasmon structure in the K spectra of Al and Mg
at the expected frequencies (following paper).

Finally, we should perhaps make some comments

regarding the validity of our approximations. The
final calculations of Sec. IV have been carried out
in the first-order perturbation theory. One thus
has to make sure that the structure predicted is
not spurious, appearing as an artifact of our ap-
proximations and that it will not be washed out by

higher-order terms. In fact, we have already
addressed this problem in Sec. III where it has
been shown that the use of a renormalized propa-
gator applied to a simplified model (where the
plasmon has the momentum k) exhibits the same
structure. In this paper, we have also not in-
cluded the contributions of the single-pair ex-
citations explicitly. Such processes would con-
tribute smoothly throughout the entire spectra
without affecting the plasmon structure. In fact
the plasmon contribution is not strictly limited to
the the thick curve of Fig. 2. In a sense, the
plasmon dispersion curve may be consider'ed to
penetrate slightly in the single pair region where
there are remnants of a collective behavior.
Function ImV, still peaks strongly in the immedi-
ate continuation of the dispersion curve and this
will not modify the results of our calculations sig-
nificantly. Figure 2 shows that if we continue the
dispersion curve slightly beyond the point B, the
"extended" dispersion curve will still enter the
shaded region when point F reaches point B. The
only differences will be (i) that the vertical sec-
tions of the calculated structure will be less steep.
(ii) that the dip in the plasmon structure will be a
bit more important.

This can be exhibited by slightly modifying the
weight function c(k) appearing in Eq. (7) and by
making the cutoff momentum slightly larger than
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k, . We have seen this in our calculation by setting
c(k) equal to unity everywhere and the curves
shown in Figs. 5 and 6 are, in fact, results of
such a calculation. The curves obtained by using
c(k) given by Eq. (8) are very similar to those of
Figs. 5 and 6 except that the strength of the
plasmon structure appearing at frequency E~+ ~~
is between 3~/o to 59o for various metals. How-
ever, in view of above discussion we feel that
the results shown in Figs. 5 and 6 are more real-
istic.
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