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Kigenstates of excitons near a surface

15 OCTOBER 1978

Daniel C. Mattis
Polytechnic Institute of New York, 333 Soy Street, Brooklyn, New York 11201

Gerardo Beni
Bell Telephone Laboratories, Holmdel, New Jersey 07733

(Received 5 May 1978)

The exact eigenstates and energies of an electron and a hole of equal effective masses, with an attractive 8-
function interaction and hard-wall repulsion at the surfaces of a solid, are classified and obtained explicitly
for a solid of arbitrary thickness. Both bound and scattering states of the exciton are significantly quantized
for thin films.

I. INTRODUCTION

The present study concerns the effects of col-
lisions, with the confining walls of a solid, on a
Wannier exciton. This is a special case of the
three-body problem: a composite particle, the
exciton (an electron and a hole bound by mutual
attraction) reflected by the one-body forces at a
surface. Such problems are generally insoluble.
We obtain an exact solution only for impenetrable
surfaces, an attractive one-dimensional 5 -func-
tion two-body interaction and equal masses m,
=m„. Nevertheless, our solution gives insight
into the physical properties to be expected. We
indicate the (variational) extension of our results
to three-dimensions, enabling the more realistic
Coulomb interaction to be considered; at the same
time the boundary conditions are respected. With
applications, calculations, and comparison with
experiments deferred to a companion paper, ' the
present work consists of the construction of solu-
tions for two important cases: the semi-infinite
solid and the finite-thickness film bounded by
two parallel surfaces.

The Wannier exciton is described by a Hamilton-
ian:

to obtain the eigenstates suojecx, to an error of
O(m(/m))'is. This well-known procedure starts
by fixing the more massive particle (say 1) and
computing the eigenstates P„(rs) and eigenvalues
E„, with the distance z, from the bounding surface
being a parameter in both [owing to the effects of
the boundary condition P„(r,) = 0 at z, = 0]. The
composite wave functions obtained by Pekar' in
his original work on the excitons are of the form

4'-si nq, z,et «s*t+es"t'p„(r, ) . (2)

These vanish at z, = 0 but neglect the repulsion,
prior to impacting the wall, caused by the rise
in the "effective potential*' E„(z,). The introduction
of a 90' phase shift into the solution by Ting et al.'

qt™cosqz,set«t+'s»&'p (r,)
probably overcompensates for this effect. As we
shall see, far from the surface our exact solu-
tion satisfies Pekar's ansatz near optical thres-
hold, and approaches that of Ref. 3 at higher en-
ergies. Near the surface, however, it is more
complex than either.

We now turn to the one-dimensional model. As-
suming an attractive two-body potential -2' X5

(z, -zn), the Hamiltonian in the z direction takes
the form

Instead of the familiar periodic boundary condi-
tions, two-particle eigenstates are now subj ect
to the boundary conditions 4 = 0 when either elec-
tron or hole is at the surface. The energy gap
separating conduction-band electrons from val-
ence-band holes is E, such that eigenvalues of
(l) less than E are stable (bound) exciton states,
those greater than E are the scattering (unbound)
states which we do not approximate by plane
waves, as usual, but we calculate exactly. If
either of the masses is significantly greater than
the other, then the adiabatic method may be used

me ze mh za

When m, and m~ are comparable in magnitude, as
is generally the case in solids, 4 an expansion in
the ratio of the masses must converge slowly if
at all, so we examine directly the limiting case
m, = m„(denoted m henceforth, for simplicity).
Qne then rotates by 45 in the z, -z„plane to a
new set of coordinates, shown in Fig. 1:

g -=2 ' '(z +z ) and g, -=2 ' '(z -z )

The physically allowed space occupies the first
quadrant in the z„z„plane or, equivalently, the
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limited to the interval ——,'m ( 8, (+—,'m. Note the
limiting behavior, g- sinqf at small q, and -cosqg
at large q in conformity with one or the other
ansatz of Eqs. (2) and (3).

H. ONE SURFACE ATz = 0

In the f coordinates, the single surface is located
at f, =+K, (see Fig. 1). The obvious choice of 4'

as a Slater determinant forces the wave function
to vanish along &, = p, . The second boundary con-
dition can be satisfied only if the one-particle
functions chosen to make up the determinantal
function are both even or both odd. Thus the
bound-state excj.tons belong to the even-even
family:

= (2Xm/L)"'[Z, (C,)g, (C,) -Z,(C,)Z,(C,)1,

FIG. 1. s,-~„plane. Physical interactions occur
along the straight-line segments indicated by dash-dot-
line, attractive two-body interaction along 45' line and
infinitely repulsive one-body forces along horizontal
and vertical axes. Wave-function differs from zero only
in first quadrant (shaded ragion). Introduction of poten-
tials along straight-line segments in other quadrants,
indicated by solid line, symmetrizes the Hamiltonian
without affecting eigenstates

sectors within +45' of the f, axis. Thus if we in-
troduce an "image" interaction -X2' '6(z„+z,)
which vanishes everywhere within the allowed re-
gion, there can be no effect on the eigenstates
except to render the Hamiltonian more symmetri-
cal in the new variables and the solution more ob-
vious. The suitably augmented H is

-1 (e' 8'
a, =- i, , +, , -~[5(g,}+5(g,)]+a, . (6}

This is separable into two identical Hamiltonians
each of the form

1 8'h~=, —X5(C).
2m e~'

We classify the eigenstates of (7) according to
parity. The odd states, u, (f) unaffected by the
interaction, are

with energy E~ = z,+ &, + E~. 'The scattering states
belong either to the odd-odd family

4„,~ = (2/L')'~'[u, (f,)u~ (0,) -u, (L,)u,.(0,)]; (12a)

or tp the even evens family

~„„=(2/L')"'[g,(&,)zg(&2) -g, (&2}gg(&,)], (»b}
both having energy E,&

= g, + && + E,~ E; the
normalization constants were obtained assuming
the length of the solid L- ~.

The continuum of states (11}overlaps the scat-
tering states continuum (12) for e,+ c,& 0, i.e. ,
for q'&(mX)'. In this high-energy range the bound

states are unstable against decomposition into a
free electron-hole pair by any perturbation such
as an impurity atom or lattice vibration. This
threshold also yields a unitof distance L, =2'~'/mX.
A traveling-wave exciton will not measure less
than O(LO), therefore if the length L of the solid
is comparable to L„ interference between scat-
tering at the front and back surfaces can not be
neglected. This is an important consideration in
the study of the recently developed heterostruc-
tures' consisting of layered films 50-100 A. in
thickness, and we therefore turn now to this
quantum interference effect.

u, (L) = sinq&, with energy e, = q'/2m (6) HI. TWO SURFACES AT z = 0 AND z = L

g,(f)=e "'~', with energy e, = ——,'mX',

and the scattering states,

g,(g) = cos(q
~

0
~

+ 8,), with e, =q'/2m,

the phase shifts 8, being given by

e, = tan '(ma/q),

(Qa}

(Qb)

(10)

(unnormalized). The even-parity states include
the ground state,

In the z, -z~ plane the physically admissable co-
ordinates lie within the square 0(z,& L and 0&~„
&L, with 4=0 on the four sides of this square. It
is therefore peggnissible to augment the interac-
tions in (6}by periodic extensions lying outside
this region, creating what is in effect a typo-di-
mensional Kronig-Penney model, illustrated in
Fig. 2. In the g, -4, plane the interactions are
along the lines of a grid 2' 'L apart. The eigen-
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having energies E = Kg+ c'g+ Eg with C a suitable
normalization constant. Aside from normaliza-
tion, the individual functions pt and energies et
are given as follows: the odd functions are

. t(f) = sin(Cntt/2'~2L), (16)

where q=ntt/2' 2L, f =(-1)"and e, =tf2/2ttt T.he
even functions belong to two distinct categories:
those with /=+1 have an extremum at /=+2 L,
those with t = -1 vanish at those points. Either t
labels one bound state and a complementary set
of scattering states, viz. :

FIG. 2. For a finite thickness film with z, or sI, ex-
tending over the interval 0-I the physical space is the
shaded area indicated. Extensions of the-interactions
to the solid lines at 9+ 45' creates a two-dimensional
Kronig-Penney model. The boundary conditions in the
text are designed to make the determinantal wave func-
tions vanish along the s, = 0 and L lines and along the
zz= 0 and L lines (and on their periodic extensions), thus
maintaining the exciton within the physical square.

functions of the suitable augmented Etl. (6) still
factor, and in either variable f, are eigenfunctions
of

(13)

Sty Sty SI t Sty t2ISq t State t( t ~S2ste t( 2}

—4.„„(&)4'.„„(&,)j
(s =+I,t=&} (14)

Let the Bloch function solutions Q(f) of (13) be
labeled according to inversion symmetry s = + (cor-
responding to g or u of the preceding analysis) and
lattice-translational symmetry f, tjt(f+ 2'~2L)
= tp(&), as well as the energy eigenvalue, thus

Q. s t(f) Becau. se the translation and inversion
operators do not commute, they can not share a
complete set of states. Qne easily verifies that
the general ei;genvalues t = e' are incompatible
with inversion symmetry unless- n = 0 or w.

We next construct the Slater determinants as
in Etls. (11) and (12}, ensuring that 4'= 0 on the
s„=0 boundary. Imposition of the requirement
s, =s2=+I (denoted gg or uu in Sec. II) ensures the
vanishing on the z, = 0 boundary. A requirement

+1 for the trans lational quantum numbe rs
allows 4 to vanish on the remaining two edges
of the square. Thus the allowed states of the ex-
citon, both bound (E&E2) and unbound (E&Es),
are quantized according to the following set of
ruled: the eigenstates are

tjt,„„„(0)= cosh( ), e, „==2ttta,',
where

(16a)(I/a, ) tanh(2 ' 'L/tt, ) = mX

gives the bound state for I;=+1 as a function of L,
and

Q„„„,(C)= cosq(~ C~
—2 '~2L), c, „=q'/2m,

where

qtan(q2 '~2L}= -mX (16b)

yields the allowed values of q for the scattering
states of t =+ 1.

For t = -1, the equations for the bound state are

f/ g/ -2-t "L)
, t,.t(0)= slnh( f; e2 t= -2m'

where

(1/a ) coth(2 ' 'L/a ) = ttta (17a)

have a solution only for L & 2't2/tttX; but for all
values of L there is always a full complement of
t = -1 scattering solutions:

Qs „,,(L)=sinq(~ g~
—2 ' 'L}, &„,=q'/2m,

where

q cot(q2 '~2L}= mX . (17b)

The spectra of exciton energies, both bound and
unbound, is calculated using the above equations.
Numerical results are given in the companion
paper, '

IV. SOME APPLICATIONS

We have verified that a product function,

Q(s g )elK(rs rt&I2E(t t ) (18)

where r = (x,y) and K= (K„,K„),is the center of mass
wave vector, withqt given by (ll) or (14), a func-
tion of X, can reproduce the ground-state energy
for the Coulomb potential numerically to satisfac-
tory accuracy. Such functions may be viewed as
trial functions in the variational solution of Eq.
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(1}which satisfy the appropriate boundary condi-
tions, with X, i.e., the size of the orbit, the vari-
ational parameter. The two-dimensional function
R(r, r„-}may be obtained either as a solution of
the effective Schrodinger equation, or more sim-
ply, may be taken as Gaussian or exponential func-
tions with a characteristic length to be optimized.

The theory of size effects in excitons has im-
portant applications to the optical properties of
semiconducting thin films and heterostructures.
Conservation of momentum would ascribe to the
optical spectrum associated with the exciton bound
states extremely narrow linewidths, therefore
explanations of the observed linewidths have in-

voked such momentum relaxing processes as
scattering by impurities and phonons, or the decay
of the electromagnetic intensity within the sam-
ple. We find that the effects of the boundary con-
ditions alone are sufficient to produce a substan-
tial linewidth. In the companion paper, ' we com-
pute these various applications, and compare with
several approximate methods in the literature. '
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