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Brownian motion of a domain wall and the diffusion constants
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We have studied interactions between a domain wall and pgonons in a one-dimensional-model system of a
structurally unstable lattice with a double-well local potential and nearest-neighbor coupling. We find that a
nonlinear effect in the interacting phonon amplitudes gives rise to a Brownian-like motion of isolated domain
walls at low temperatures as well as higher harmonic generation of transmitted and reflected phonons. When
there is a domain wall at rest, it was known that the linearized equation of motion has three types of
independent solutions; "translation mode, " "amplitude oscillation" of. the domain wall, and propagating
"phonons. " In the second-order approximation, these modes interact. An incoming phonon produces a
translation of the wall, giving rise to its Brownian motion. The magnitude of the translation is computed
together with the amplitude and phase shift of the higher harmonics. We estimate the diffusion constant of
walls, using the fluctuation-dissipation theorem and the thermal average over the phonons, to be D = 0.516
cool (k~T/p, &coo), where l is the lattice spacing and coo is the frequency of small oscillation of the ion (with
mass m) around uo, a minimum point of an isolated double-we11 potential.

I. INTRODUCTION

In recent years, considerable progress has been
made in the study of nonlinear equations in various
fields of physics. Qf particular importance are
nonlinear equations which admit large-amplitude
solitary-wave solutions. The usual perturbation
calculations, which postulate small-amplitude de-
viations, are inadequate to obtain such solutions.
One example of solitary-wave solution is the do-
main wa3.1 which was discussed by Krumhansl and
one of the present authors (JRS)' (hereafter KS).
They studied thermodynamics and some dynamic
properties of a one-dimensiona1-model system
whose displacement field Hamiltonian is strongly
anharmonic, and is representative of those used to
study displacive phase transitions. It is the model
system of a structurally'unstable lattice, having a
double-well loca1 potential and nearest-neighbor
coupling. A domain-mall excitation is character-
ized by the following distribution of ions at each
lattice point. Over' nearly all the semi-infinite re-
gion of the left-hand side of the domain wall, the
ions are uniformly at the potential minimum of the
same side of the lattice point. Nearly all ions on
the right-hand side of the wall occupy the minimum
of the other side. The transition takes place
through a domain wall of a, finite thickness. The
mall can move with a constant velocity which is less
than the velocity c, of low-amplitude sound waves
(phonons). At low temperature, the thermodynam-
ic function was evaluated in two ways: exactly by
the functional integral methods and phenomenolog-
ically by regarding both phonons and domain walls
as elementary excitations. The agreement of the
results of the two evaluations confirmed the idea
that phonons and domain-mall excitations play an

important role. In addition to this static property,
a number of dynamic properties couM depend
strorigly on the presence of domain walls. The dy-
qamic correlation function is one of them. A pos-
sible relation between the development of a "cen-
tral peak" in the dynamic correlation function and
the distribution of domain wall was pointed out. It
was later shownby Bishop, Domany, and Krum-
hans12 that the appearance of phonons and domain
walls as elementary excitations survives the pass-
age from classical to quantum mechanics.

Molecular dynamics computer simulations have
been carried out for this problem. Koehler, Bis-
hop, grumhansl, and Schrieffer showed the mo-
tion of the linear chain as a series of snapshots in
time for various temperatures. The results showed
pronounced domairi structure at low temperature-
a feature emphasized in the analysis of KS. They
further found that there is a phoiion dressing of do-
main walls. Domain-wall potential energy F»,
determined with the help of corre1ation length,
turned out to be smaller than the bare value, esti-
mated by KS, at low temperature. It was also ob-
served that the domain walls do not keep moving
freely between collisions with other walls. Rather,
isolated walls appear to undergo Brownian-like mo-
tion.

Aubry4 also performed molecular dynamics cal-
culations to obtain the dynamic correlation function
of the one-dimensional system. He pointed out the
possiblity that the domain walls participate in de-
veloping the central peak. Simulations of a two-
dimensional system were done by Schneid, er and
Stoll. ' They found clustering phenomenon to be
very important in this case. This clustering phe-
nomenon is equivalent to the appearance of two-
dimensional domain structure.
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The same model has been investigated by ele-
mentary-particle physicists. It is called a $4 mod-
el in one-plus-one dimension. The domain-mall
solution describes the Fourier transform of the
form factor of an elementary particle. It was
shown that, ' when there is a domain wall at rest,
the equation of motion linearized with respect to
the deviation from the domain-wall solution has
three types of independent solutions: a "transla-
tion mode, " and "amplitude oscillation" of the do-
main wall, and propagating "phonons. " The trans-
lation mode is a Goldstone mode' which arises due
to the breaking of translation symmetry by the
presence of the domain wall. The amplitude-os-
cillation mode gives rise to a modification of the
form of the domain wall. It costs some energy and
thus corresponds to an excited state in the langu-
age of elementary-particle physics. The phonon
modes are the continuum solutions which except in
the vicinity of the domain wall resemble the linear-
ized solutions of the original equation in the ab-
sence of domain wal. ls. By examining the asymp-
totic form of the solutions for x-+ ~, one finds
that the phonons suffer only a phase shift when pas-
sing through the domain wall. In this sense, the
phonons do not interact with the domain wall. This
is the reason why Koehler et al. ' suggested that the
observed diffusive wall motion might be a result
of effects nonlinear in the phonon amplitudes, as
well as possible discrete-lattice effects.

The purpose of this study is to show that the non-
linear effect, in fact, can give rise to the Brown-
ian-like motion of the domain walls. When a wave
packet of phonons, with typical frequency ~, is in-
cident on a domain wall, the nonlinear effect gen-
erates two harmonics: one with almost vanishing
frequency and the other with 2'. The former ex-
cites the translation mode, shifting the domain
wall a finite distance. The wall moves as if the
effective interaction with the incoming phonon is
attractive. Since phonons make collisions with the
wall randomly, it behaves as a Brownian particle.
The other component with the frequency 2(d is par-
tially transmitted and partially reflected with a
phase shift.

The diffusive mall motion is characterized by a
diffusion constant. It can be estimated using the
fluctuation-dissipation theorem. If we denote the
position of the domain wall at time t by 5(t), the
diffusion constant D is given by'

for the one-dimensional system. Here the angular
brackets mean an average over the distribution of
phonons. The time t should be long in comparison
with the "mean- free time" of the collisions. Since
we are interested only in the lowest order of non-

II. MODEL AND LINEARIZED SGLUTIONS

The Hamiltonian proposed by KS has a continuum
representation

0= — +—u(x)'+ —u(x)'+dx P(x)' A, B, mc', (du) '
„2m 2 4 2 (dxj . '

(2.1)

in the displacive case. Here E is the lattice spac-
ing and x locates an ion with mass rn. The fields
u(x) and P(x) are the displacement and momentum
of the displacing ion at x with respect to some
heavy ion or reference lattice. A and B are para-
meters which characterize the local potential. KS
discussed the case of a structurally unstable lat-
tice, takingA= —lAl andB&0. The local poten-
tial is a double-mell potential with minima at.

u= au, =a(lA
l
/8)'~' (2 2)

The classical equation of motion for the displace-
ment field u(x) which follows from (2.1) is

ms'u/st '+Au+ Bu' —mc', s'u/ax' = 0. (2.3)

This has a domain-mall solution

u = u, tanh[(x-vt)/W2(],

with

('=m(c', —v')/ lA

(2.4)

(2.5)

Suppose a domain mall is located at x = 0 and not
moving. Deviation from the domain-wall solution
mould be small at low temperatures. If we put

linear contribution to 5(t), we may ignore nonlin-
ear terms in the phonon-distribution function which
contribute to higher-order corrections to the dif-
fusion constant. This is a good approximation when
the number of excited phonons is small at low tem-
perature. The diffusion constant, thus obtained,
turns out to be proportional to 7.', indicating that
the diffusive wa11 motion is a second-order effect.

In Sec. II, we review the one-dimensional model
of KS, the linearization of the equation of motion
when there is a domain wall, and the three types
of the solutions. In Sec. III, nonlinear collisions
of a phonon with a domain mall are investigated.
The shift of the domain wa11, the coefficients of
transmission and reflection of the higher harmon-
ics and their phase shift are calculated as a func-
tion of the wave number of the incoming phonon.
In Sec. IV, the statistical mechanics of phonons in
the presence of a domain mall is developed. Using
the fluctuation-dissipation theorem, it is applied
to obtain the diffusion constant. Finally, in Sec. V,
we discuss the obtained results and some re-
maining problems.



18 BROWNIAN MOTION OF A DOMAIN WALL AND THE. . . 3899

u(x, t) =u, tanh(x/v 2)0) + g(x, t),

the deviation g satisfies the etluation

(2 8)

O'Q c'08'g , Sro'0

+ + ~'0 — ' coshI~

3uotan 2+ 3, 2.V

where Q =&2q)0.
Because the solutions y, (x) (i=0, 1,q) are eigen-

functions of the self-adjoint eigenvalue problem
(2.8), they form a complete set which spans the
space of functions of x. The orthogonality rela-
tions are

y0, (x) dx= y v 2)0 (2.11a)

where g=mc0/I4 I
and &0o=2I& I/m. It has been

shown' that the eigenvalue problem

—c20d'q/dx'+ [~20—(3&v'J2}cosh'(x/v 2)0)]P = &o'q

(2.8)

2 0~
m 00

(2.11b)

y*, x y, , x dx=2m 1. + ' 4+ ' 5 q-q',
m 00

has eigenvalues and eigenfunctions:

&o' = 0, y0(x) = cosh '(x/W2$0),

00' = —,'(u'0, qr, (x) = sinhI cosh '
0 1 ( 2) 2)

((g )0)

q, (x) = e,.„[3tanh'(
0

—Sv 2iq)0 tanh I-1 -2q'g,'].
2$

(2.9a)

(2.9b)

(2.9c)

(2.11c)

while the completeness relation has the form

3 I 3
4~&& q.( )q'. ( ')+ ~ q, ( )V,( ')

0 0

dq (p, (x)y,*(x')
2~(1+Q }(4+Q

The relations (2.11c) and {2.12) are proved in

Appendix A.
Let us suppose that, at time t=t, «0, a wave

packet of phonon is at x «0 moving in the direction
of the domain wall. It gives the initial condition
for g:

These three solutions have simple physical in-
terpretations. When y0(x) is added to the domain-.

wall solution, one finds that the sum

u0tanh(x/v 2 (0)+g0y0(x) =u0tanh(x/&2)0+g Ju0)

corresponds to a domain wall which is translated
by an amount 5 = -v 2)0g0/u0. T'hus the uP =0 solu-
tion yields the "translation mode" of the domain

wall. It is a Goldstone mode' which arises due to
the breaking of symmetry by the presence of the
domain wall. When y, (x) is added to the domain-
wall solution, the wall does not move, but its form
undergoes a variation with time. We may call it an
"amplitude-oscillation mode" of the domain wall.
The third solution y, (x} constitues the continuum

mode. Except in the vicinity of the domain wall, it
is a propagating plane wave whose spectrum is

, identical with that of small oscillations of ions
around the bottom of one of the walls in the ab-
sence of domain walls. Therefore, these solutions
correspond to the "phonons. " They are not reflec-
ted by the domain wall but suffer only a phase
shift 4 (q),

g(x, t) = Im exp [i(qx —P,t+ 8,)]f(x —v, t —x,), (2.14a)

where

Q
f(x) =—' g o.,exp[i(q -q)x], (2.14b)

and ~ and 8, are the values of ~, and 8, at q = q.
The quantity v, is the group velocity

v, = (d(o, /dq), , =c02q/(u, .

The quantity x, is defined by

x, = —(d8,/dq), -.

(2.15)

(2.16)

g(x, t) =—gu20n, sin(qx —&u, t+ 8,), (2.13}

when t = t,. Here ~, &0 and n, is nonvanishing only

at q&0. L is the length of the system. The quant-

ity n, gives the amplitude of the incoming phonon

which we assume to be small in comparison with

unity. Since a, would be a localized function
around a typical wave number q, the initial form
(2.13) can be rewritten.

e'~"'= (2 —Q' —SiQ)/(2 —Q'+ SiQ),

~(q) = 2t~ '[SQ/(Q'-2)],
{2.10)

It specifies the initial position of the wave packet
at xo+ v, to.

The first-order approximation of the equation of
motion for g (2.V) is
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et ex,' — '~ ' + [(u,' ——,'&o', cosh'(x/W2&, ) ]&t, = 0.

(2.1V)
%'e can immediately write down the solution which
satisfies the initial condition (2.13)

4.0

3.0

2.0

Q
q, (x, t) = .' Q(n, &&&&,(x) exp[i(-(o, t+8,)]

—P*,(x) exp[i( ~,t —8,)]], (2.18)

where the function Q, is defined by

P,(x)= q&,(x)/(2 —Q'+ SiII&). (2.19)

After transmitting through the domain wall, the
function &t&, takes the form at x» 0 and t » 0

1.0

I I I I I I I I

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

FIG. 1. Shift of the phonon wave packet due to the inter-
action with a domain wall as a function of the wave nurn-
ber q. Solid curve is the shift of the incident packet
4x~ and the dashed curve '.hat of the higher harmonics
Ax2. The abscissa is Q =&2q)0.

where

= Im exp[i[qx - K&,t + 8,+ A(q) ]]

xf(x —v,t -x, —t& x,),

Q
&t,(x, t)-g Q n, sin[qx —(o,t+ 8,+4(q)]

(2.20)

We expand g, in terms of the p,.

&1&,(x, t) = g, (t)q&,(x)+ g, (t)y, (x) +—g g,(t)q&«(x).
1

(3.3)

Substitution into (3.2) and use of the orthonormal-
ity of the jo's give

d&(q) 6v 2$,(2+ Q~)

dq, , 4+ 5Q '+ Q4

Here we have used a notation

Q V 2q)0 ~

The shift &x, is illustrated in Fig. 1.

III. NONLINEAR PROCESSES

(2.21)

(2.22)

d«go 9Buo x
dxtanh ~ q&, t/j«„

2 9Buo x
+

%&o 2)0

d'g» 2 SBuo
dt' «g» m(1+K'}(4+K'}

(3.4a)

(3.4b)

When the amplitude of the incident phonon e, is
small in comparison with unity, the deviation from
the domain-wall solution can be written in a form
of power series in ~,

g(x, t)=y, ( t)x+ t, ( &tx)+ ~ ~, (3.1)

et ex
-» —c(& + [4PD «(a)0 cosh (x/9~2)0) ](2

= —(Sau, /m) t ahn(x/v 2(,) q', (3.2).

where the function g, is bilinear in n, s. Substitu-
ting into the equation of motion (2.V), we equate the
bilinear terms on both sides to obtain

a'xtanh y~+ '„ (3.4c)

where K= &2k),.
These equations should be integrated so that the

g's and dg/dt's are zero at t=t„since the initial
condition is completely satisfied by p,. Instead of
the above condition, we introduce adiabatic hypo-
thesis, taking t,—-~ and assuming that the non-
linear interaction on the right-hand sides of Eqs.
(3.4a)-(3.4c) have gradually increased from zero
as if there is an additional factor exp at, & & 0. To
simplify the integration, we introduce the Fourier
transform of g',

&2&(x, t) = d(o e' '"»y(x, »»), (3.5a)

4

y (x, ~) = -
&g, g n,n, ,(5 (&o - &u,-&o, ,)P,P, , exp[i(8, + 8, ,) ]

+5(&a+ to, + v, .)P,*P*,, exp[-i(8, + 8, , )]
—25(e —~, + ro, ,)g, tt&*, , exp[i(8, -8, , )]]. (3.5b)
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Then, integration of (3.4) gives

go(t)= ' dxdo)tang
9Bu, I' x

() IS 00

x exp[-i(()t/(v+ ie)'], (3.6a)

g, (t) = o dxd&o tanh~('
9Buo (( x

O IS 00 0

S,(t) = 3BuJm(1+A')(4+@')

x dx d~ tanh

x exp[-i&et/[(&@+i')'-&u'„]).

(3.6c)

x e px[-io)t/[(o)+i&)' ——,'(o', ]],
(3.6b)

Substituting the expression (3.5b) of g into (3.6a},
we can carry out the ~ integration with the help of
the 5 functions to obtain

9Bu' OO

0 ((Po+(do0+it)

) ( )
i((7)o+ (do ~ )t —i(8o+ 8()')

[+ x + 0x exp
(

.
)o

((0)(I0()I0 00(00' ' . ', ' . ($.7)
E0 —(0 i+ &&

The integrand of the q and q' integrals is nonsin-
gular except for the last term in the parentheses at
+,= co, , The contribution of these nonsingular
terms corresponds to a forced oscillation of the
translation mode by the incident phonon. The fre-
quency ~,++, is not the eigenfrequency of the
translation mode. The forced oscillation would re-
lax quickly as soon as the incident wave packet
passes. On the other hand, the, singularity of the
integral does give rise to the generation of the
translation mode to which we shall confine our dis-
cussions hereafter.

After some calculations, which are given in
Appendix 8, we can show

r ( x )
0s ee oi.(Q'-Q")'&.[1+(Q'+Q")/4g

2J 2sinh[7)(Q+ Q')/2]

where Q' =7( 2q'go. At the singular point q'-q, the
x integral in (3.V) takes the form

j

tt, (t) =4~2 L,g n,a, , Q't, (2+Q')

( -i((()(7 —(7))7 ~ )t+ i(8(7 —8o 0 }
& (4+ 5Qo+ Q4}(&u, —&u, , + ie}

.9Bu,' ~ 2 dq
' Q')o(2+ Q')

4&2mL ~ ' o), 4+ 5Q'+ Q'

9uo a', o)2(2+ Q'}
7() 2 goL ~ (()mo(4+ 5Q + Q~)

9uo r &o(2+ Q')
4&2)oL ~ 1+go (3.10)

7( 2(go 9uoo ~ n2o(2+Q2) (3.11)

The quantity So is related to the shift of the domain
wall 5, which is given by

lim drtanh yo
0 g ~oo 0

7(»(Q —Q')Q'ho(2+ Q')
4+ 5Qo+ Q4

It is important to note that the singularity is not of
second order but of first order, since the numera-
tor (3.9) vanishes linearly there. Contribution of
the region in the vicinity of the singularity can be
evaluated as follows (at t»0):

The domain wall moves in the negative direction
by a finite. distance. The discussion so far can be
reiterated for the case of a phonon coming in from
the positive x side of the domain wall. The shift of
the wall is again given by (3.11) with the opposite
sign. It moves in the positive direction by the saine
distance. The interaction between the domain wall
and the incoming phonon is effectively attractive.
The motion of the domain waQ should look like a
random walk in very low temperature where the
phonons collide with the wall in a random way. If
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Q

the phonon is almost coherent, we may put

o. ', = lx'5(q —q). (3.12)

Equation (3.11) then becomes

6 = —(9u', n'/8it) (2+ q')/(1+ Q~), (3.13)

FIG. 2. Magnitude of the translation of the domain wall

~
6

~
as a function of the wave number of the incident pho-

non q. The abscissa is Q=&2qgp.

which is shown in Fig. 2.
Substitution of the expression (3.5b) for y into

(3.6b) gives S,(t) which is composed of three terms.
One of them involves $,P... another &f&*,P*... and
the last &f&,ltl*, , The denominator of the first two
takes the form (&u, + &u, , +is)' ——,'&o', which does not
vanish since ~, ) ~p The denominator of the last
term (al, —&u, , + i&)' —4al', does not either, if the
incident phonon wave packet has enough coherence
so that the distribution of the function n, is well
localized. The wave numbers q and q' should be
close to each other in the localized region and

~&u, -al, ,
~

is less than —,'v 3al, . Therefore, the mo-
tion of the amplitude oscillation is the forced os-
cillation by the incoming phonon, since the inte-
grand of (3.6b) is nonsingular. It would relax very
rapidly.

Substituting (3.5b) into (3.6c), we again obtain
three terms for S~(t) which involve Q,P.. . Q*,Q*...
and Q, Q*.. . respectively. The above argument can
be applie4 to the last term. Contribution by the
singularity of the integrand is due to the first two
terms which can be written

3Bu,' ( x
2~(1 A- )(4 A- )f ea'

-i(al, +al, )t+i(8,+8, )
(x exp

(&o, + &u, , + i&)' - &u'„

We may denote the last term of lIl„given by (3.3), by iIlf", since it will be shown to be related to
higher harmonics. With the help of (3.14), it takes the form

g"(x, f) =— dk 8,(t)ql, (x)
1

(3.14)

', Re g ilx,a, . dkF( k, q, q')ql&(x)-3Bu,'
4grnI. ' «CO

x exp[-i(&u, + al, , )t+i (8,+ 8, , )+ ai[A(q)+ &(q')] j/[(1+ %')(4+K')]' '

X [(al, + td, , +R )' —al', ], (3.15)

where F(k, q, q') is defined by

-i f„dx tanh(x/&2), )y~y, y, ,F k, q, q' =
[(1+fp)(4+ &')(1+0')(4+ 0') (1+ Q")(4+0")]'" (3.16)

The integration is carried out in the Appendix C to show that F(k, q, q ) is real and

J dxtanh ~ ql~ql, ql, . =v 2vi), i6(P, +P, P, — )P( 5)P+ . „, (8+5P,+-,'P, --', P', -3PP, +-'P, P'
l! a e' &

i
a & a 5 sinh(wP 2 2 4 4 8 2 3 4 2

(3.17a)
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where P is the principal part and the various quan-
tities are defined by 0.0—

I [ I

P =Q+Q'+K, P„=Q" + Q'"+K", (n=2, 3,4, 5) .
(3.17b)

Singularities in the k integral of (3.15) are at

k =+(K+it), K= (1/co) [((0,+ (d, .)'- QPo)'

(3.18)

We shall first discuss the transmitted wave at
the region with a large positive x. The k integral
in (3.15) can be closed by a contour of a large
semicircle on the upper half of complex k plane.
The residue at the pole ~+i& gives the only con-
tribution to the integral which takes the form

3Bu,'(.(, ) = —
4x~+~ 0

xRep ' ' F( K, q, q')—
Kaa'

x expjiKx —i(&u, + cu, ,)t+i (B,+ 8, , )

+ I [~(K)+ ~(q)+ &(q')1].

(3.19)

The phase function is expanded at the point q = q'
=q. The wave number ~ can be approximated by

where

Z=v 27K)o (3.24)

The amplitude of the transmitted wave t(q) is found

to be

3~ (Q'+4)'t2
u, sinh[m(q ——,Z)] Z(Q '+ 1)(4Q '+ 13)'~'

(3.25)

The function t(q) is illustrated in Fig. 3. The
transmitted wave is shifted forward by the amount

&x, = 3v 2$,[(2+ Q')/(4+ 5q'+Q4)

+2@(2+K')/K(4+ 5K'+Z )],

-0.I

'~ -0.2
o -03

-0.4
-0.5—

I I I I I I I

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Q

FIG. 3. Amplitude of the transmitted higher harmonics
t(q). The abscissa is Q =~/2 q(p.

K = K+ (v /v„)(q —q+ q —q)i (3.20a) (3.26)

when can be derived with the help of (3.18). Here
71 and v„are defined by

K(1 )cl4(u', -(uo l, v„=(d(o, /dq), K. (3.20b)

The transmitted wave (3.19) finally takes the form

g,'"(x, t)„„„„-t(q)Re exp (i(wx —2+,t+ 28

+ [-.&(K)+ &(q)1] )

&& [f((v,/v„)x —v, t —x, —&x,) ]',

where

t (q) = —(3/4u, &207K)F(-K, q, q),

&x, = (-,'&x,) —(v, /2v„) [d&(K)/dK]„, .

(3.21)

(3~ 22a)

(3.22b)

The constant 8 was replaced by mc02/u, '$20, using
(2.2) and a relation below (2.7). After a lengthy
calculation, making use of (3.17a) and a relation
Z'=4q'+12, we obtain

-i dxtanh(x/v 2$,)rp~y2'=—4v 2v)o(4+ Q2)'

m CO
—

2

(3.23)

0.05

0.04
I~

0.03
L

0.02

0.01

I I I I I I I I I

I I I I I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ).0
Q

FIG. 4. Amplitude of the reQected higher harmonics
w(q). The abscissa is q=v 2 q(p.

which is shown in Fig. 1.
The reflected wave at the region with a large

negative x can be obtained by the k integral in
(3.15) with an additional contour of a large semi-
circle on the lower half of the complex k plane.
The residue at the other pole -~-i& gives the con-,
tribution. Iterating the discussion above, we find

g,'"(x, t)„„-x(q)Reexp(i(- Kx -2+,t+ 28,

+ [2&(K) + +(q)]}) ~

x [f(-(v,/v„)x —v, t-x, —&x,)]',

(3.27)
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with the amplitude of the reflected wave

3v (q2+4P/2
u, sinh[v(Q+ -,'Z) ] K(g '+ I) (4Q 2+ 13)"' '

(3.28)

It is illustrated in Fig. 4.

I

we can show that the transformation of variables
in a functional integral

(P(x,), . . . , P(x„),u(x, ), . . . ,u(x„))

po pl '''pal pk2 '''q ql'''qg qg'''}
is canonical and

IV. STATISTICAL MECHANICS AND DIFFUSION

CONSTANT

%e have studied in Sec. III the elemen. tary pro-
cess of collision between a domain wall and a wave
packet of phonon, which is nonlin. ear in the ampli-
tude of the phonon. It gives rise to a motion of the
domain walL It should be one of the motives of the
Brownian-like motion. However, the result of the
simulation' shows that the wave trains of phonons
are so long and overlapping that the concept of a
wave packet hardly applies even at the low tem-
perature T =ksTB)/A = 0.117. It is necessary to
generalize. the discussion of the elementary pro-
cesses to the case that the phonon has an arbitrary
distribution.

%e are interested in the lowest-order effect of
the nonlinear processes, that is, the effect to
second order in the phonon amplitude. This means
that it is unnecessary to take into account nonlin-
ear effect in the phonon distribution. The latter
contributes a term, to the diffusion constant,
which is of the same order as that due to higher-
order elementary processes. In this sense, our
discussion is valid only at low temperature.

The displacement and momentum fields u(x) and

P(x) are expanded in terms of the 9),

x
u(x) =u, tanh

~ ~2& 2 o)
/ '(( 1/a

+ qo&o~ +

I' dP(x,.)du(x, ) = (&x) "dP,dP, dq, dq,
i=1

x dP»dP»dq»dq».
»&0 (4.3)

The proof of (4.3) is given in Appendix D.
Substitution of (4. 1a) and (4.1b) into Hamiltonian

(2.1) gives

q), (I()),(x)
[2I.(1+K')(4+K'}]'"' (4.5a)

p(x, tJ=m j(x, t,)
) l/2

m 3(d
(4 4)

where higher-order terms in the q,. are neglected,
since the nonlinear effect in the phonon distribu-
tion is irrelevant. The constant E~~ is a domain
waQ potential en, ergy introduced by KS. Relation .

(4.4) is derived in Appendix E.
Corresponding to (2.13), initial condition for the

fi.elds, g(x) and p(x), at t =i„can be written

) 1/2
()(..v= (,/2(, l ~,(,(*)

q~(I()~(x)~ [21.(1+K')(4+K ))'/

3 )(&/2 3
P.q.(x)+

2~2 ~
f,~,()

(4. la)

P),p/, (x)+ [21,(1+Km)(4+K2)]'/~
(4.1b)

qp =qop ql =ql~ q» =q-» ~

~0 ~op ~l Pl& ~»
(4.2)

Introducing the real and imaginary parts of q»

and P» by

q»-q»l+ q»2 ~ &» p»l+ &» ~

Since these fields are real, the coefficients satis-
fy the relation. s

Distribution of the p, and q, is determined by
Hamiltonian (4.4). In comparison with (4.1a) and
(4.1b), we have chosen that q, =p, = 0 since the do-
main wall is at the origin and not moving initially.

We can write the first-order solution of (2.17) as

( 3 'l "'
& i&3(u,t-

g, (x, t)=( ~ ) a, exp(

fV 3(do/+a,*exp - ']I (/), (x)

~ [a~ exp( i&u~t)+ a.*~ exp(i-(dg)]q)~(x)

[2L, (1+K')(4+K') J'"
(4.6)

since the function g, is real. The initial condi-
tions (4.5a} and (4.5) are satisfied if we require
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q[ = as+ a*a, pa™~[,(a*[,—a„),

q, = a, + a,*, p, = —'v 3mi[0, (a,* —a,) .
(4, 7)

, eo g
E0(k, k ~) = -i dx tallh I-. --

Q0 [I[[1,(p~,
~250

Here were some trivial factors exp(+i[d~tg and

exp(+-,'i~3[d$0) which were removed by a proper
redefinition of the a,

The second-order equation (3.2) is solved making
use of the expansion (3.3). The unknown P,{t) sat-
isfies (3.4a) where the function g, on the right-hand
side is now given by (4.6). Introducing the nota-
tions

x [(1+ff'0)(4+ K')(I+A") (4+ XII) ] '",
(4.8a)

I' x
E„(k)= & tanh I ~2 Iq[0qlq[1

x [(1+K')(4+Ã')] '/'

we can rewrite (3.4a),

d'P 9&2p i ~—~ E (k k')(a e '"a'+a*e'"[')(a,e '"1['+a*,e'""')
dt' 8V2u g'

p 0

+ ( [ F (k)[a e ' «e'+a e '«'[a e ' «'+a e' ««])
/6~p )1/0

+ itL)011
u

Use is made of the fact that

r d& tanh ~ q[0q[,
' = 0 .

woo 0

We will again use the adiabatic hypothesis in order to integrate (4.9). If we put

t ty

4([0 t) — dt dt e '" 0"'0=

(4.9)

(4.10)

(4.11)

the integration of (4.9) gives

p, (t)=-I ', —QE, (k, k')[ay~, C(&u„+01„,t)+2a„a.*~,4([u&-00~, t)+ah~a)~, C([0~+01~,t)*]
[[8 2u0)'0 I.

I

v 3[d0
+ al*a*~4 ( + [dl„ t/

~e«

(4.12)

Thermal average of various quantities are easily evaluated with the help of Hamiltonian (4.4). Since
&q',&= &q» —q»&=0, &p',&=0, &Iq, l'&=2fksT/m01'„a'nd (Ip„l'&=2mlksT, the relations in (4.V) lead to

(a0a~, &
= 0, (a)a„,&

= (tkeT/muP~) 5», , (a', ) = 0, (a,*a,)= 2fkeT/3mId0. (4.13)

Thermal average of the translation of the domain wall vanishes;

«(t) &= -~2&.&ti.(t)&/..= 0, (4.14)

since it is the sum of the term E,(-k, k) which vanishes as (3.8) shows. Fluctuation of the translation
(5'(t)& turns out to be

&6(t)'&= Ii
8"'.'~ I g I[

' ' [I4(~.+~, , t) I'+ Ic(~,-~, , t) I']
AA'
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) c((d, t) I'= (&u'+ e') '. (4.16)

It is now evident that among the four terms in

(4.15) the term with ~C ((d, —(d,„t) ~' has a possi-

As discussed in Sec. I, the diffusive wall motion
is characterized by a diffusion constant D. Ac-
cording to the fluctuation-dissipation theorem, the
knowledge of the fluctuation (6(t)') gives us the
magnitude of the diffusion constant by relation
(l.1):

D = (6(t)')/2t,

when t is long in comparison with the mean free
time. We are therefore interested in a component
of (6(t)') which increases linearly with time. In
other words, a component of (6(t)') which diverges
linearly with &- 0 is important. With the help of
(4.11), we have

bility to jive such a contribution. It can be trans-
formed as

0 2$,'(K —K')K'(2+K')
(1+K') (4+ K')

(4.18)

Substitution into (4.17) gives

(4.17)

Since F,(k, k') vanishes as (k —k')' at k- k', as
(3.8) shows, this term in the numerator of the in-
tegrand can be negl. ected. On the other hand, we
obtain with the help of (3.8) and (4.8a),

9(d', $', tk T „K(2+K ) ((d,, &u, )
) 4~2~mu2 i, (I+IV)'(4+K')'(o', (d(u„/dk)' ' [((d„, ~g'p e'P

9lk T 2 1. "d(u (2(u (()') 81,( k~ T ' 1 "dx(2x' —1)
2)t emu' q (d'(4&@' -3uP)' 47) emu'uP E x (4x' —3)

CVp

(4.19)

The definite integral is evaluated to give a con-
s'tant

x'(4x' —3)' 27 3r ln(2+ &3) ' = 0.160."dx(2x' 1)'
27

The diffusion constant turns out to be

a="("*)=(~(~)) ~f'e"')
2t

gives rise to a translation of the domain wall, the
effective interaction being attractive. The distance
of the translation is rather insensitive to the wave
number of the phonon. It decreases as the wave
number increases. The value at the limit of short
wavelength is one half of that of the limit of long
wavelength. The order of magnitude of the trans-
lation is ~6

~

-u,'n' as given in (3.13). With the
help of (2.13) and (3.12), we can find

= 0.160—~,t'81 2 k~T l'
u4(y2

/Pi dx-
4n'

which gives

(5.1)

(4.20)

It is worth remarking that we have obtained the
diffusion constant making use of the same mecha-
nism as the finite translation of the domain wa&l

was derived in the discussion of Sec. III. The
singularity of energy denominator is somewhat
suppressed by the vanishing numerator. It led to
the finite domain-wall translation in Sec. III. It
gives in this section the fluctuation of the transla-
tion which is proportional to t.

V. DISCUSSION

We have studied interaction between a phonon
wave packet and domain wa11. The second-order
process in the amplitude of the incoming phonon

(5.2)

In order to estimate the translation, we may calcu-
late the produce of mean-square deviation of ions
and the width of the packet. Its ratio with u,'gives

~

6
~

The higher harmonic generation is another inter-
esting phenomenon. This does not happen in a sit-
uation with no domain walls. It is essential that
the wave number of phonons may not be conserved
during the generation process because of the pre-
sence of the domain mall. Suppose we try to ob-
serve the transmitted waves at x&0. We will ob-
serve two signals. The stronger one. is that of the
incident phonon. It reaches x at a time (x —x,
—&x,)/v, which is earlier by the amount &x,/v,
than in a system without the domain wall. The



18 BROWNIAN MOTION OF A DOMAIN WALL AND THE. . . 3907

weaker signal is due to the higher harmonic. Its
"total intensity" f „(g,'")'dx is of the order of

g', dx/u' , as shown with the help of (8.21), (8.25),
and (2.20). It arrives at x when t = x/v„- (x, + &x,)/
v,. Since &x, &&x» the stronger signal is observed
first if the distance x is so close that x&I7(&x,
—&x,)/(& —2Q). The weaker signal travels ahead
if x&K(&x, —&x,)/(Z —2Q), since its group velocity
v„ is faster than v,.

We can observe also the reflected wave at x&0.
In this case, there is only one signal due to the
higher harmonic. It arrives at —~x~ when t= ~x~/v„
—(x,+ &x,)/v, . The amplitude of the reflected sig-
nal will be much reduced compared to that of the
transmitted wave as Fig. 4 shows.

It might be rather difficult to observe these phe-
nomena in an actual physical system. One may be
able to prepare an ideal quasi-one-dimensional
system. But it would be hard to control the con-
figuration of ions so as to form one domain wall.
On the other hand, it would be easy to simulate the
elementary processes in the molecular -dynamics
calculation. It may allow us to evaluate the rela-
tive importance of the nonlinear process and the
possible discrete-lattice effects in the diffusive-
wall motion.

We have next studied interaction between a do-
main wall and a phonon field with an arbitrary dis-
tribution. The probability distribution is given by'

statistical mechanics in terms of a Hamiltonian
which is bilinear in the phonon field when there is
a domain wall. Use of the fluctuation-dissipation
theorem gives us the diffusion constant at low tem-
perature. It has turned out to be proportional to
T'. This temperature dependence is a result of
the nonlinear process. Since the translation of the
domain wall is proportional to the square of the
phonon field, fluctuation of the translation is given

by a quadruplet. Its thermal average by Hamilton-
ian (4.4) is, therefore, proportional to (IA~T)'.
The ratio between the diffusion constant and (IksT)'
has the dimension of (length) ' (time)' (mass) '. In
our formulation, we have introduced four constants
m, A. , B, and co. They are equivalently described
by m', v„$„and u, . Thus it is clear that D
should be proportional to +,'m '. In order to un-
derstand why the diffusion constant does not depend
on the wall thickness $„we consider the depen-
dence on uo It is important to note that the eigen-
value problem (2.8) does not involve u, as a para-
meter. Neither does the Hamiltonian (4.4). There-
fore, the first-order solution (4.6) does not depend
on u, . Equation (3.2) shows that the second-order
solution is proportional to Bu, ~u, ', leading to the
relation 8,(t) ~ u, '. The translation of the wall 6 is
thus proportional to u, . Finally, the diffusion
constant turns out to be inversely proportional to

u, . The independence on the wall thickness is
characteristic to the second-order nonlinear ef-
fect as the temperature dependence which is T'.

Measurement of the diffusion constant should be
more feasible than the elementary process since
we do not need an ideal configuration of one domain
wall and the constant is related to a dissipation
process. The difficulty we, have to meet is to ob-
tain a good one-dimensional sample. The tempera-
ture and wall thickness dependence of the diffusion
constant should be the most interesting properties
to be measured. It is also important to obtain
quantitative information on the magnitude of the
diffusion constant with the heEp of molecular-dyna-
mics computer simulation. It will clearly show if
the nonlinear effect, discussed here, is really the
most dominant mechanism which gives rise to the
Brownian-like motion of domain walls.

Much remains to be done even when the nonline-
ar effect would turn out to be the dominant me-
chanism. Correction due to quantum effects in
dynamics and statistics would have to be discussed
at low. temperature. It would be important to de-
rive a Langevin equation for the motion of domain
walls. It would give us information about the ran-
dom force acting on the domain wall. We should be
able to derive the fluctuation-dissipation theorem
of the second kind which is a relation between the
diffusion constant and fluctuation of the random
force. The phonon dressing of domain walls, dis-
covered by the simulation work, ' should also be an
interesting problem. It should have a close rela-
tionship with the nonlinear process discussed in
this paper.

We would finally like to point out a new feature
of our discussions. Unlike the usual Brownian par-
ticles, our domain walls and phonons are made of
the common constituents —the ions. The difference
is only in the manner of motion of the constituents.
This situation is more universal in solid-state
physics than that corresponding to the usual Brow-
nian particles. M~etic domain wa11s and spin
waves are another example. One can find other
examples in so-called soliton phenomena of vari-
ous problems. Our work shows a possibility of
investigating the interactions between the soliton
and its surroundings when both are composed of
the same constituents. Namely, we can use "nor-
mal modes" when there is a soliton, in which the
Goldstone mode plays an important role. It is very
likely that the method developed in this work has a
wide range of application.
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APPENDIX A: ORTHONORMALITY RELATION (2.11C)
AND COMPLETENESS RELATION (2.12)

With the help of the definition of y, (x), (2.9c),
we have

2 091~4 +9P1~3 —3 +3@' —9 '+6 I 2 +3P ] I ]

+2v2], dy [(Q'Q" —2Q' —2Q'~+ 9QQ'+ 4) cosPy + 3P(QQ'+ 2) sinPy j, (A1)

lt(2n)=2 f dsnansPS(tanh "2 1),
0

Is(2n+1)=2 f dasinPS(tash""3 —1).
O

(A2)

Integrating by parts, we can obtain a recursion
formula

I~(2n) = I~(2n —2) —2/(2n —1)

—[P/(2n —1)jI~(2n -1),
Ip(2n+1) = I~(2n —1)+ (P/2n)I~(2n) .

This is solved to give

I~(2) = -2 —PI'(1),

I~(3) = P+ (1 —-', P'—)I~(1),

I~(4) = -5+ 'P'+ (- 4P+ —-', P')I~(l),

I (5) = - ,'P+ —,', P'+ (1 -—-'&+ —,', P')I (1),

+(1,",K+ 7 H vr'P')I, (1).
The integral I~(l) is given by'

(A3)

(A4)

where P=Q' —Q. We define the quantities I (n) by Substitution of (A5) into (A4) gives

I~(2) = -Pw/sinh( —,wP),

Iq(3) =-2/P+ (1 —-P )w/sinh(2 wP),

I~(4) = (-—,
' P + -", P') w/sinh( —'wP),

I~(5) = -2/P+ (1 ,'P'+ —,', P-'-) w/sinh(-'wP), (A6)

I (6) = ( —,",P+ 'P'— ' P-')w/sinh(-'wP),

I (7) 2/P+ (1 49 P2 7 P4

——', P') w/sinh( —'w'P) .

The integrals of the trigonometric functions are

dy cosPy = lim dy e "cosPy = pg P
(A7)

r dy sinPy = lim dy e ' sinPy = p P,
0 6-+ 0+ 0

where P is the principal part.
Substituting (A5)-(A7) into (Al), we find the

right-hand side cancels each other except the in-
tegral of cosPy which gives

2I (1)=——1+ dy cosPy sech'y
(A8)

2 r
P sinh( —,wP)' (A5)

With the help of (2.9c), the third term on the
left-hand side of (2.12) can be rewritten

I

) x xl—s"'* ' 1+(1+Q') '(t+Q') ' SiQ' tash ~ —tanh ~ )„2w(1+Q') (4+ Q') „» 2$(&

x xI x x'
—Q 3tanh' +3tanh'~ —9tanh ~ ta.nh ~ +3

& 2&o 2&o 2&o

X'
2 X

].+SiQItanh 3tanh' 1 —tsnh ~ 3tanh
&2(o 2to 2$o

+ 9 tanh
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If x&x', (x &x'), the q integral along a large semicircle on the upper (lower) half of the complex q plane
can be added to form a closed contour. The poles, at q =i/v 2]„v2i/]„( i/-v 2)„—&2i/]g make contribu
tion to give

" dqq. ( )q.'( ')

tanh tanh

—tanh tanh + tanh tanh tanh — —tanh

~(- — i — i)I«+« ~'(» ) ~ «'(»' )+«a'(» )
+««*(»' )-««a«(» )t «(» )

A tanh
2

—tanh
2

— 1-tanh - tanh

3 3
=&(x-x')-4~2 q.(x)q.(x')- ~2 9,(x)q, (x').

42go ' ' 22)o' (AQ)

APPENDIX 8: DERIVATION OF EQ. {3.8)

With the help of the definition of q,(x} (2.9c), we can rewrite the integral (3.8}

dx tanh(x/W$o)goy, y, , = W)oi/P[QI~(6) —(12+ 3qq')I&(4) + (3+ 3qq')I~(2)]
a~

—M,(7)+ (15+3q'+ 3q"+ Qqq')I, (5)

(V+4q&+4q" + Qqq + q'q~)I, (3) + {1+q')(1+ q")I,(1)},
where P = q+ q'. Substituting (A4) and (A5), we obtain

~

~

~f(q'- q~)'4[1+ (q'+ q")/41
2ns .hi {q q )/2]

{S2)

APPENDIX C: DERIVATION OF EQ. {3.17a)

Calculation is lengthy but straightforward. We shall write here an intermediate expression for
the integral (3.1%a)

Chtanh x 0 y~y, (p, ,=,i 2VI~ V -2VI~6 + -2V+ P, - P'l~ 5
Roe

+ 9(2P - —,
' P++ —,

' P')I (4)

+(9+ ,'P, + ,'P,'+ ,'P, +t-P'-L-P'P, +-aP')I,(3)

+ 3(-P -P~+P, —', PP', +P~, + ,'P,P-- P,)I,(2)-
-[1+P, 'P+,'--.'P, zP'+'P+~- —,'P, )'1I (1}}

+ 2W2)oi(8 + 5Po+ oLP4 —oPI - o&Poo —QP'

-~&P P2+ oaP4+ oPPoP, —~&P,P —~PoP + io P~ - ~&oPo) dy sin Py
e

+ 6&goi(P, +P,P, -P,) dy cos Py .
0
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APPENDIX D: PROOF OF EQ. (4.3) space, the completeness relation (2.12) reads

We introduce a lattice space in order to carry
out the functional integral in a thermal average
over the phonons. The length of the system L is
divided into N parts by the points (x„x„.. . , xN)
which are distributed uniformly with the distance
b,x; L =Noix. The distance 4x would physically be
identical with l, but mathematically we may as-
sume that ~x is independent of l. In this lattice

3' 3'
4~2( q'0( 1)q'0( 1)+2~3( &1( 1)q11( y)

0 0

q(.(x,.)q(.*(x,}~N(1+ q'}(4+q')

Tranformation of integration variables generally
gives a relation

N

dp (x,.)du(x, ) =Z
~ (P P ~ ~ ~ P P ~ e ~0 01 k2

P(xN)) (u(x, ) ~ .~
1

(qOql qkl qk 2

u(x„))

PO &1dqodq1 Ild&»1d&»2dqmdq»
A&p

(D2)

Both Jacobians have the same value since the transformation (4.1a) is identical with (4.1b) except for a con-
stant term uotanh(x}/~2] ). It is easy to find that

(x, )

9'ply ' ' ' 9']@6'y2~ ~ ~ ~ ~ ~

a(x„))

2
~ ~ ~

4v 2& ) ' ' (2V2&oi ' ' &L(1+&')(2+I1 /2) v'L(1+IP)(2+%'/2)

3 'i' 3 ' i2 Req(,(x,) -Imq(, (x,)
1,4~2( &0(" 2~2] q'1 " '

[L(1+If')(2+I'/2) J"' tL(1+IP)(2+If /2) f '

With the help of the completeness relation (Dl), we obtain

g 2 ggtx'ansposed

(~x)-' 0

0 (~x)-' 0

(gx) e ~ e

(nx)-N (D3)

APPENDIX E: DERIVATION OF EQ. (4.4) where the orthogonality relations (2.11a)-(2.11c}
are used with

With the help of the expansion of P(x) (4.1b), it
is easily seen 2v5(k —k') =Lb»k, . (E2)

(E1) Neglecting higher-order terms in the q, , we can
similarly obtain
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dx u(x)' = 2 2 X f x ( 3
dx u', tanh'

~2~
+2u, tanh

0 0 ( 0)

q6'a+ [2g(1+fop)(4+I) &) jil2 +&o+~i+ M I&pl ) (E3)

dxu(x)4 = dx up'tanh'(4/ x
E2pi

~2(~ (4~2()' +
2~2( &I

~ ~ [mal+)(')(4(z*)J'~'

@de, ~(
3 l~t qdy ~ &,d

4)) 2~p dx &2v 2$ I dx ~ [2L(1+K )(4+g )]'~
(E5)

Substitution of (E3}-(E5}into the Hamiltonian (2.1)
shows that the linear terms with respect to q, and

q~ cancel each other, since

(—,'A)2u, tanh~
2

~+(—,'B)4u', tanh'

mc', ))2up d, / x
d sech'~~ ~=0, (E6)

where the last term is obtained by a partial inte-
gration. The cross terms in the quadratic fofm
also vanish. For example, the q0q~ term has a co-
efficient proportional to

(~B)6u',
OO ( x

dxtanh'~ ~
~00

Sl C dye dtI|7 „
2 dx Nfl

3 dx tanh'

Similarly, the coefficient of q, q„ term is propor-
tional to

(-,'B)6u', , t' x mcp " dy dy„
dxtanh'l&~2$ P,P +

2
dx dx' dx"

cPp~
-&o dx p 9'idx (E10)

3 dx tanh'~
~eo

which vanishes with the help of the relation

d'9), /dx'= -5(((),/2 $'p+ (3/$'p)tanh'(x/~2(p)P, .

d P0cia
dw(e

(EV)

Thus we also have the coefficient of q', term

(E11)

which vanishes with the help of the relation

d Qp/dx' = -((pp/g'p+ (3yo/C) tanh'(x/2 $p) .
This relation gives the coefficient of q', term

(E6)

(E12)
3~2

The coefficient of q~q, term is proportional to
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3 dg tanh2 p q7 + 2 d~ 0 ~A'

D

=~2(o(45I&(6)+45PI&(5)- [54+45KK'+18(K2+K'2)]I (4)- [39P+1&PKK'+3(K'+K'3)]I (3)

+ [21+12(K +K")+24KK'+ 3(K +K' )KK'+ "K'K"]I~(2)

+ [12P+3(K'+K")+6PKZ'+'PZ'K ]I~(1))

+ 2W2)o[12 —21KK'- 6(K +K")+3(K'+K' )KK'+ "K'K"] dx cosPx
2 0

+2v 2$,(1&P 12PKK'+' PK'K"-) dxsinPx-2v 2m), [&KK'+2KK'(K +K )+'K'K" ]6(-P), (E13)2
D

2

where P =K+K'.
Substituting (A5)-(A7) into (E13) and using (E2), we obtain

3 dxtanh' y,p;+ ', dx ' " =I. 12+17K'+'—'K'+'-K' 6, ; .
dx &

(E14)

The constant term in the Hamiltonian is

'Auotanh' +'-Buotanh ( + ' ' sech
4g

dx l(AQO
l

(BBO«2) i4&
"dxA'

DP -- 4la
(E15)

where E» is the domain-wall potential energy introduced by KS. Substituting the various rela-
tions obtained above into (2.1), we finally find

dxA ( 1 (,
4lB &2 eel & y &p

(A) (, , ~,'I /Al&, 5lAl~[, lAl 12+17K'+ 2K +2K
&a

4f ' 2f, 2(1+K')(4+K )
00 1 'I ) 3

+@&&+ &0+p~+ g lp~l l+
l z I &~++ (E16)
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