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Electrical transport in transition-metal liquids and metallic glasses
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The extended Ziman-Faber theory is developed in terms of a consistent single-site approximation to the
density of states that permits a simple interpretation and evaluation of the effective valence Z~ and other
relevant parameters without reference to crystalline-band calculations. ~ Results for four transition-metal
liquids (Fe, Co, Ni, Cu) and two amorphous alloys (¹iPand CoP) yield Z~ R 1 for the former and Z~ 2
for the latter. In contrast with previous calculations, the electrical resistivity is greatly overestimated when
the theory is applied consistently to strong-scattering liquids such as Fe and Co, while better results are
found for Cu and Ni, in which the scattering is weaker. It is concluded that for the former type of system
the Ziman formula should not be used to compute the magnitude of the resistivity. Similar results are
obtained for a-CoP and a-¹iP. The effect of the metalloid on the resistivity of the glass and its
relationship to the corresponding transition-metal liquid is explained within the context of the model.

I. INTRODUCTION AND CONCLUSIONS

The recent experimental demonstrations' ' that
the electrical properties of an amorphous metal
at room temperature are very similar to those of
the corresponding liquid near the melting point
have led to renewed interest' ' in the Ziman-Faber
transport theory as extended to transition-metal
systems. " The present paper develops the in-
gredients of this theory from a consistent applica-
tion of the single-site approximation underlying
the extended Ziman formula for the resistivity.
In contrast with previous calculations, the effective
valence Z* and Fermi energy E~ are obtained
without the use of crystalline band calculations.
This procedure is the only one consistent with the
theory's original formulation. ' ' The present
calculations, using the sante set of assumptions,
provide for the first time a valid systematic
comparison with experiment for transition-metal
liquids, and thus help to develop empirical criteria
for the applicability of the theory. They also per-
mit an unambiguous identification of the effect on
the resistivity of adding a metalloid to a disor-
dered transition-metal host. Previously published
calculations' for amorphous ¹iPmade no connec-
tion with the properties of pure liquid Ni. The
present results also include the first to be re-
ported for amorphous CoP.

The calculations reported in Sec. II for liquid Fe,
Co,¹i,and Cu yield Z*~ 1 in all cases, a value
that ha.s been suggested empirically" but not ex-
plained. The electrical resistivity so obtained,
however, is much too large for the strong-scatter-
ing systems Fe and Co, while semiquantitative
agreement with experiment is found for the weak-

er-scattering liquids Cu and Ni. , It is possible to
conclude that in the former case coherent multi-
ple-scattering effects, explicitly neglected by the
Ziman formula, that might serve to increase the
mean free path and decrease the resistivity, are
important. Proper inclusion of these effects
would require more detailed information about the
short-range order in the liquid or glass than is
contained in the ordinary structure function a(q).
Since this information is not available from experi-
ment, and since realistic yet tractable multiple-
scattering transport theories have not yet been
perfected, it is difficult to do much better at
present. In this respect, however, the recent
increased activity" in electronic structure calcu-
lations for liquid transition metals is encouraging
and may soon lead to improved transport calcula-
tions.

Similar results are obtained in Sec. III for the
amorphous alloys COP and ¹iP,for which Z* =2.
The resistivity is dominated by the term involving
the intertransition-metal part of the structure
function, while the presence of the metalloid
serves mainly to lower the muffin-tin zero of
energy. This effect is shown to increase the
resistivity of the alloy relative to that of the pure
transi tion-m etal liquid.

The present calculations also underline the
fact that the computed resistivity is extremely
sensitive to small changes in the parameters, and
therefore emphasize the need to choose these in a
systematic, consistent fashion. When this is done
the results may be semiquantitative for relatively
weak scatterers. Although the fact that the theory
is essentially qualitative for strong-scattering
systems was suggested in some of the earlier
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work, '" this point seems- to have been lost sight
of in more recent applications. The present re-
sults are thus intended to provide a, word of caution
in the use of the extended Ziman formula as well
as a guide to the limits of its validity.
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where a(q) is the liquid structure function, 0, is
the average atomic volume, and z„ is the Fermi
velocity. This expression neglects all multiple-
scattering corrections and in effect describes the
scattering by the phase shifts of the muffin-tin
potential. Calculations based on this formula""
were in remarkably good agreement (-10%-20%}
with experiment not only for monatomic transition-
metal liquids but also for their alloys. This fact
raises the following questions: (i) Why should a
single-site formula apply to systems in which
conduction electrons are strongly scattered by
d-band resonances and in which persistent short-
range atomic ordering, that might lead to signifi-
cant coherent multiple-scattering effects, is
present? (ii) How precisely are the conduction-
electron pa.rameters entering Eq. (1) to be defined
in systems characterized by strong s-d hybridiza-
tion? In particular, why does the effective valence
Z*, needed to compute 4F, lie in the range 1(Z*
(2 qll

The present paper answers these questions by
providing an interpretation of the Ziman-Faber
theory, firmly rooted in a consistent application of
the single-site t-matrix approximation, which
permits systematic calculations based on approp-
riate potentials and structure functions. As in
previous calculations, the single-site, on-energy-
shell t matrix is expressed in terms of the phase
shifts q, (E):

t((f, E„)= — Q (2l+1)8'"&(~z)
g gl/2

p F l

x sing, (E~)P,(cos8), (2)

in atomic units, where q =k„—kF, 8 is the angle
between kF and kF, and EF = kF = kF'. The last
equality characterizes the "free-electron gas"

II. TRANSITION-METAL LIQUIDS

The Ziman theory, '4 originally formulated to
describe electrical transport in simple-metal
liquids, was later extended by Evans et al. ' to
apply to liquid transition metals. They simply
replaced the weak ion pseudopotential u(q) in the
original theory by the single-site, on-shell t ma-
trix t(q, E) defined using the muffin-tin approxima-
tion. This reasoning led to the so-called extended
Ziman formula for the resistivity

containing the scatterers: kF labels "the unper-
turbed state. ..present before the potential was
switched on, "' and is defined in terms of an effec-
tive valence Z*:

k' = 3m'Z*/Ao. (3)

Z*/0, corresponds to the density of conduction
electrons having a Fermi velocity u~ =Kk~/m.
Previous calculations have always assumed a
value for Z* and then computed kz for Eq. (3)
(using the experimental Qo), while Ez was compu-
ted by a separate technique, "usually involving the
results of crystalline band calculations.

The present interpretation is based on Lloyd' s
expression for the integrated density of states per
atom "

Z=N(E, ) =N, (E,)+~ P (2f+1)q,(E,),/2
F p F (5)

which neglects the multiple-scattering terms
N (E~). This approximation is, in fact, reason-
ably a,ccurate (-0.05—0.1 Ry) even in crystalline
transition metals, "but (as will be shown) yields
results for p that differ appreciably from those
obtained previously using crystalline values.
Equation (5) clarifies the meaning of the "free
electron" gas and-the effective valence Z* in a
precise way: Z* is to be associated with the
integrated free-electron component of the density
of states, i.e.,

Z* =No(E~)— (6)

with Ez determined by Eq. (5). kz is then compu-
ted from Eq. (3), which, from the above definition
of Z*, yields simply kz =4EF. This procedure is
thus consistent with the use of the on-shell t-
matrix element [Eq. (2}]. Finally, p is computed
from Eq. (1) using experimentally determined
structure functions. '~

N(E) =N, (E)+ - g (2l+ l}q,(E)+N„(E), (4)
g

appropriate to a system of nonoverlapping muffin-
tin potentials. Here No(E) ~E' ' is the integrated
free-electron density of states (with E referred to
muffin-tin zero); the second term depends only on
the phase shifts q, of the single-site. scattering and
thus is structure independent; the third term N (E)
describes the effects of multiple scattering.

A prescription for obtaining EF and other "free-
electron" parameters that is consistent with the
Ziman-Faber formula must involve only single-
site scattering in a system of ions having the
average density of the liquid. This implies that
the liquid EF is to be determined from the condition
for the total number of valence (d and conduction)
electrons per atom
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This prescription has been used to calculate p
for liquid Fe, Co, Ni, and Cu. The results,
discussed in detail below, are in poor agreement
with experiment for Fe and Co. Furthermore,
the mean free paths are smaller than an inter-
atomic distance. However, the calculated p's are
sufficiently sensitive to k~ and E~ that a relatively
small adjustment (within the range of differences
among various crystalline band calculations, for
example) can produce the sort of agreement found

by previous groups. Indeed, since earlier calcula-
tions used input arising from different sources,
usually based on band results and empirical data
for solids, and made somewhat arbitrary choices
for the values of Z*, the Ziman-Faber theory was
not applied consistently. "

The present results are viewed as a reflection
of the fact that atomic positional correlations are
seriously underestimated in the spherical-aver-
aged a(q). As a result, coherence of the electron
wave function within atomic clusters, which arises
from the short-range order and which wogld be
accounted for in a true multiple-scattering theory,
is suppressed. Thus the mean free path is shorter
than that observed in the liquid. This point has
also been made by Greig and Morgan" on the basis
of a tight-binding model of d-band conduction, in
which higher-order correlation functions [beyond

a(q)) are essential in computing the scattering
matr ix elements.

Details of the present calculation are summa-
rized in Table I. Muffin-tin potentials appropriate
to the liquid were constructed using the renormal-
ized-atom method. " The resulting Z* is seen to
be nearly unity for Co and Ni, and somewhat
larger for Fe and Cu. By contrast, previous cal-
culations have assumed Z~ = 1 for noble metals
and either Z*= 1 or Z*= 2 for transition metals
without theoretical justification. Except in the
case of Ni, the computed p's overestimate the
experimental values by a factor of two or more.
For Fe and Co the mean free paths A are appreci-
ably smaller than an interatomic distance (defined
as twice the muffin-tin radius RMT).

Table II summarizes the results of Dreirach et
al. ' Z*=1 in all cases. For Ni and Cu, E~ was
computed semiempirically utilizing band-structure

results and optical data for the solid. For Fe,
previously computed phase shifts and E~ for the
solid were used. In all cases k~ was computed
using Eq. (3). Except for Ni, their results agree
far better with experiment than those obtained
here.

In order to understand the discrepancy between
the two sets of calculations, consider first the
case of Cu. Tables I and II show E~ to be the
same in the two cases. However, Z* and hence k~
differ, the latter by about 7%%uo. The fact that p is so
sensitive to such a small change in k~ is due, of
course, to the fact that for nearly monovalent
metals the upper limit of the resistivity integral.
at q = 2k~ lies in the middle of the steeply rising
slope of a(q). Figure l shows the variation of p
with k~ for fixed t(q, E~) for Cu and Fe. p increa-
sesrapidlyat first, reaching a maximum near 2k~
= q&, the location of the firstpeakina(q). For k~
&~@~, p decreases because in this region the integral
in Eq. (1) increases only slowly while the prefactor
e~'k~ ~k~' decreases rapidly. For Cu, the choice
Z* = 1 leads to p = 22 p, 0 cm in agreement with
Table II. This value is about half that obtained
using Z*=1.21 as in Table I. The same effect
occurs for Fe: for Z*= 1, p = 730 pQ cm. The
remaining discrepancy with the value listed in
Table II is probably associated with the overesti-
mate of E~ in Ref. 7, since the E~ value for the
denser solid was used there. Thus the separation
between E~ and the resonant d level is too large
and q, (Ez), and hence p obtained from the input of
Table II, too small.

The calculated resistivity can also vary rapidly
with E~, particularly near the d resonance, be-
cause of the parametric dependence of t(q, Ez) on

Ez. The single-site values of Ez [cf. Eq. (5)]
when computed for the solid density differ from
those obtained from crystalline band calculations, "
using the same input parameters (potentials, phase
shifts, radii, etc.) by about -0.07, -0.07, 0.00,
and 0.06 Ry for Fe, Co, Ni, and Cu, respectively.
The Fermi energies for the true liquids having
short-range order and the appropriate density are
expected to fall somewhere in these respective
intervals for each of the four elements, except
possibly when E~ lies too near a d resonance,

TABLE I. Details of the present resistivity calculations for liquid transition metals. Values of p,» are from Ref. 34

(Fe, Co, ¹i)and Ref. 1 (Cu).

Metal &p (au ) Rws {au) RMy (au) & Ey (Ry) &2+y) kz (au ~) A/2RMT p Q& cm) p,„

Fe
Co
Ni
Cu

88.4
87.7
84.6
90.4

2.76
2.76
2.72
2.78

2.50
2.49
2.46
2.52

8
9

10
11

.549

.482

.480

.539

2.25
2.56
2.87
3.04

1.21
0.99
0.95
1.21

0.741
0.694
0.693
0.734

0.2
0.6
2.5
4.9

1130
329

74
41

136
115
83
21
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TABLE II. Details of the previous calculation of
Dreirach et al. (Ref. 7). The values ofkz, not specified
in their paper, were obtained using their Table I and Eq.
(13).

p„„(j.a cm)

1000

Fe¹i
Cu

0.77
0.62
0.54

0.69
0.70
0.69

196
78
24

since the single-site approximation severely
underestimates the d-band width. "

The variation of p within the range of E~ defined
above should be indicative of what a single-site
transport theory can achieve with reasonable ad-
justment of the parameters. Figure 2 shows the
variation of p with E~ [with Z and k~ varied
according to Eqs. (6) and (3)) for Fe and Co. The
single-site Fermi energy, E„", in Fe lies just
above the d resonance (indicated by the arrow)
and thus p decreases rapidly with increasing E~.
A shift of E~ by +.07 Ry to the value E~" (assum-
ing the shift to be the same as for the solid) re-
duces p to about 550 p. Q cm, a value about four
times p,„,. Agreement can be obtained by choosing
E~=0.77 Ry, as was done in Ref. 7 (cf. Table II),
a value almost certainly too high for the liquid.
However, the corresponding mean free path is
greater than the interatomic distance, which is
not the case for the values of p computed using

jther Ess or Ecorr

In Co, E~' lies slightly farther above the d

E
C3

600

&exp ~l =
~

= h/d»

I

0.50
I

0.60
EF (Ry)

I

0.70

FIG. 2. Calculated resistivity p as a function of E&
(referred to muffin-tin zero) with Z* and k+ varied ac-
cording to Eqs. (3) and (6), for Fe and Co. Location of
the d resonance (g2= z7I) is indicated. E& is the Fermi
energy computed from the single-site formula, Eq.
(5); E&~ is obtained by adding to E& an approximate
correction to compensate for the shortcomings of the
single-site approximation. A/d is the ratio of the com-
puted mean free path to a nearest-neighbor distance.
Experimental resistivities ppxp are from Ref. 34.
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FIG. 1. Calculated resistivity p as a function of k~
with f(q, Ez) fixed, for Fe and Cu. Vertical arrows in-
dicate the position of kz for two different values of the
valence Z* (see text). p is largest near the point where
2k»=q& (also indicated), the location of the first peak in
the structure function a(q).

resonance. E~" falls into a broad plateau where
p-2pexp and the mean free path barely equals an
interatomic spacing. A further increase of E~ by
as much as 0.1 Ry would change p very little.

These results indicate that at least for Fe and Co
a single-site transport theory, when applied in a
systematic and consistent fashion, cannot be made
to yield agreement with experiment for any rea-
sonable estimate of E~."

The results for Cu and Ni are more encouraging.
Figure 3 shows that in Cu, E~ lies far enough
above the d resonance that decreasing E~ lowers
p, largely because of the concomitant decrease in
jr~. A change from E~ to E~" reduces p to a value
in agreement with experiment. In Ni, E~ also
falls above the region where ti, (Ez) is large and
rapidly varying. Since E~'= E~", the former is
presumably nearly the same as the true liquid E~.
The computed value of 74 p, Qcm, again, is in
reasonable accord with experiment.

The weaker electron scattering in Cu and Ni (as
compared with Fe and Co), associated largely
with the smaller values of t),(Ez), may well ac-
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liquid transition-metal alloys. '" If the computed
p's ax'e adjusted to agree with experiment at the
pure metal limits, then the theory would appear
to do quite well at intermediate compositions for
systems in which the scattering properties of the
two constituents are very similar, such as Cu-Au. '
Shen this is not the case and when, moreover, the
precise concentration dependence of E~ is difficult
to estimate, as in' Fe-Ge and" Co-Sn, the theory
does not do so well.

too-
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FIG. 3. p calculated as a function of E& for Ni and
Cu. For Cu, the d resonance lies far to the left of the
figure. In Ni, E~ and E&~~ approximately coincide.

count for the semiquantitative results of the
Ziman-Faber theory: coherent multiple-scattering
effects would be expected to be relatively less
important in this case. A recent argument by
Ballentine'4 supports this conclusion. He suggests
that the Ziman formula should apply to transition
metal liquids satisfying I'/E~&1, where I' is the
width of the electron spectral density function. On
the basis of this criterion, which amounts essen-
tially to the requirement that the mean free path
be larger than a few interatomic spacings, he
concludes that the single-site theory should be
valid for a liquid metal such as ¹ibut not for one
such as Fe.

Since Z* was the basic parameter in previous
work, it is also of interest to examine the depen-
dence of p on E~ with Z*, and hence k~, fixed.
Such a calculation would best indicate the sensi-
tivity of previous results to the choice of E~. For
Cu, p is found to be virtually independent of E~
between 0.4 and 0.7 Ry, changing by less than 10%%uo

over this range for either value of Z*. Hence the
precise choice of E~ in Table II is unimportant.
For Fe, however, p is found to decrease rapidly
with E~ (as expected) from 0.5 to 0.8 Ry. This
accounts for the good agreement with experiment
found in Table II.

The computed resistivity is therefore seen to
be quite sensitive to the choice of input parame-
ters, and with only small adjustments in the latter
(for Cu and ¹i)can be made to agree well with
experiment. Nevertheless, the theory remains a
useful interpolation scheme for understanding the
qualitative concentration dependence of the resis-
tivity and its temperature coefficient in some

It has been suggested" that metallic glasses
(amorphous metallic alloys} can be regarded
structurally as "frozen liquids" and their elec-
tronic transport properties computed using the
modified Ziman-Faber theory. A recent calcula-
tion' of the resistivity of amorphous Ni-P supports
this general view but contains certain inconsis-
tencies common to earlier liquid alloy calculations
(cf. Sec. II). In the present section the procedure
already developed is extended to the binary alloy
case and applied to amorphous (a-) Co„P» and

¹18JPgg The effect of the presence of P on the
energy dependence of the resistivity is examined.
As in the pure liquid case, the results for both
systems are sensitive to the choice of parameters,
but are better for the alloy containing the weaker-
scattering transition metal, Ni-P.

For a binary alloy, the resistivity is again given
by Eq. (1), but with a It I' replaced by"

I «) I'= ci
I t. I'[1-"+"".(q}]

c2
I
t2 I

[1 c2 c2e22(q}]

+ c,c,(t,*t, + t, t,*)[a„(q)-1], (7)

Z*and kz for the alloy are then given by Eqs. (3)
and (6).

Fqr 0.-Cos&Pyg the experimentally determined""
a, I(q) and "hard-sphere" diameters (identified
with twice the respective muffin-tin radii) were
used. In the construction of alloy potentials by
the renormalized-atom method, ~2 it is necessary
to assign an atomic volume 0, to each constituent.

where c, and t, are the concentrations and single-
site t matrices of the two constituents, and the
a,&(q) are the partial structure factors. t, (q, Ez)
is still given by Eq. (2} (with 0, now the average
volume per atom in the system) and Ez is deter-
mined from

c,Z, + c,Z, =N(E~)

=N, (E )+ —P (2l+1}[c,q', (E„)+c,rP(E )].2



3918 E. ESPOSITO, H. EHRENREICH, AND C. D. GELATT, JR. 18

TABLE HI. Details of the present calculation for amorphous C08~P&~ and Ni8&P&9. The value of Qo (for Co8&P&~) is
from Ref. 29. Values of p, „p are estimates (see text).

(au ) &ws (au) &MT (au) Z ~y' (Ry) Z* 0& (au ) Ajd pea]c 0& cm) pexp

I
co

I
Ni

74.6
79.0

2.61
2.66

Same as above

2.40
1.98

0.858

10 0.874

2.46

2.72

2.02

2.08

0.926

0.935

0.7

1.5

349 -160

-132
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E F (Ry)

I

1,00 1.10

FIG. 4. p calculated as a function of E+ for two amor-
phous alloys (note shifted scale on right). The Ni d
resonance lies to the left of the figure.

It was assumed here that the Co atom retains the
same volume Ac, as in the pure crystalline (not
the liquid) state, an assumption that ts consistent
with a wealth of volumetric data on metallic glass-
es.' The P atom thorn has volume Q~ determined
from

~o=0.810co+ 0 1

using the experimental Qo." Results and various
ingredients of the calculation are shown in Table
III. An analysis of the logarithmic derivatives of
the renormalized-atom wave functions indicates
that the P 3s level exists as a bound state below
the muffin-tin zero" and is therefore to be treated
as a core state. Thus the P valence Z~ [cf. Eq.
(8)] is set equal to three. p,„, is an estimate based
on measurements in related systems" and is
probably fairly accurate. The computed p is seen
to overestimate this value by a factor of 2, and the
mean free path is less than one interatomic (Co-P)
distance d.

The term containing
~
tc, ~' in Eq. (7) is the domi-

nant one by far and accounts for between 90/q and
98/g of the computed resistivity in the relevant
energy range. Furthermore, ac~,(q) is very
similar to a(q) in liquid Co. Thus, the results for
the amorphous alloy ar e most appropriately com-
pared with those for the pure liquid. Figure 4
shows the behavior of p for the glass as a function
of Ez (referred to VM~). It is seen to differ appre-
ciably from that of the liquid shown in Fig. 2. The
principal effect of adding P to Co is a lowering of
V„~ by about 0.23 Ry, since the P potential is
more strongly attractive in the interstitial region.
The Co d resonance, and hence the main compo-
nent of N(E), however, is more or less fixed
relative to the atomic zero: the smaller Co
Wigner-Seitz radius in the glass in fact raises the
d resonance by about 0.08 Ry with respect to that
in the liquid. The separation between the reso-
nance and VM~ thus increases (by 0.31 Ry) as the
latter shifts downward. Hence E~, k~, and Z* in
Table III are appreciably larger than in Table I.
Also the value of Ez (-0.65 Ry) for which 2k+ =

q~
[the first-peak location in ac,c,(q)], which was
-0.2 Ry above the resonance in the liquid, is now
just below the resonance in the alloy. Hence p is
larger at its peak than in the liquid, and falls off
steadily with increasing E„. In the liquid p de-
creases more rapidly initially, but then levels off
as 2k~ sweeps through q~. In both systems the
scattering is strong (A 6 d) for the appropriate
values of E~.

In view of the strong short-range structural
order characteristic of metallic glasses, it is
essential to include the information contained in
the partial structure factors in the calculation of
the resistivity. Since this information is not avail-
able from experiment for the Ni-P system, the

a;~(q) appropriate to Co»P» were used to compute

p for Ni8] Py9 A number of arguments can be given
to show that this procedure is reasonable. A de-
tailed comparison of the total structure factors in
these two systems, '7 "for example, shows the
essential features of both to be virtually identical
(as is true also for liquid Ni and Co). Results of
the calculation are shown in Table III and Fig. 4.
p,„,was obtained by interpolating measured values'
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for alloys with 15- and 25-at. /p P (p,„,= 104 and
175 pQcm, respectively). p„„overestimates this
value by less than 30/0. The variation of p with Ez
is qualitatively similar to that in Co-P, except
that the d resonance (%.67 Ry) lies farther below
the E~ values of interest. Hence the scattering
is weaker, the mean free path is longer, a,nd the
Ziman-Faber formula is in better accord with
experiment. In addition, the P-P term in Eq. (7)
is relatively more important, contributing almost
20/o to p.

The recent calculation by Meisel and Cote' for
Ni85P» and Ni»P» was performed in the same
spirit as earlier liquid calculations already dis-
cussed, using Percus-Yevick (PY) hard-sphere
structure functions fitted to the first-peak height
in the total Ni-P a(q). Since the PY model" ne-
glects important short-range order by permitting
two P spheres to touch, which occurs only with
low probability in such glasses, "the resulting
a»(q), and perhaps also a„,~(q), is inapprop-
riate. " Their choice of conduction-electron
valences, 0.5 for Ni and 5 for P, leads to Z*& 1,
in contrast to Z*~ 2 found here. The resulting
values of E~ and k~, computed in the usual way
(cf. Sec. II), are correspondingly smaller than the

present ones. The final results, however, agree
well with experiment, as was the case with pre-
vious calculations for liquid ¹ (Sec. II).

The present calculations indicate that the limits
of applicability of the extended Ziman-Faber theory
when carefully and consistently applied to metallic
glasses are the same as for the case of liquid tran-
sition metals. For glasses containing a strong-
scattering transition metal, the theory overesti-
mates the resistivity, giving mean free paths
smaller than an interatomic distance. For weaker
scattering systems the results are semiquantita-
tive, though still sensitive to the choice of effective
free-electron parameters.
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