PHYSICAL REVIEW B

VOLUME 18, NUMBER 1

1 JULY 1978

Optical studies of the magnetic phase diagram of FeCl,

J. F. Dillon, Jr., E. Yi Chen, and H. J. Guggenheim
Bell Laboratories, Murray Hill,- New Jersey 07974
(Received 6 July 1977)

The magnetic phase diagram of FeCl, in fields along [0001] has been determined anew with greater
accuracy using magneto-optical-rotation and light-scattering techniques. The Néel point and the tricritical
point have been found to be 23.7 and 21.60 K, respectively. In the rotation-temperature plane the phase
boundaries approach the tricritical point nearly linearly. A careful comparison of these data with those of
Griffin et al. and those of Birgeneau et al. leads to the conclusion that all three are in essential agreement
near the tricritical point, a result consistent with tricritical theory.

1. INTRODUCTION

In this paper, we present the results of optical
measurements of the magnetic phase diagram of
the metamagnetic crystal FeCl, with particular
emphasis on the neighborhood of the tricritical
point (TCP). Both magneto-optical-rotation and
light-scattering techniques have been used.

FeCl, is a particularly attractive system in
which to make a detailed study of tricritical
phenomena. It exemplifies a class of Ising-like
antiferromagnets in which the spin sublattices
are alternating layers. There has been a large
body of work on the magnetic properties of the
compound and many of its properties are known
and well understood.! It is a good starting ma-
terial for possible studies of cooperative magne-
tic phenomena in mixed systems, either anions
or cations may be diluted. In earlier work, we
found that FeCl, exhibits large magneto-optical
effects and that these offered the possibility of
studying the tricritical diagrams with more ac-
curacy than has been done previously. The de-
tails of these phase diagrams have a special in-
terest at this time because of the important pre-
diction of modern theory? that the approaches to
the tricritical point are very similar to those ex-
pected on the basis of Landau-type theory. Re-
sults on He®-He®* mixtures support this.> Recent
results on a metamagnet with interpenetrating sub-
lattices (dysprosium aluminum garnet in fields
along [110]) also showed approaches of the first-
order phase lines to the tricritical point on the
M-T phase diagram as in Landau theory.* How-
ever, for the layer-structure archtype FeCl, the
experimental situation has been singularly un-
clear. Two earlier sets of measurements, one
using neutron diffraction,® the other magnetic cir-
cular dichroism® yielded tricritical phase dia-
grams which differed substantially. The two
determinations agreed in finding almost linear ap-
proaches of the paramagnetic line and the A line
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to the tricritical point. The experiments using
magnetic circular dichroism (MCD) found the ap-
proach to the TCP along the antiferromagnetic
line to be roughly linear in accord with the theo-
retical prediction. In contrast the neutron-dif-
fraction results showed a sharply curving ap-
proach. Though further details and definitions
will be given later, the two reported values for 3.
were 1.13+0.14 and 0.36. There were also signifi-
cant discrepancies in-the values of T, Ty, and T,/
T, in the two reports.

This work was undertaken to determine the tri-
critical phase diagram of FeCl, with greatly in-
creased accuracy. This was to be done using
magneto-optical techniques. Further, it was
hoped that the results would resolve the discrep-
ancy between the earlier determinations.

For our present purposes the structure of FeCl,
consists of hexagonal sheets of $=1 Ising spins
within which spins are coupled ferromagnetically.
A considerably smaller antiferromagnetic coupling
is operative between the sheets. The layer nature
of the structure dominates the mechanical pro-
perties. The crystals are soft and peel easily.

As background we show schematically in Fig. 1
magnetic phase diagrams of FeCl, as presently
understood. Our experiments are aimed at
quantifying these sketches. In FeCl, at low tem-
peratures and fields along the ¢ axis, the spins in
a layer of Fe®* ions all lie parallel to each other
and normal to the layer. The spins in the two
adjacent layers are antiparallel. The H;-T phase
diagram is schematized in Fig.1(a). At zero field
this antiferromagnetic state persists up to the
Néel point T,. Beginning at 0 K there is a speci-
fic value H,(T) of internal field for which there is
a first-order transition to a paramagnetic state
in which the spins are aligned and two sublattices
are no longer distinguishable. This antiferro-
magnetic to paramagnetic transition is first order
up to a tricritical point where, according to class-
ical theory, the first-order line joins smoothly on
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FIG. 1. Sketches of the phase diagrams of FeCl, as
presently understood. (a) the H;-T plane, (b) the H,-
T plane, (c) the M-~T plane, and (d) sketch adapted
from Ref. 7 illustrating the definitions of the exponents
used to describe the approach of the phase transitions
to the tricritical point in a reduced M versus a reduced
T plane. Note a slight change from Ref. 7 in that we
use My, , to reduce that magnetization rather than M, .
Later it will be seen that we use parallel definitions
based on rotation for these same exponents.

to a second-order line. This A line goes to T,
and the whole structure is reflected into negative
field. '

Demagnetizing effects open the coexistence line
into a coexistence area for the corresponding plot
in H,-T as shown in Fig. 1(b). Within the area
marked A + P the two states coexist in varying
proportions. In Fig. 1(c) is sketched the phase dia-
gram in the M-T plane. Here the magnetizations
of the two phases along the coexistence line diverge
rapidly on leaving the tricritical points. The con-
vention we will use for describing the curvature in
the region around the tricritical points is shown in
Fig. 1d. The sketch follows Wolf.” Exponents 3,
and B_ pertain to the paramagnetic and antiferro-
magnetic branches, and w, describes the approach
of the critical line.

II. SAMPLES AND APPARATUS

The rotation and scattering measurements re-
ported here require that a thin sheet sample be
.immersed in a magnetic.field normal to its major
faces, that its temperature be measured and con-
trolled, and that it transmit a beam of polarized
light. With the drawing in Fig. 2 we describe
these arrangements briefly.

The phase diagram data quoted here all pertain
to a single sample of FeCl,, though less extensive
experiments on four other specimens were com-
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FIG. 2. Sketch of the sample mounted on a thermo-
statted copper rod within the temperature shields of a
variable temperature Dewar.

pletely consistent. This was a nearly square piece
4x4x0.075 mm cut from a sublimation flake. The
preparation technique was described in Ref. 8.

The sample was mounted on a copper bar ex-
tending down from the cold block of a variable
temperature Dewar.® This was positioned so that
the sample was on the axis of a 12-in. electro-
magnet whose pole pieces had been drilled for
optical access. As sketched in Fig. 2, the crystal
is set in a recess in the copper bar, over a small
hole. Around the edges it is embedded in high
thermal conductivity grease. The small central
region through which light passes is exposed to
the vacuum. A folded brass sheet slips over the
end of the bar to shield the sample from unneces-
sary thermal radiation. The 1-mm holes in this
shield are covered with cover glasses. The steep
slope in the field width of the A + P region in the
18- to 20-K range was used to demonstrate that
for the final configuration thermal radiation and
the measuring radiation did not raise the sample
temperature significantly. With the block held at
one temperature, a trace of scattering intensity
versus field gives a very good measure of the width
of the mixed phase region, as discussed later. As
the size of the holes in the brass shield was re-
duced this width at first increased as the sample
temperature became lower. Reduction of the hole
size beyond a certain size or introduction of the
cover glass had no further effect. Thus, the shield
and the cover glass had eliminated spurious heating
of the sample by radiation, and its temperature
was surely that of the block by which it is almost



completely surrounded.

The copper block is shielded from room-tem-
perature radiation by a radiation shield main-
tained at about 20 K. Outside of this the outer
wall of the Dewar is fitted with optically flat win-
dows of glass. The interconnected space between
the rod and the radiation shield and the outer wall
is evacuated. The sample is several inches below
the block whose terhperature the Dewar controls.
This is cooled by a slow flow of liquid helium
brought to it by a liquid-helium cooled transfer
tube.® It is warmed by a heater coil. Its temper-
ature is sensed by a calibrated silicon diode whose
calibration is only valid in zero field. There are
two gold (0.07-at. % Fe)-chromel thermocouples,
one on the block, one on the bar very close to the
sample. From these we know that except when
the temperature is changing, there is no measur-
able difference between the two couples. The ca-
pacitance sensor which is not field sensitive is
used in conjunction with a controller!® to thermo-
stat the block. At the temperatures of greatest
interest the controller gives stability of +0.01 K
over the five or ten minutes necessary for a rota-
tion versus field plot.

III. MAGNETO-OPTICAL ROTATION

The central measurements in this work are of
the magneto-optical rotation of linearly polar-
ized light on passage through thin (0001) sheets
of FeCl, with magnetic field and propagation
direction along [0001]. These have been made as
field, temperature, and wavelength varied. Rota-
tion is an attractive quantity on which to concen-
trate. For many purposes it may be regarded as
an order parameter itself. It is very closely pro-
portional to magnetization and thus can be used to
determine demagnetizing effects. From an experi-
mental point of view, rotation measurements have
the advantage that they can be made rapidly with
great accuracy. Only optical access to the speci-
menis required. Although it isimpractical to make
ellipsoidal specimens of soft layer structure crys-
tals such as FeCl, optical techniques can be used
with specimens which have quite well defined
demagnetizing factors, e.g., small areas at the
center of thin sheets with large width to thickness
ratios. Finally, we note that rotation measure-
ments and closely related birefringence measure-
ments are widely applicable to the study of magne-
tic and structural phase transitions.

A complex magneto-optical rotation in para-
magnetic substances may be thought of as arising
from the sum of contributions from optical transi-
tions which are allowed for positive and negative
circularly polarized radiation. Note that FeCl, is
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optically uniaxial. Strictly speaking the normal
modes of propagation are circular only for light
traveling along the principal axis, and only in that
case is the following decomposition valid. In our
experiments, great care is taken to have the field
perpendicular to the basal plane and to use a nar-
row cone of light.coaxial with the optical and crys-
talline axes. If linearly polarized light enters the
crystal under these conditions, the emergent light
may be elliptically polarized. The real part of the
magneto-optical rotation corresponds to the rota-
tion of the major axis relative to that of the in-
cident light. The imaginary part gives the ellip-
ticity of the emergent light. The two quantities
are obviously closely related, but we fix our at-
tention on the rotation in spectral regions where
the crystal is quite transparent, and ellipticity is
very small.

Equation (1) expresses the rotation arising from
transitions between a Boltzmann occupied set of
ground states a and excited states b:

d =K ((n) +2)? Z wz/wba

<n> a.b (wia - w2)

This is a simplified form of a general equation
given by Shen.'! It omits damping terms and thus
pertains to spectral regions where there is rota-
tion, but little absorption. In it, K =7e*N/9mec,
(ny is the average refractive index, fZ, are the
oscillator strengths for the two circular waves,
and p? contains the Boltzmann populations of the
unperturbed ground states. This equation applies
to a situation in which there are levels a of a
ground state variously occupied. These are con-
nected by electric dipole transitions to excited
states b. The contribution of each transition is
determined by the population of a and the strength
of the transition. Note that the average refractive
index enters the prefactor to modify the summa-
tions slightly. Each transition makes a dispersive
contribution to the total rotation. )
We present in Fig. 3 measurements of the mag-
neto-optical rotation of FeCl, as it varies with
photon energy from the near infrared to a band
edge at which our specimen becomes opaque.
These were made with the crystal nearly saturated
in the paramagnetic state at 4.2 K in a field of
19 kOe. The specimen was 90 pm thick, but note
that we quote specific rotation. If the prefactor in
Eq. (1) is constant, only one transition is opera-
tive, and the damping terms are negligible, we
would expect rotation

@ =K{(rw)?/[(Fwy,) - (Fw)?]}. (2)

We find that quite a reasonable fit can be achieved
with K’ =5.0x10% deg/cm and Zw,, =3.3x10* cm ™,
This curve is plotted as the solid line. We inter-

(fra=SadPa- (1)
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FIG. 3. Points represent the specific magneto-optical
rotation of FeCl, at 4.2 K with H;=19 kOe. Both field
and light propagation direction are parallel to [0001].
The solid curve is &= (508. deg/cm)(%w)%/[(7iw)?
- (33023 cm™1)?.

pret this as indicating that transitions at about
33000 cm ™! are responsible for the rotations used
here to study the phase diagram of FeCl,. The
small dispersive anomaly near 7000 cm™ is an
example of another term in the summation. It is
associated with an absorption peak at about

1.45 um in the data of Schnatterly et al.®> This is
attributed to the first crystal-field transition
5T, -~ °E.

We return now to the relation between & (T, H)
and M(T,H). From-(1) it may be seen that the
optical rotation in FeCl, is approximately pro-
portional to the difference in the population of the
m=1+1 states of the lowest-energy spin-orbit trip-
let. (The rotation vanishes if time-reversed
states are equally populated.) This population
difference is just the magnetization. Thus, & and
M are approximately proportional. The propor-
tionality is not exact, however, because of small
variations of the oscillator strengths, the excita-
tion frequencies and the average refraction index
with # and T.

We would like to estimate the error which we
might make in assuming that & and M are directly
proportional. To do this, we define a propor-
tionality factor by'?

AH,T)=dH, T)/MH,T). (3)

If ® and M were truly proportional, A would be
independent of H# and T. In reality A(H,T) is not
constant. Indeed, like all properties of the sys-
tem it should have a component which is singular
at the phase transitions. Nonetheless, we believe
that the variation of A is negligible for our pur-
poses. We have two experimental checks of this.
The first check is indirect. We note that the

various factors in (1) which might change A, also
directly affect the average refractive index. We
have a measure of the variation of the average in-
dexthrough the polarization dependence of the
light scattering by the mixed phase.* The results
show a maximum change of about one part in
2000. This is enough to cause significant effects
in the light scattering, but is quite negligible for
the interpretation of the phase diagram.

A more direct test of the constancy of A is ob-
tained from the slope of & (H.y) in the mixed
phase region. The external field for T fixed,
varies directly with M, the proportionality constant
being the demagnetizing factor. Thus the varia-
tion in the slope measures the variation in A.
From our data, the slope varies by less than one
part in 130 along the whole length of the first-
order boundary from 4.2 to about 21. Thus, it
appears that ® (T, H) is closely proportional to
M(T, H) over the fields and temperatures of in-
terest to us.

IV. ROTATION MEASUREMENT

During the course of this work, our experi-
mental techniques have evolved so that two meth-
ods have been used to collect rotation data. In
both cases a rotating analyzer produces a signal,
and a minicomputer is used in the collection, ma-
nipulation, and storage of the data. Our use of a
rotating analyzer has been described before.!®
Briefly, linearly polarized monochromatic light
is transmitted by a thermostatted specimen in a
field which lies along the axis of the optical sys-
tem. The beam having thus undergone a rotation
encounters first a linear analyzer rotating with
angular velocity 3w and then a detector. The rota-
tion is contained in the phase of the cosw? signal
seen at the detector. A large part of our data
were obtained by using a commercial phase com-
puter to produce a voltage proportional to the
phase angle between the detector signal and a
reference obtained from the rotating analyzer it-
self. The magnetic field is represented by the
voltage of a Hall probe taped to one of the pole
pieces. As the field is varied slowly, data pairs,
voltages representing field and rotation, are
digitized and stored in the computer memory. The
characteristics of the phase computer limit the
angular resolution to about 0.15°,

More recently the rotation has been measured by
an inherently computer-basedtechnique which is
capable of much greater resolution. As above, the
rotating analyzer produces a sinusoidal detector sig-
nal. Following the techniques of Aspnes,'®the photo-
multiplier output is sampled and digitized 18
times in one cycle of the output voltage. These
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values are added in the correct sequence to the
(initially zero) contents of 18 memory loca-
tions. The process is repeated hundreds or
thousands of times, then terminated. The contents
of the 18 locations are then Fourier analyzed

to yield the phase of the detector signal, the mag-
neto-optical rotation. Meanwhile the field is
stepped to a new value, and the process repeated.
Field-rotation pairs are stored in a data array.
The analyzer rotates at about 53.5 Hz, so the
signal is at 107 Hz. One hundred readings of the
photomultiplier voltage require only 1 sec, and
these yield values of rotation good to 0.01°, Four
hundred readings require about 4 sec, and yield
values of rotation good to about 0.005°.

In both cases the numerical arrays of data may
be manipulated in various ways. The raw field
voltages may be subjected to calibrations and con-
verted to a corrected field. Rotation can be re-
duced by dividing by the 4.2-K value.

We will henceforth indicate reduced rotation by
¢=®(T,H)/®(4.2 K, 19 kOe). Field may be re-
placed by internal field. The whole array or any
part of it can be displayed on a cathode-ray-tube
(CRT) screen and special points read from the
screen with a cursor. The data array or any of
its progeny can be readily stored on magnetic
cassettes and worked on at some later time.

V. LIGHT SCATTERING -

Coexisting mixtures of antiferromagnetic and
paramagnetic material at the first-order meta-
magnetic transition of FeCl, have been found to
scatter light.’* As detailed in a recent study, the
scattering appears abruptly on entering the mixed
phase region, and thus is useful in measuring the
boundaries of the mixed phase in the applied field
temperature plane. The scattering peaks some-
where in the middle of the mixed phase region at
any temperature. The effect decreases as tem-
perature increases and the tricritical point is
approached. It increases with decreasing wave-
length. The fact that in FeCl; the scattering is
markedly greater for one circular polarization
than for the other was a considerable surprise,
and is dealt with in Ref. 14. Griffin ef al.'” en-
countered this polarization-dependent scattering
as an apparent circular dichroism, -and in their
early work used that quantity to plot the edges of
the mixed phase. On the antiferromagnetic phase
boundary they found it useful to within about 1 K
of the tricritical point. Recently Giordano®® and
Giordano and Wolf'® have reported the use of
scattering techniques to study the tricritical be-
havior of dysprosium aluminum garnet. Wood
and Day?° used them to follow the evolution of the

magnetic phase diagram of Fe,Mg,_,Cl, as p
approached the percolation limit of about 0.6.

In these experiments the scattering was mea-
sured at fixed temperature for various values of
applied field. Monochromatic light, typically
A=0.7 um, was exactly circularly polarized with
a Glan Thomson prism and a Babinet Soleil com-
pensator. Naturally, the compensator was set to
produce the more strongly scattered polarization.
This passed through the sample, was chopped at
400 Hz and detected using a photomultiplier and
a phase sensitive detector. The output of the phase
sensitive detector was digitized along with a Hall
voltage representing the applied field. The usual
procedure was to repeat the experiment 64 times,
and to add the digits representing intensity in
each small field interval at a specific memory
location. At the end of the data accumulation phase
each of these was divided by the number of readings
in the sum. This multichannel analyzer mode of
data collection gave plots of transmitted intensity
versus field on which the scattering could be
clearly defined to within about 0.02 K of the tri-
critical point. The scattering data array at this
point consisted of intensity-field pairs. This was
read by displaying the whole array at an approp-
riate scale on the cathode-ray screen of a Tek-
tronix 4010-1 terminal, intensity vertical, field
horizontal. The array of points designated (a) on
Fig. 4 serves as an example. The pronounced dip
between the arrows indicates the decrease in
transmitted intensity due to scattering. On the
same screen we would also display the rotation-
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FIG. 4. Computer display of scattering and rotation
data points as a function of applied field for 21.2 K.
The array of points (a) are the scattering data. The
pronounced dip in intensity between the arrow marked
points is due to scattering out of the beam by the mixed
phase. The array (b) constitute the rotation versus field
measurements. The technique used to read the coor-
dinates of the phase boundary is described in the text.
Note that the scattering data represent the average of
64 field sweeps.
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field array made at the same temperature. On
Fig. 4 these points are marked (b). The mixed
phase corresponds to a straight segment of this
curve. However, the gradual approach {o this
straight line makes it very difficult to define the
phase boundaries. Our technique is to set a
vertical cursor at the field of the last point in (a)
which does not deviate from the smooth curve.
The point at which this crosses the array (b) is
used to set the horizontal cursor. The computer
then is directed to read the setting of the two
cursors. For the temperature at which the two
sets of data were acquired, we have values for
H, and ¢. The procedure is then repeated for the
high-field point. Phase diagram coordinates are
thus contained in these sets of values, temperas.-
ture, applied field, and reduced rotation.

Section IV contained a description of the
techniques used to read the coordinates of the
phase boundaries from combined scattering and
rotation data. These are useful in the high interest
region just below the TCP. For some fields and
temperatures other procedures are appropriate.
For instance, at low temperatures the breaks in
the ¢(H,)|; are sufficiently sharp so that it is not
necessary to invoke the scattering technique. 7,
H,, and ¢ can be read directly from the plots of
the data arrays.

In principle, points along the A line cculd be ob-
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FIG. 5. Plots of ®(H,) arrays at 21.8 and 22.6 K,
The wavelength was 0.8 um. The rotations shown have
been corrected for the incidental rotations of lenses
and windows in the magnetic field. They can be con-
verted to relative rotation ¢ by dividing by 67.64°, the
4.2-K rotation for the paramagnetic state. Raw Hall
voltages have been subjected to a calibration to provide
the field values plotted. Arrows are used to indicate
the points we have taken to be the crossings of the A
line. The 22.6-K points have been shifted upward by
0.2 X 10% deg/cm for clarity. Similarly, half the points
in each array have been omitted. These data were
taken with a commercial phase computer.
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tained from the location of discontinuities on
¢(H,) | or ¢(T)|,, plots. Figures 5 and 6 each
give two examples of these plots. Along the
whole length of the A line and especially toward
the high-temperature end, the <1>(T)l,,ﬂ curve
crosses the second-order boundary much more
steeply than the ¢(H)|, curve; consequently the
discontinuity is inherently easier to read on the
¢(T)|, plots. In reading the coordinates of the
point at which the X line crosses both of these
curves, our criterion with both plots is to take
the last point before the slope of the rotation
starts to decrease. We have marked the value
read from the various curves in the two figures.

VI. PHASE DIAGRAMS

Using the techniques just described we have as-
sembled an array of T, H,, ¢ points which appear
to lie on phase boundaries. In the temperature
interval from 4.2 to 20.9 K, 42 pairs of points, one
on the upper boundary, one on the lower, were
obtained by locating discontinuities on ¢ (H)|,
curves. Fifty-eight points along the upper branch:
(above 18.85 K) and the A line were obtained from
the discontinuity in the ¢(T)|, curves. Finally in
the region of highest interest just below the tri-
critical point 13 pairs of points were extracted
from scattering and rotation data by the technique
illustrated in Fig. 4. These range in temperature
from 21.00 to 21.50 K.

The phase diagrams given by this total array are
presented in three figures, the H,-T plane in Fig.
7, the ¢-T plane in Fig. 8, and the #,-T plane in
Fig. 9. The overall aspect of these three dia-
grams is closely parallel to the established pic-
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FIG. 6. Plots of R(T) data arrays at 8.2 and 9.3 kOe.
The wavelength was 0.8 um. The rotations have been
corrected and can be converted as in Fig. 5. Again
arrows are used to indicate the points we take as the
crossing of the A line. For clarity half the points in
each array have been omitted.
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FIG. 7. Magnetic phase diagram of FeCl, in the H,-T
plane. Fields are along [0001], and the diagram applies
to a very thin (0001) sheet.

ture of FeCl,, though there is a considerable varia-
tion in the values of T and T, reported by dif-
ferent groups and listed in Table I. Later we will
discuss our values for these temperatures. As

will be developed below, we believe that on re-
interpretation the Birgeneau et al. values will co-
incide with ours; further, that the discrepancies
with the Griffen and Schnatterly and with the Vet-
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FIG. 8. The high-temperature end of the magnetic
phase diagram of FeCl, in the ¢-T plane. ¢ is the re-
duced magneto-optical rotation, i.e., the measured
rotation divided by the rotation for the same sample at
the paramagnetic state at 4.2 K. Magnetic field and
light propagation direction are along [0001]. The solid
lines represent the fit we have made to these data to
obtain the coordinates of the tricritical point and the
exponents describing the approach. Detailed ranges
and parameters are given in Table II .
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FIG. 9. Magnetic phase diagram of FeCl, in the H-
T plane. This applies to fields along [0001]. Insert
shows the points from Ref. 5 plotted on top of ours
without adjustment.

tier values may represent a difference in sample
composition or in thermometry, as well as some-
what less accurate determinations than reported
here.

The ¢-T diagram of Fig. 8 corresponds closely
to an M-T diagram. Following the discussion in
Sec. III, we cautiously regard it as equivalent.
Note that H;=H., - NM=H,, - N¢/A. From this
it is clear that the constant slope of d¢/dH . at
various temperatures across the mixed phase
region constitutes a measure of the (demagnetizing
factor N)/(proportionality constant A). Further-
more, it is in the correct units to convert ¢(cht)
to ¢(H;). From the dimensions of the sample (a
thin sheet with axial ratio of about 50:1) it is
clear that N is within a few percent of 47. Using
the averaged N/A, we can transform the T, ¢, H,
array to T, ¢, H;.

From these points the H; — T plane phase dia-
gram of Fig. 9 has been plotted. The upper and
lower branches collapse onto a single line, and
the resultant curve goes smoothly through the tri-
critical point marked with an arrow.

VII. TRICRITICAL POINT AND ITS APPROACHES

Points on the M-T diagram near the intersection
of the first-order lines and the X line were used
to determine the tricritical point as well as the
slopes and exponents describing the approaches to
it. The fitting was done using a multiparameter
nonlinear least-squares fitting program. Several
steps were involved, so that the decision as to
which branch points close to the tricritical point
belonged was not made until its location was
determined quite closely. The system of equa-
tions we have fitted is
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TABLE I. Tricritical and Néel temperatures of FeCl,.

Author T; Txn T:/Ty
Vettier ? 20.3 22.9 0.886
Griffin® 20.79 23.0 0.904
Birgeneau © 21.15 23.6 0.896

Present work 21.60 23.7 0.911

2C. Vettier, thesis (Grenoble, 1975).
b Reported in Ref. 5.
¢ Reported in Ref. 4.

for the upper branch,
¢=¢,+B,(1-T/T,)*,

for the lower branch,
¢=¢,-B_(1-T/T,)"",

and for the lambda line,
¢=¢, =B, (T/T, —1).

Eight parameters were simultaneously fitted, the
coordinates T, and ¢, of the tricritical point,

the factors B,, B_, and B, as well as 3,, B_, and
w,, the exponents describing the curvature of
these approach lines. A decision must be made as
to which points to include, and this is essentially
empirical. We find that the tricritical point is not
very sensitive to this choice, but the other para-
meters are. Bearing in mind the theoretical ex-
pectation of linear approaches on the low field
side, we see in Fig. 8 that the points of the para-
magnetic branch fall closely on a straight line
down to about 19 K, then diverge. A similar
examination has led us to include points within
different ranges along each branch for the final .
fitting. For the paramagnetic line points within
19 K<T <T, were used; for the antiferromagne-
tic line 20.5 K<T <T,; for the A line, T <T
<22.3 K. The final parameters are given in Table
II along with those reported by previous workers.
Inclusion of points beyond these ranges would in-
troduce curvature, use of shorter ranges would
give similar parameters with greater and greater
errors.

The solid lines in Fig. 8 correspond to the para-
meter values given in Table II. The range over
which points on the first-order lines are linear
seems clearly to reflect asymptotic behavior. On
the A line it is less clear, and the small number
of points leads to rather large errors in w, and
B,. The first-order phase boundaries are con-
sistent with the theoretical expectation of linear
approaches to the TCP. We interpret the different
ranges as reflecting the extent of the tricritical
region. Figure 10 shows log-log plots of the three
branches as they approach the TCP. Table II also

TABLE II. Tricritical point and exponents.

Quantity Birgeneau ? Griffin®  Present work ©

T, 21.15 20.79+0.11 21.60 +0.02 K
My, Dy 0.395 0.38+0.01  0.361:+0.002
B, ~1 1.03+0.05 1.00 %0.02
B- 0.36 1.13£0.14 1.00 +0.07
By d 1.1 £0.11  1.00 0.08
Wy ~1 d 1.29 +0.16

R d 2.85+0.34 2.89 0.10
B_ d 4.14%1,5 3.0 +0.6
By, d d 4.6 2.6
d;’;* a 2.6640.11 2.8 +0.1°
dm e

~ d 1.57+0.08 1.57 0.1

2 values published in Ref. 4.
b values published in Ref. 5. Those for B,B_ and the
slopes of m, and m), were normalized to M, , to match
our usage.

¢Obtained by least--squares fit to 100 points in range:
19=T=T,; along the paramagnetic branch; 20.5=7T=T,
along the antiferromagnetic branch; 7, = T=22.3 along
the A line. In reduced temperature the data along the
paramagnetic line are in 0.002 <¢ <0.12, the antiferro-
magnetic in 0.0046 <¢ <0.05, and the A line in 0.0014 <
t=0.03.

4 Values not given in the reference cited.

€ Read graphically from Fig. 11.

includes a value for the exponent 8, describing the
disappearance of ¢, — ¢ _ on approaching the TCP.
The pertinent equation is

¢, ~p_=B(1=T/T,)%. (4)

An important result of renormalization-group
theory is that, for tricritical points, classical
mean-field theory is valid down to dimensionthree
rather than dimension four as in the case of ordi-
nary critical points. However, at the critical
dimension three the theory predicts logarithmic
corrections to the classical exponential ap-
proaches the tricritical points but there is no
indication of the size of these terms. Thus, it is
desirable to see whether the present data are
better fitted by expressions with logarithmic cor-
rections than by simple exponentials. In another
case where three is the marginal dimension,. that
of the uniaxial dipolar coupled ferromagnet
LiTbF,, Giffin, Litster, and Linz?' recently showed
that an expression with a logarithmic correction
gave a better fit to the data than the usual expo-
nential relation.

Stephen, Abrahams, and Straley?? and later
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FIG. 10. Log-log plots of the reduced magnetization
against reduced temperature for data points on the
three branches as they approach the tricritical point.
For clarity, the points along the paramagnetic branch
have been displaced upwards one decade, those along
the antiferromagnetic branch two decades.

Giordano® have given expressions for the approach
of the paramagnetic and antiferromagnetic lines
to the tricritical point. We have tried to fit our
data on these two branches over several ranges of
reduced temperature to these expressions. . In no
_case did this give a fit which was better than that
of the corresponding exponential fit based on fewer
adjustable parameters. Goodness of fit was judged
by the sum of the squares of the deviations. The
errors in the parameters pertaining to the loga-
rithmic correction were larger than the resultant
parameters themselves. That such corrections
would fail to improve on our exponential fit is not
surprising since 3, and . both came out very
close to 1.000. The logarithmic terms are correc-
tions to a term linear in ¢.

VIII. DISCUSSION

In addition to providing more accurate data on
the FeCl, TCP, we hoped that these experiments
would clarify the discrepancy between the results
of Birgeneau et al.5 (BSBK) on one hand and those
of Griffin and Schnatterly® (GS) on the other. That
discrepancy primarily concerns the approach of
the lower first-order branch to the TCP, and
shows up in the values of B_ in Table II. Griffin
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FIG. 11. Attempted superpositions of earlier data on
the present data over the whole temperature range. (a)
Griffin and Schnatterly data (open octagons) scaled so
as to best coincide with ours (solid diamonds) around
the TCP. These have been displaced upward by 0.3.

(b) Birgeneau et al. data (open squares) scaled very
slightly to coincide with ours near the TCP.

and Schnatterly reported a value of 1,13+ 0.14, a
nearly linear approach, whereas Birgeneau ef al.
reported 0.36. To illuminate the differences
among the three sets of data we attempted to
superimpose them using a simple procedure. For
each of the three sets, M-T plots were made for
the range 18-23 K. By superimposing these in the
neighborhood of the TCP, we readily determined
the factors by which both temperature and reduced
magnetization coordinates of the two earlier sets
must be multiplied in order to best coincide with
our data. Using these correction factors the GS
and BSBK data were separately plotted with our
data. Figure 11 (a) shows the GS data and our data
over the full temperature range, while Fig. 12 (a)
is an expanded plot around the TCP. The neces-
sary scaling has multiplied the GS temperatures
by 1.041 and magnetizations by 0.95. The ap-
proaches to the TCP are very similar, though
there is obviously a systématic discrepancy along
the paramagnetic line where the GS points all lie
below ours. It seems likely that these differences
arise from the differing relationships between M
and 1.4 um magnetic circular dichroism in the GS
case and M and magneto-optical rotation in our
experiments. This difference also appears in the
values of M, given in Table II. It seems possible
that the temperature discrepancy of about 0.8 K
in T, and Ty arises from a composition difference
or perhaps in part from a difference in thermo-
meter calibration.



386 J. F. DILLON, JR., E.YI CHEN, AND H. J. GUGGENHEIM 18

) '.O’b& (a)
i e o &O'@'-@

T
©

‘b/q)‘sz or M/M42
jol
0
‘5’@
s ¥

FRER]
PR

S

_ _ i - _ !
18 19 20 21 22 23
Temperature (K)

FIG. 12. Attempted superpositions of earlier data on
the present data near the TCP. (a) Griffin and Schnat-
terly data (open octagons) scaled so as to best coincide
with ours (solid diamonds) around the TCP. For clarity
these have been displaced upward by 0.3, (b) Birgeneau
et al. data (open squares) scaled very slightly to coin-
cide with ours near the TCP. ’

A parallel comparison is made between the
BSBK data and ours in Figs. 11(b) and 12(b). Here
again we have attempted an overall superposition
of the phase boundaries as they approach the TCP.
The requisite scaling only shifted 7' infinitesimally
and M by a factor of 1.02. With such a shift the
three phase boundaries coincide extraordinarily
well except for the immediate region of the inter-
section. Relative to our data, the points along the
lower first-order branch are missing in the BSBK
data, a region in which our data show six consis-
tent points, and the GS data show two points. Par-
enthetically we note that if the TCP’s are made to
coincide, rather than the phase boundaries as
above, the antiferromagnetic lines would be very
far apart. Figure 12(b) achieved almost without
adjustment, is compellingly plausible superposi-
tion.

An outstanding feature of the comparisons made

above is the absolute agreement between the M-T
phase diagram points obtained by our optical
techniques and those obtained by\BSBK with neu-
tron-diffraction techniques. In hindsight, it is
clear that the nature of the diffraction experi-
ments precluded the determination of points along
the antiferromagnetic line above 21.1 K. Without
these it was not possible to determine the TCP, and
and the authors turned to an alternate criterion
based on critical scattering.?® This yielded a
value for T, a half-degree lower than the value we
now take to be correct. The remarkable agree-
ment of the phase boundary data forces us to con-
clude that the criterion used, though exceedingly
reasonable, is subject to some ambiguity.

Our final view is that the present data, a slight
scaling of the GS data and the BSBK phase bound-
ary points are all in substantial agreement with
each other. The exponents obtained will all
describe nearly linear approaches to the TCP.
Thus data from radically different experiments
all accord with tricritical theory. Not only have
different techniques been used, but the neutron-
diffraction experiments measure the antiferro-
magnetic order parameter M, whereas all the
optical techniques measure the other order para-
meter in the problem M. In order to provide a
test of the scaling hypothesis for FeCl,, further
careful measurements of ¢(T,H,) in the neighbor-
hood of the TCP are in progress. They will be
reported in a later publication.
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