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A model consisting of an Anderson-Moriya d resonance, strongly perturbed by a Slater-Koster potential
acting in the conduction band, is developed to describe dilute rare-earth impurities in s-p hosts. The
properties of this model are studied, in particular the deviations from the usual behavior of the phase shifts
due to the Slater-Koster potential. The local magnetic responses to the rare-earth’s exchange fields are
calculated in order to discuss self-polarization hyperfine fields of the rare earth in these hosts. The behavior
of the hyperfine fields in terms of the parameters of the model is discussed numerically and possible changes’
in sign along the s-p series are obtained. It is suggested that the combination of an Anderson-Moriya
resonance and the strong Slater-Koster scattering may be a physical mechanism suitable to induce changes in
sign of the hyperfine field in these systems. Experiments are suggested to test the model.

I. INTRODUCTION

Magnetic-rare-earth impurities have been used
successfully as probes in host metals in several -
experimental works. In particular, hyperfine-
field measurements have been reported in the lit-
erature for transition-metal hosts'"® or inter-
metallics.?**

From the theoretical point of view diluted mag-
netic-rare-earth impurities in such transitionlike
host metals have been interpreted as physical
realizations of simultaneous presence at the same
gite of charge-impurity scattering and exchange
polarization.5’¢

In this work we want to discuss theoretically the
problem of a magnetic-rare-earth impurity em-
bedded in s-p hosts. Contrary to the problem dis-
cussed in Ref. 6 where there exists a considerable
amount of experimental data,?:” to our knowledge
experimental data concerning hyperfine-field
measurements at the nuclei of rare-earth impuri-
ties in s-p hosts have not been reported in the
literature.

The case of a magnetic-rare-earth impurity
diluted in s-p hosts contrasts with the previous
transition-metal case®’® due to the absence of un-
filled d bands in the neighborhood of the Fermi
level of the host. However, the existence of filled
d bands near the bottom of the pure host s-p band
provides the possibility of extracting d bound
states from it, as in the case of transition impuri-
ties in Cu or Al®

Hence, the existence of d states, i.e., ad-
virtual-bound-state hump near the Fermi level
apart from the host conduction s-p states is an
impurity effect.

One has experimental evidence confirming the
existence of a d virtual bound state for rare earths
diluted in some noble metals (Ag and Au). Mea-
surements of skew scattering of rare-earth im-
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purities in these noble metals® show that the maxi-
mum value is obtained for Gd impurities. Since
Gd is an S-like ion, the usual anisotropic exchange
scattering as derived by Kondo'® (and reported in
Ref. 9) vanishes since the angular momentum is
zero. The apparent contradiction is resolved by
introducing a 5d virtual bound state and including
spin-orbit coupling of these electrons. Other
evidence is provided by studies of the sign of the
crystalline-field coefficients.!

The rare-earth valence plays a central role in
the problem we discuss throughout this work. In
fact, for trivalent rare atoms the number of d
electrons per impurity in the d hump plus the num-
ber of conduction states is equal to 3, whereas for
divalent impurities the sum is 2, If one studies a
series of s-p metals one then varies the number
of s-p electrons in the host from, say, 2 to 7.
Then a repulsive potential must ensure the cor-
rect change of number of s-p electrons per rare-
earth impurity and thereby the resonating d bound
state is strongly modified by this extra charge po-
tential. In other words, ad atomic Anderson
state!? mixes to a Slater-Koster (SK)'® perturbed
conduction density of states, thus.affecting the
“effective width” and height of the d hump. So we
suggest that a Friedel-Anderson (FA) model where
the conduction states are perturbed is physically
realized when trivalent-rare-earth impurities are
diluted in s-p hosts.

If one concentrates on hyperfine results in these
systems we argue that the trivalent-rare-earth 4f
magnetic moment polarizes both the Moriya-like
distorted d hump'* and the SK perturbed host den-
sity of states.

In this work we are concerned with S-state rare
earths, otherwise the strong orbital hyperfine
field should be present. So our results apply to
Gd** (or Eu?") impurities.

The theoretical problem discussed in this work
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contrasts with the transition-metal-host case®*®
where the rare-earth 4/ moment polarizes the
perturbed d -band host (mostly responsible for the
excess charge screening) and the s band, which
feels impurity effects only via s-d scattering. In
that case it was shown® that no change in sign of
the hyperfine field as a function of the charge dif-
ference was possible. Moreover, the sign of the
hyperfine field was determined only by the sign of
the exchange coupling between d conduction states
and f localized states in agreement with ESR ex-
periments,?: 715

In the s-p host case, d-electron occupation is
small. One hopes that in favorable situations
change in sign may occur since competitive me-
chanisms (contact and core polarizations) may be-
come comparable and alternate in importance.

Our paper has five sections. Sections II and III
are dedicated to the formal aspects. In Sec. II we
present the model, whereas Sec. II contains the
general mathematical treatment of the problem
and basic derivations of the hyperfine contribu-
tions. In Sec. IV we describe and discuss the nu-
merical results obtained. Concluding remarks
are made in Sec. V.

II. THEORETICAL MODEL

In this section we describe the main ingredients
of the model, e.g., the unperturbed s-p host and
the impurity potential introduced by the magnetic-
rare-earth impurity. Let us start with the unper-
turbed s-p host. One adopts a simplified band
model based in Campbell’s®® picture for s-p im-
purities embedded in ferromagnetic hosts. This
model consists of eight identical subbands, each
one normalized to unity in order to account for
the filling of the s-p series. Within this particu-
lar model, the peculiar s or p character as ob-
tained from decomposition of the total density of
states?® is replaced by a uniform distribution with
weights of, respectively, - and § for the s and p
densities of states. Then, in the Wannier repre-
sentation the one-electron Hamiltonian for one
conduction subband is

CFChost = Z:Ti.i c;roc.io; (2'1)
ijo
where ¢}, and c;, are, respectively, the creation
and annihilation operators for electrons with spin
o at the 7th Wannier site in that subband; T;; is
the transfer integral between sites 7 and j defined
by

Tu=;€§e‘k'“‘i"‘i), (2.2)

€% being the band energy.

Now we describe the impurity effects. These
are separated into two types: potential scattering
of the s-p states and resonance effects associated
to a d atomic state.

As far as the first effect is concerned one as-
sumes that the trivalent-rare-earth impurity is
characterized by Z{) and Z{%), i.e., s andd con-
figurations, respectively, with Z{5) +Z{?) =3. The
values of Z{5) and Z{¢) will be discussed in more
detail later on. Starting from atomic values one
has, e.g., Gd atoms Z{$) =2 and Z{%) =1. Then, if
the rare-earth impurity is embedded in a metal
with Z, s-p electrons, a repulsive impurity poten-
tial should be introduced in order to repel Z, -Zi(m";
electrons. These remarks define (i) a SK problem
specified by the potential V. assumed to be local-
ized at the impurity site, so that

i) = ;Vcc s Coo- (2.3)

The strength of the impurity-induced scattering
matrix element V. is determined self-consistently
as a function of the charge difference AZ,=Z,
—Z() through Friedel’s sum rule,’

imp

ﬂVccpc(EF)

2.4
T By ¢ .
1-V_ FE(ep) (2.4)

In (2.4) the factor 8 accounts for s-p degeneracy,
whereas p (€;) and F¥(e,) are, respectively, the
density of states and Hilbert transform at the Fer-
mi level of the conduction subband suitably nor-
malized to 1. Clearly, if the s and p densities of
states are available from a band calculation, (2.4)
should be replaced by the corresponding equations
describing s and p contributions to screening.

(ii) The second contribution to the charge-im-
purity problem arises from the existence in s-p
metals of a filled d band (10 electrons) lying far
below the s-p Fermi level.

We assume that the existence of the atomic 54
level of the rare earth provides a locally strong
repulsive potential capable of extracting a bound
state from this filled d band. The repelled bound
state resonates then with the conduction states,
producing a virtual bound state around the Fermi
level. The Hamiltonian associated to the resonat-
ing “atomic” d level is

8
AZ,= - arctan

d) — Z + Z T
:"Cfm]), - €dd00d00 + (Vcd Cgodoo + Vdcdoa coc)
5] 5]
. dy _ 41
+Uaansy 78] 5 156 =d oo dos 5 (2.5)

where dJ, d,, are creation and annihilation op-
erators for the d local states (in Anderson’s
sense®) located at the origin and with energy ¢,.
V.s and V;, are the matrix elements accounting
for the broadening of the local level and |V, |? is
one of the parameters of our model. Finally U,,
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is the local Coulomb repulsion. The impurity ef-
fects associated to the rare-earth impurity are
then incorporated in the Hamiltonian

qech = gele) 4 5(:(4)

imp imp imp *

(2.6)

Itis assumed throughout thata nonmagnetic Har-
tree-Fock solution is obtained for the extended
Anderson-Moriya (AM) problem defined by (2.1),
(2.3), and (2.5). As far as self-polarization hyper-
fine fields are concerned, the existence of the
local Coulomb interaction U, between 54 electrons
amounts to weak Hartree-Fock enhancement of
the local magnetic response of d-hump states to
the exchange interaction with the 4f moment (see
Sec. IV). In this work we neglect this effect, which
tends to increase the d contribution to the hyper-
fine field.

For a given hybridization matrix element | V,,|?
and band-structure model [given by the density of
states p,(w) and the corresponding Hilbert trans-
form FZ(w)], the problem for a spinless rare-
earth impurity like Lu is completely specified by
determining self-consistently the position ¢, of the
d atomic state with respect to the Fermi level. To
do that one should solve the AM problem in pres-
ence of the SK perturbed s-p states. This will be
done in Sec. III and here we just state the result
for the self-consistency equation. The number of
states associated to the resonant states (4 hump
plus conduction-state contribution) is given by

7T|Vca|25c ol€x) .

10
AZ;=— arctan ——r——-rw—— .
¢ T 2 €Er—€—1Ve 2F§,o(€p)
(2.7)

The factor 10 accounts for the d-level degener-
acy, whereas p, o(€;) and FZ (e;) are, respective-
ly, the local SK perturbed density of states and its
Hilbert transform at the Fermi level. The self-
consistent determination of €, goes as follows: us-
ing the value of the Fermi energy €, associated
to the host s-p metal with Z, electrons and impos-
ing AZ,;=1, one gets from (2.7) the value of ¢,.

If the impurity is a magnetic rare earth like Gd,
the localized f moment polarizes both the perturbed
s-p conduction states and the d hump. The cou-
pling term is as usually

1.
K = =g 008 U cly g +T D, do)

.(2.8)

where J™ (for A =c or d) are, respectively, the
exchange interactions between the localized 4f
state and the s-p conduction states or d states.
For simplicity’s sake, the k, k’ dependence of
these couplings is completely disregarded and as
discussed below (cf. Sec. IV) these parameters

enter in our calculation through the ratio J® /J¢),
Hence, our model Hamiltonian describing a mag-
netic rare earth embedded in a metallic s-p host
is given by
JC=TC poq + I+ TN (2.9)

imp

III. FORMALISM
A. General mathematical approach

In order to obtain the contact and core contribu-
tions to the self-polarization hyperfine field at the
rare-earth impurity nucleus we calculate the s-p
conduction electron and d -hump magnetizations in-
duced by the local f moment (S?) at the rare-earth
impurity site. This calculation will be performed
in the Born approximation for the “local exchange
fields” V), ==30JM(S* (\=c or d). To do that
we must determine the complete Green’s function
matrix elements I'S¢ (w) and T'% (w) associated
with the Hamiltonian (2.9). v

We start from the unperturbed system (i.e.,
¥=3C,,,): to a given conduction subband of the
pure host described by (2.1) corresponds a Green’s
function g (w), the elements of which are given by

iR(R=R;)

cc - e
gi(w) = Z ~wc-e (3.1)

Due to the translational invariance of the pure
host, the diagonal elements g%(w) are independent
of site 7 and are connected to the Hilbert transform
of the unperturbed s-p density of states through

1
g55(0) =g§5(0) =Fo(w) =30 ——
kR =%k
E ’
=f f oY) s (3.2)
B, W=

E, and E, being, respectively, the bottom and the
top of the s-p subband.
In (3.2) one has real and imaginary parts. Hence

F(w+ig) =F5(w) —imp(w) (¢-07), (3.32)
where
- 1 o (Pt pele) .,
i@ =P Y imep [ e e
‘ (3.3b)

P being Cauchy’s principal part.

When one introduces the rare-earth impurity at
the origin, one gets a “perturbed” system char-
acterized by a Green’s function I' ;(w), of matrix
elements T'} (w) (A, .=c or d), which can be

evaluated through a Dyson-like equation
T =g+, T, . (3.4)
The problem defined by (3.4) is to be solved as
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follows. We define an intermediate Green’s func-
tion characterizing the perturbed s-p band [through
(2.3)] which is solution of the SK problem
G=g+EVOg, (3.5)
Next, one has an AM-like problem [through
(2.5)], namely, a sharpd level extracted from
the filled d -band host collapsing into a charge per-
turbed s-p band. The d level is described by the
Green’s function g (w) with matrix elements (in the
absence of Coulomb interactions)
g% w) = 54300 (3.6)
iJ W - €d . °
This problem can be solved by calculating G
from g, through

G=F+Fvawg , (3.7)

So by solving (3.7) one accounts for the pure
charge potential effects introduced by the rare-
earth impurity. A similar formulation was in-
troduced by Iglesias-Sicardi et al.'® for studying
the formation of the magnetic moment of an actin-
ide impurity in a disordered host.

Having obtained the Green’s function G, by con-
sidering the rare earth’s 4f moment [through
(2.7)] one finally gets

f‘ct:& '{'E;f}exch]":‘cy"\_‘&""&i}excha ’ (3-8)

where the last approximate result follows using the
Born approximation for exchange scattering, Let
us now detail the various stages of the calculation
sketched above.

B. Charge-impurity effects: Exact solution of Egs. (3.5) and
3.7)

The Green’s-function matrix element G%(w)
=0,;,G%(w) is evaluated from (3.7) through

Goo(w) =2 55(w) +255(w) Vo Go(w) (3.92)

Goo(w) =g 55(w) Vs G33(w) . (3.9b)
Eliminating G¢(w) one obtains

dad .
Cl(w) = g of(w)
o) = T ) g @)
= 1 (3.10)
w =€ —| Vool * F56(@) 7 ’
with
cc
() = =589 _F (o). (3.11)

1- Vccggg(w)

Expression (3.11) is derived from (3.5), i.e.,
go5(w) describes the Green’s function matrix ele-
ment at the rare-earth impurity site, which is the
exact solution of the SK problem. Note that ex-

pression (3.10) is just the classical Moriya result'*
of ad level hybridized with a conduction band, ex-
cept that in the present case the conduction states
are perturbed by the impurity potential V..

Let us now evaluate the Green’s-function matrix
element G§5(w).
Again from (3.7) one has

G53(0) =2 53(w) +£%(w) Ve G5 (0) (3.122)
G(w) =g 8(w) V65 (w) (3.12b)
Eliminating G%%(w) yields
. - | V4 l? -
Giiw) =2 7i(w) +255(w) —— = ;; FEe) £&(w),
(3.13)

where

~cc,

V.
£ii(w) =g$i(w) +g(w) 'i—_-_—ﬁc—c%-———;ﬁ(w) g5%(w)
(3.14)

is precisely the ¢-i Green’s-function matrix ele-
ment as derived from (3.5).

So, the Green’s-function matrix element G$5(w)
at the impurity site is

o) = — @) Bgle)
W= € =1 Vea|* 55(w)
The Green’s-function matrix element defined by
(3.10), (3.13), and (3.14), which are obtained in
terms of pure host s-p band quantities [as p (w)
and F?(w)] and impurity quantities (as V., €,
and | V,;|2) completely solve the d-impurity scat-
tering problem (AM problem) in terms of s-p
perturbed scattered states (SK problem).

(3.15)

C. Local density of states of the perturbed system and extended
Friedel sum rule

First we consider the various contributions to
the local density of states at the rare-earth im-
purity site.

From (3.11) one has, similarly to (3.3),

&55(w) ___1';"10\’,, o{w) =mp, ,o(w) ’ (3.16)
where
- 1
Pec, o(w) = __17— 538(60)
pe(w) (3.172)

T TV FR@) P +[1V o p (@) P

is the local density of states of an s-p subband in
the SK problem, F¥ (w) being given in terms of
pc(w) and FX(w) as
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FR(w)[l FR(w)] 7V, p2w)

-V Fi ()P +[1er¢>c(w)iE :

(3.17b)

R o(w)=

The total local density of states at the rare-
earth impurity center is the sum of two contribu-
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tions, which are obtained from GZ(w) and GE5(w).
One has

1
Pa,olw) = s ImGgi(w) =| V,,|? [

is the local d-hump density of states and
z 1
Pe,o(@) = —— ImGEE(w)

- (w - €)2Dp o(w)
[w =€ =1 Vea | FE, (@) P +[7] Vo [*Bc, (W)
. (3.20)
is the local s-p density of states for a given sub-
band.

We close this paragraph deriving an extended
Friedel theorem connecting the total change in
density of states due to the AM resonance to the
total change in the number of conduction states
introduced by the AM resonance. In particular,
the sum rule previously announced in (2.7) follows
straightforwardly from the theorem. '

From (3.13) and (3.14) one obtains for the change
in the number of s-p conduction states up to en-
ergy w introduced by the AM resonance:

(@) = - I [ D655 - g5w)] dw
4

1 w
=———Imf
T &,

The above expression may be rewritten

w 2 = , ,
671°(w)=—% Im(f 1|V |%0Fc,o(w) /o w
Ep

o’ "'ed_erdIZFc,o(w,)
_f“’ dw >
E, W' —€ -]Vcdlec.o(w’)

| V|20 F o(w) /B o

7
& — € SIVa P F, o) 7

(3.21a)

dw’

= —Imln[w - €= Vel?

><Fc,o(w')]'dw' - ont(w) ,
(3.21b)

where 67%(w) is the number of d states contained in
the d hump up to energy w as follows from (3.10).
Then the total number of states introduced by the
AM resonance AZ,(w) =6n°(w) +n%(w) is connected
to the total change in density of states Ap, (w) by

w=—€; _—[Vcd[zF o(w)F+[”|Vcd| Pc,o(‘-")]

ploc (0)) =pd.0(w) +ﬁc,0(w) ’ (3'18)
where
e (3.19)
w
AZ(w)= f 8p (@) e’
——-—f — Imln[w - —|V,l?
Xf‘c,o(w’)] dw’
f ——-—,— n(w')dw', (3.22)
where the phase shlft n(w) is given by
ﬂ‘ Vcdlsz,O(w) (3.23)

=arct .
n(w) =ar anw—ea—TVcdlef,o )

The factor 10 in (3.22) accounts for the degener-
acy of the d level with same spirit that degeneracy
of the s-p band was included in (2.4) through the
factor 8.

Friedel’s sum rule (2.7) follows directly from
(3.22) by taking w=¢€, and AZ,(€;) =AZ,.

D. Spin polarization at the impurity site: Self-polarization
hyperfine field

We consider now the Dyson-like equation (3.8) to
evaluate the Green’s-function matrix elements
I‘g},’;(w) (A =c or d). We calculate these matrix
elements up to first order in the local exchange
fields VN, = -30J'M(5%). Then we collect the
spin-dependent terms, thus obtaining the local
magnetizations m ™ (0) (A =c or d).

Within this Born- approx1mat10n the Green’s
function matrix elements I' }}(w) turn out to be

T 35(0) =GN w) =306} (W) TS G (w)
~30G ] (@) TM(S%) G Nw)
=G“(w)+6r”0(w) (\,u=cord; u#r).
(3.24)

Using the previously obtained expressions for
the spin-independent Green’s functions G M (w)
(A, .=c or d) one finds after a little algebra
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cc — g ¢ 2 (w"’€d )2 [Fc, (w)]Z
oG (@)= =5 TS T IV TP F, (@ F

IVcd Iz[Fc,o(w)]z
-€ - [Vcd lec,o(w)F—

(3.25)

_.g @)/ gz
5 <S>[<.o

and
1
[w-¢ -] Vea |2Fc,o(w)]?

[ Ve |2 [Fe, o(w) P
[w—¢€ -1 Vcdlzﬁ‘c.o(“")]2

(3.26)

STE(w) = =5 T9X(S?)

—5 IS

Then one obtains the local magnetizations ' )‘)(0),

by remembering that

€
m()"(O)=——1— Imf F
T 5,

(A=c ord).

Let us introduce now the local magnetic sus-
ceptibilities x*(0) (A, u=c or d), which are the
local magnetic responses of A electrons to an “ef-
fective magnetic field” acting on p electrons. (In
our case the “effective magnetic field” is supplied
by the local exchange field V! .) One has

exch

(i) the c-c local susceptibility x°¢(0),

cc = 1 €F (w"‘€ )Z[Fc,o(w)]z
X (‘”"?Imf S O L L )

___f dw (w‘ea)z[Fc,o(w)]z
[w -€ —l Vcd|2Fc,o(w)]2

X sin [2n(w) = 26 (w)];

I [odTggs(w)] dw  (3.27)

g

(3.28a)
(ii) the “cross” local susceptibility x™x(0),
x™(0) =x°*(0) =x**(0)

| Veg |2 [Fo, o(w) P

! m feFd
== w =
L w-ed—|Vcd|2Fc,o(w)]2

| Voa | 2 [Fe, o(w) ]2
f dwﬁ———rh" X() @

. X s1n[217(w) -25,(w)]; (3.28Db)
and (iii) the d-d local susceptibility x*¢(0) ,
1 €F dw
dd 0)=—— T f
X0 T E, [‘*’—ed"—lVc«z|2Fc,o(‘*’)]2
_1 rer  sin[2n(w)]
= p Lb dw —mz— . (3.280)

n(w) is given by (3.23), whereas the quantities
[X(w)l, |F,, o(w), and 6.(w) are defined by

X(w)=w - € = | Vg |2 F, o @) =| X(w)|e™ @,
(3.29a)

with
1X()] = {[w - € = Vea|* FE, ()

+[7 Veg |2Be, o(@) P12 (3.29b)

and ‘

Fo, ow)=|F, o(w)le™ 2 (3.30a)
with

|7, , o) ={[FE ()P +[7D,,o{@) P} ¥2, (3.300)

L)) =arctan[1rpc,°(w)/ﬁ‘f,o(w)] . (3.30c¢)

The contribution to the local magnetization due
to one conduction s-p subband is

m(c)(o) = J(c)<sz> xcc(o) + 5J(d)<sz> Xmix(o)

@) mix
= J(C)<Sz> <1 5 j(c) ch(g))) > ch(o)

= J(S%) X°°(0) . (3.31)

The inclusion of the factor 5 in (3.31) is because
one has five different scattering channels whereby
a conduction electron in a given s-p subband can
be admixed into an AM d resonance and go back to
the s-p subband. The local magnetization due to a
d hump is

m(0) = J@ (%) x%4(0) + J(S7) x ™(0)
= J(d)<sz> de(o) <1 + j(:) ):(mlx(g))) )
= J“”(S*’) X% (0) . (3.32)

So, the total magnetization at the impurity center
is
m(0) =4m©(0) +5m‘(0) - (3.33)

Until now the s and p conduction states have
played the same role in the above calculations.
In fact, within our model, they are indistinguish-
able in several steps of the computation, namely,
that of the charge perturbations affecting the con-
duction band, of the self-consistent position of the
virtual d-level ¢, in the conduction band and in the
| V,;|? phenomenological parameter responsible
for the broadening of the virtual bound state.

However, in order to compute the self-polari-
zation hyperfine field, one must consider s and p
electrons as contributing differently to the hyper-
fine field. We have the following contributions to
the hyperfine field:

HUO =g L g® g @ (3.34)
where
H® = -5 A9y (0), (3.35)

A being the hyperfine d-core polarization param-
eter and the factor 5 accounting for degeneracy of
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the d levels.

The s and p contributions to the hyperfine field,
given, respectively, by H{$’ and H%’ are to be com-
puted from

H{P =A(Z)m*(0)
and .
HE =A%) m?(0), (3.36b)

where A(Z) is the “true” Fermi contact interaction
and A%) is the p induced core polarization. We
compute here, consistently with the assumption of
the uniform distribution of s-p states, m‘’(0) and
m?®)(0) as

(3.36a)

m(0) = m'*(0), (3.37a)
m®(0) =3m‘*(0). (3.37b)
So, one has
HP +HE =H{P =A  (Z)m'(0), (3.382)
with
A (2)=A(Z) -3A9), (3.38b)

and the total hyperfine field may be written in final
form as

HEO = A (2)m(0) -5AL m@(0) . (3.39)

The simplified band structure picture adopted
implies a certain effective Fermi contact inter-
action which includes corrections from the p-
induced core polarization, as seen from (3.38b).
This is perhaps at the origin of Campbell’s*® al-
most perfect fitting of the hyperfine field of s-p
impurities in ferromagnetic host using the simple
Fermi-Segré formula for the contact interaction,
because of a subtle compensation of pure s and p
contributions to the hyperfine constant. So, we
adopt in this work (cf. Sec. IV B) the estimate by
Campbell of A (Z).

IV.NUMERICAL RESULTS

We divide this section in two subsections. Sec-
tion IV A is devoted to illustrate some consequen-
ces of the theoretical approach presented in Sec.
III. Since some unfamiliar features are associ-
ated to the strong scattering which is preSent in
the SK problem, we discuss in detail certain points
which reflect the deviations from the classical AM
results. In Sec. IV B we discuss the behavior of
the hyperfine field.

The numerical calculations are performed for a
simplified band-structure model. Each pure host
s-p subband is described by a “parabolic” -like
density of states*:

3 w \?
a [1-(@) ) B

0, otherwise,

where A, is the half width of the subband so that

By

f plw)dw=1.
Ep

We hope that this example will be useful to give
an insight on the whole problem, but indeed some
effects related to the details of actual s-p band
structures cannot be accounted for properly. How-
ever, since p (w) is an entry quantity in our form-
ulation all the required features which could be
obtained using sophisticated band calculations for
the description of the density of states of real s-p
bands can be naturally incorporated in our formu-
lation, together with straightforward embellish-
ments of our model.

po(w) = (4.1)

A. Some consequences of the theoretical model

In Fig. 1 we plot as a function of the energy w
the phase shifts n(w) given by (3.23). The energy
varies from the bottom to the top of the conduction
subband. These phase shifts are plotted for the
following choice of parameters: (i) the | V,,|* mix-
ing parameter, which is a phenomenological one.
We take always in Fig. 1, |V,,|2=0.1; (ii) the posi-
tion of the d bound state level, which may take
values between E, and E, ; and (iii) the perturba-
tive V., charge potential; this is a repulsive po-
tential and two kinds of regimes occur. (a) When
Vee is less than Vit (Vgit =[FR(E,)]™ being the
potential to repel a bound state above the top of
the subband), a “piling up” of states in the region
near the top of the subband is observed. For the
band shape (4.1) one has Vit =0.667. (b) After a
bound state is repelled the number of extended
states decreases and consequently the previously
(SK) strongly perturbed Moriya band becomes
flatter and flatter.

In Fig. 1(a) we show the phase shift for €,=0, V_,
spanning the two above-mentioned regimes. For
V.. =0 the usual symmetric AM behavior is re-
covered, whereas for strongly repulsive limits
(V.. =0.8 and V_ =1.0) the classical behavior de-
fined by a steep increase of n(w) around ¢, is ob-
tained. This is easily understood since the per-
turbed density of states is rather small and flat.
To emphasize the consequences of the strong per-
turbation regime (V,, > V' ) we plot in Fig. 1(b),
for V. =0.8, n(w) for some values of €;. The same
kind of behavior obtained for €,=0 is observed
here for €,=-0.4 and ¢;=0.4 although there exists
a tendency to flatten the change in slope of n(w) as
one goes from E, to E,. This is relatedtoasmooth
increase with energy of the perturbed density of
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FIG. 1. Phase shifts n(w)
as a function of energy for
the band model (4.1). (a)
€,=0 and several values
for the SK potential. Values
of V,. larger and smaller
than Vit are used. (b)
Several values of ¢; and the
SK potential is taken V,,=0.8
>VEL (c) Several values of
€, and the SK potential is
taken V,,=0.4< Vit

€d"0

I
0]

Ep

states. This behavior illustrates small departures
from a flat density of states, reflecting an in-
creasingly smooth variation of n(w) with energy.
Next we return to Fig. 1(a) to discuss the “piling
up” regime (0<V,_ < Vgit)., For energies near
E,, n(w), which showed a monotonic increase
towards 7 for both cases V=0 and V,, > Vit
now decreases to give rise finally to a rapid in-
crease to 7.

In order to investigate the origin of this behavior
and its connection to the SK problem we show in
Fig. 1(c) n(w) for V,,=0.4 and for several values
of €;. We plot also in Fig. 1(c), |V |*FZ y(w) as
a function of w. Comparing to the unperturbed
result (V,,=0) one verifies that the Hilbert trans-
form which is perfectly symmetric and small for
V.. =0 becomes highly asymmetric for a strong
piling up of states near E,. This effect is typical
of V., close to the condition for repelling a bound

By @

state from the band and is to be contrasted to the
strong perturbation regime where the Hilbert
transforms take only small values (negative and
positive) along the band.

To discuss the unfamiliar behavior we obtain for
n(w) we analyze the denominator X(w)=w —¢,
-|V,|?FE ((w), which appears in the definition of
n(w) [cf. (3.23)]. The zeros of that function give
the energies at which the phase shift passes through
m/2. In the top of Fig. 1(c) the straight lines w-¢,
determine the energy values for which n(w)=7/2.
Since both plots in Fig. 1(c) are in the same scale
we have marked a cross in the corresponding en-
ergies for n(w). Depending on the values of €, one
sees that the straight lines cross | V,,|2F¥, ,(w) one
or three times and the last situation is at the ori-
gin of the anomalous behavior of n(w).

We stress that these strong deviations from the
AM results are a direct consequence of the defor-
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mations of the density of states. In our case these
are SK induced deformations but a quite similar
behavior would be observed for a band model ex-
hibiting a peak in the high-energy region. These
features however depend on the choice of | V|2
In fact, if one reduces its value, the curve

[ Voal 2 FE o(w) of the top of Fig. 1(c) is rescaled
and these unfamiliar effects are wiped out.

Figure 2 describes the local d-hump density of
states pd'o(w) as a function of the energy for dif-
ferent band fillings, i.e., Z, varying from 2 to 7.
We have taken for | V,,|? the values 0.05 [Fig. 2(a)]
and 0.1 [Fig. 2(b)], respectively. We consider
that the trivalent rare-earth impurity contributes
one electron to the d hump (Z{¢) =1), the remain-
ing ones being associated with the s-p conduction
states. The dotted points correspond to the values
of the Fermi energy associated to each value of
Z,. These self-consistent results are obtained
by imposing in the extended Friedel sum rule (2.7)
an occupation number of one electron for the d-
hump state.

In Fig. 2(a) the self-consistently calculated d-
hump density of states exhibits only weak distor-

Ep @

tions. This is to be compared to Fig. 2(b) where
for intermediate occupations strong distortions
occur, these distortions being related to the above-
discussed unfamiliar behavior of n(w). Note that
in n(w) are included both d-hump and extended-
state contributions [cf. (3.22)]. From Fig. 2 one
observes a d-state contribution (which is positive)
at the high-energy part of the band. So, the dif-
ference 81(w)/d w —p, , o(w) gives a measure of the
strong deviations from the result of the Anderson-
Clogston compensation theorem?!® due to the highly
nonflat density of states.

Figure 3 illustrates, for V., =0.2, the expres-
sions (3.19), (8.17a), and (3.20) obtained in Sec.
ITI for the local densities of states, namely: d
hump (dotted lines), SK density of states (dot-
trace curve), and the |V,,;|? perturbed AMlocal
conduction density of states. A hybridization in-
duced depression on the SK density of states is
clearly shown: in particular for w =¢, the local
conduction density of states vanishes. The nega-
tive change associated to the depression may
overcome the positive one associated to the d-
hump and therefore 8n(w)/d w becomes negative
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as reflected in the phase shift plots.

Next we report in Figs. 4-6 the results obtained
for the local magnetic responses x%(0), x°(0) and
x ™x(0) [cf. (3.28)]. The dotted lines joining the
crosses indicate the self-consistent values of
x%(0), x°°(0), and x ™x(0) for several hosts.

Figure 4 shows that x??(0) has the same char-
acteristics of the AM-like d density of states,
i.e., an asymmetry of the shape of the local mag-
netic response coherently with the deformation of
the d-hump states. An interesting feature of Fig.
4 concerns the strongly deformed magnetic re-
sponses associated with the strong perturbed SK
problem. In Fig. 4(a) this corresponds to Z,=4,
5, and 6. In this case the self-consistently de-
termined V,, correspond to values around the

critical one to extract the bound state. Again the
behavior reflects a feature of the piling up regime.
Similarly to p;, o(w), a reduction of | V,,|* wipes
out these effects as showninFig. 4(b).

x°°(0) is plotted in Fig. 5 for |V,,|2=0.05." A
general characteristic of the curves x°°(0) is the
existence of a depression in the local ¢c-c re-
sponse, precisely around the corresponding peak
in x%(0) shown in Fig. 4 and a hump outside this
region. For Z,=2 the SK potential vanishes and
one obtains a symmetric curve for x°°(0). For in-
creasing values of Z, the-asymmetry of x°°(0) in-
creases until one obtains a saturated regime where
bound states are repelled from the band.

The cross magnetic response x™*(0) is plotted
in Fig. 6 for | V,;|2=0.05. One observes a change
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FIG. 2. Local d density
of states self-consistently
calculated for band fillings
ranging from 2 to 7. (a)
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in sign in the local response and these changes
correspond grosso modo to the depression region
in x°¢(0) or to the peak in x%(0). It should be
stressed that for the adopted number of electrons
in the resonant state the self-consistent values of
xmix(0) (dotted lines) are always positive.

B. Self-polarization hyperfine field

The theoretical results (3.35) and (3.38) for the
self-polarization field involve the exchange pa-
rameters J, the hyperfine couplings A (Z) and
A®, and the local magnetic responses x*(0).

In order to compare the theoretical results to
experiments a brief account of the various con-
tributions to the hyperfine field at the rare-earth
impurity nucleus is worthwhile. The total field is
given by the sum of three terms: the f-core hyper-
fine field, the self-polarization field (which is
computed in this work), and the transferred field.
An experimental procedure to extract from the
data the relevant contribution to be compared with
our predictions goes as follows. The f-core-state

Ey w

contribution can be known from experiments in
insulating matrices. On the other hand, consider
small quantities of nonmagnetic elements like Lu
in alloys such as (Lu,R,.,),M,, R being the spin-
carrying rare-earth element whereas M is the s-p
host. A measurement performed at the Lu site
“sees” directly the transferred hyperfine field.
Then the self-polarization field can be obtained.

Throughout this work, J‘» is assumed to be in-
dependent of £ and q. This enables us to obtain
the self-polarization field as a function of the local
magnetic responses y *(0), which incorporate the
impurity effects. Otherwise, if one considers
JN(k+q, k) one has to compute numerically the
impurity perturbed magnetic responses ™ (k +4q,k)
which involve complicated sums over the Brillouin
zone. Even in the assumption of J‘» independent
of k and q, the transferred field would be extreme-
ly difficult to calculate theoretically since it still
involves the calculation of magnetic susceptibili-
ties which are k,q dependent. In this way, the
above suggested experimental technique would
circumvent this difficulty.
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The values of J© and J¢°) can be extracted from
“atomiclike” calculations.?’ In absolute value the
ratio J /J¢°) ranges between 1 and 2,

In the present work, contrary to the case of
transition metal hosts® the sign of J* is always
positive. This is because no available next-neigh-
bor impurity d sites are expected to be present
in s-p (or noble) hosts, thus inhibiting a possible
direct d-f Heisenberg-like exchange between next
neighbor d and f orbitals. Within our model of
eight identical s-p conduction subbands, the ef-
fective exchange coupling J¢© [similarly to A4 .(Z)
defined in (3.38b)] is given by J©) =J) +3J¢),
Actually, J¢) would eventually be negative (due to
a direct p-f Heisenberg exchange) and overcome
the pure positive s contribution.

Furthermore the hyperfine couplings can be only
crudely estimated.'® So we intend to rewrite (3.35)
and (3.38) in such a way that only ratios A%)/A (Z)
appear. As a consequence the contact and 4-in-
duced core contributions to the self-polarization
field are given in units of J©A4 (Z)(S®) and the
exchange parameters appear also as the ratio
JD /g, One has

Fig. 2. (Continued)

2
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HR AW g
JR.)Aeff(Z)<sz> =-5 Aeff(z) J© X*(0)
- A9 g@
'5m—rﬂc x*4(0)
J(c) xmm(o))
X(“ 7@y ) 43)

Since we consider the rare-earth nucleus, we
use Campbell’s estimate'® of A9 for 54 states and
A(Z) appropriate of rare earths, the ratio
AD /A (Z) should be varied about . The diffi-
culties in estimating the ratios J'*/7‘> and A/
A(Z) are of different character. In fact, as
mentioned before some estimates of J*’ and J*
are available from plane-wave or atomic like cal-
culations®; on the other hand, hyperfine coupling
constants involve extremely delicate atomic cal-
culations. In this way, within our theory, the
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product (JV/7?) AL’ /A (Z) may be taken as a
flexible parameter which should be varied about
the estimate'® AW /A ((Z) =1 and J@ /] =2,
Let us now propose some fundamental assump-

tions about the basis of the self-consistency pro-
cedure adopted in our calculations. The SK im- -
purity problem is defined by the charge difference
AZ,=Z) ~Z,. The number Z{) specifies for
trivalent rare earths, for instance, the number of
electrons to be put in the AM d resonant state,
Z{%) =3-Zz{). Since the strength of the SK per-
turbation of the s-p conduction states depends on
the value of Z{) for the number of electrons in a
given host, the deformation of the AM resonance
is a function of this SK perturbation. On the other
hand, for a given value of Z ,‘;; which determines
the SK perturbation, the amount of occupied d

" states in the AM resonance depends strongly on
the value of the phenomenological admixture pa-
rameter |V 4|2, In the numerical calculations
throughout we consider Z,‘,f“’, 2, which corresponds
to adopting the d occupancy equal to one electron

for a trivalent rare earth. With this choice the SK
perturbation is defined for any host. The role of
varying the d-state occupation with respect to the
“jonic value” is ascribed to | V,;|%. In fact, due to
the SK-induced strong deviations from the Ander-
son-Clogston theorem,® for a given | V,,|? the d-
state occupation number may be quite different
from 1. Furthermore, changing |V,,|?, we induce
for a fixed SK perturbation a varying d -state oc-
cupation.

In Fig. 7 we plot the total and partial (contact
and d-core induced) fields for several hosts as a
function of the |V, |* admixture parameter, A%D/

A(Z) and J“”/J‘c’ (J¢)>0) being taken, respec-
tively, as ¥ and 2. In this figure the main tenden-
cies predicted by our model are exhibited. For
suitable ranges of | V,;|2, which controls the
amount of d-like electrons in the AM hump, the
total hyperfine field may change sign at the end
of the series. This is because the increasing
number of d electrons puts the Fermi energy
level in a region of higher density of states, thus
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FIG. 4. d-d local mag-
netic susceptibility x%¢(0)
for the band model (4.1) as
a function of energy. The
dotted lines joining the
crosses and the self-con-
sistent values of x%(0) for
several hosts. (a) |V,l?
=0.1. (b) |Vl2=0.05.

increasing the d-d local magnetic response and
consequently the d-core polarization contribution
which is negative (for J‘9>0).,

In Figs. 7(a)-"T(c) we can follow how the d-core
contribution decreases with increasing |V ;|2 To
understand this we recall that in all these plots
the SK impurity charge Z{;) is kept constant, Z{7)
=2, So, this change is ascribed to | V,;|%. The
physical mechanism behind the decrease of the
local d-d susceptibility x?*(0) can be seen through
the self-consistently determined dotted lines in
Figs. 4(a) and 4(b) for two different values of
|V, |2 However, from (4.3), the local pure d-d
response x¥%(0) is multiplied by a correction fac-
tor 14+ (J/J@) ymix(0)/x%(0). In Fig. 6 one sees
that the self-consistent calculated x ™*(0) is al-

ways positive. We have numerically verified that
the self-consistent ymix(0) is roughly independent
on the choice of |V, [2. So, for a given positive
ratio J@ /J¢® the correction factor 1+(J/

J@) xmix(0)/x%(0) decreases withdecreasing | V|2
It turns out numerically that the d-core contribu-
tion to the hyperfine field, which is proportional
to x%(0), is dominated by the pure d-d response
x“(0).

Concerning the behavior of the contact contribu-
tion to the hyperfine field, in this case the sign of
J@/J) is extremely important in discussing the
variation of the local magnetic response. In fact,
Fig. 5 shows that the self-consistent value of ¥°¢(0)
decreases when one goes from the beginning to the
end of the series. Then, the ratio ymix(0)/x°(0)
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increases along the series, thus compensating for

JD/J)>0, the decrease of x°°(0). Hence, the

final result x°°(0) [cf. (4.2)] turns out to be roughly

constant and positive, as observed in Fig. 7.
Therefore, the change in sign of the total self-

polarization field is to be ascribed to the compet-

ing mechanism between d-core and contact (con-

duction) contributions, the negative sign at the

end of the series reflecting the dominance of the

d over the conduction contribution. So, trivalent-

rare-earth impurities in heavy s-p metals show

the asimilar behavior of rare-earth impurities

in transition hosts® in the sense that d-core polari-

Zh= 5.0

| 2c0

Fig. 4. (Continued)

Ey @

zation contribution dominates over the contact one.
We have checked numerically the importance of
the choice of the ratio J /J( in the final results
(4.3). It turns out that, due to compensations,
varying J/J) from 1 to 2 does not lend to strik-
ing differences in the final results. In Fig. 8 we
report the numerical results for the self-polari-
zation field in the case where J@/J¢’<0, the J@
coupling being a positive one. We adopt |J@/J¢|
=2 and we consider three values for | V,,|? as in
the case discussed in Fig. 7. Comparison between
Figs. 7 and 8 shows that the d -core polarization in
both cases are not so different. This is because
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FIG. 5. c-c local magne-
tic susceptibility x°¢(0) as
a function of energy for the
band model (4.1). |V, |?
=0.05 and the SK potentials
which correspond to the
various values of Z, are
self-consistently obtained
through (2.4). The dotted
lines joining the crosses
give the self-consistent
values of x¢¢(0) along the
s-p series.

a change of sign of the ratio appears only through
the factor J¢?/J@  which is small for the adopted
value. However, if the ratio |J‘’/J(?| approaches
1, strong deviations occur, since in this case the
correction factor 1+(J‘/J@)y™x(0)/y%(0) may
even change sign, We have checked this behavior
numerically and it indeed occurs. The contact con-
tribution as illustrated in Fig. 8 shows a mono-
tonically increasing behavior and this is because

a competitive mechanism is present. In fact, since
J@>0, from (4.2) one sees that H{S /J9A .+(Z)(S?)
is a sum of an increasing part [- x°°(0)] and an al-
most constant part [-(J@/J¢) ymix (0)] which is
positive and dominates at the end of the series.
Thus producing the monotonic behavior.

Let us consider now the case of divalent-rare-
earth impurities (such as Eu**) in s-p hosts. We
claim that an Eu®" impurity in s-p hosts provides
a physical realization of an almost pure SK con-
tribution to the self-polarization field. In the light
of the above discussion of the principles of our
self-consistency procedure we have calculated the

self-polarization field for this case imposing
Z{$) =2 and Z{&) =0, i.e., nod states exist in the
ionic limit of Eu®*,

The total hyperfine field in this case is given by
ST =34(0) =x(0) @)
JcAeff(Z)<sz> X X )

and all d states are empty. Consequently the
above-mentioned depression of ¥°°(0) due to AM
hybridization is irrelevant. One is involved only
with the low-energy part of the x°°(0) curve of

Fig. 5, which shows the normal SK decrease of
x°°(0) for repulsive potentials drivenby AZ =Z3)
-Z,. So the |V,,|? induced compensation effect
which occurs for trivalent-rare-earth impurities
through 5(J@/J () x mix(0)/x°°(0) [cf. (4.2)] is ab-
sent and the total hyperfine field in this case de-
creases or increases slowly depending on whether
J© is positive or negative. This general behavior
is shown in Fig. 9.

Based on the analysis of Fig. 9 we want to sug-

gest that an experimental test of the sign of J©
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along the series is provided by putting Eu?* im-
purities in s-p metals. In fact, if J¢°) is to change
sign along the series, the slope of the hyperfine
field as function of Z, should change sign.

Another possible check of the picture for Eu?*
impurities in s-p hosts could be provided by skew
scattering measurements. In fact, Eu®* is an S-
state ion and according to our model the d hump
is empty. So, only a small skew scattering is ex-
pected to occur, thus contrasting with Gd** im-
purities put in the same hosts.

V. FINAL RESULTS

Let us summarize our principal results. First
we suggest that a rare earth impurity in an s-p
host is a physical realization of an AM d reso-
nance on a strongly SK perturbed s-p host. This
is to be contrasted to the case of the same rare
earth diluted in a transition-like host®*® where d-
states are already present in the host forming a
d-character band. Therefore, maintaining the
same rare earth probe and going from the tran-
sition series to the s-p series, although one keeps
a strong local perturbation, one passes from a

FIG. 6. Cross suscep-
tibility x™¥* (0) as a function
of energy for the band model
(4.1) for several self-con-
sistent values of V,, cor-
responding to Z, ranging
from 2 to 6. |V ,|%is
taken to be 0.05 and the
self-consistent values of
x™ (0) are given by the
dotted lines.

perturbed d-band scheme to an AM d -resonance.
Both these problems are physical realizations of
an impurity charge potential and a spin potential
located at the same site, i.e., a limiting case of
the Blandin-Campbell?* problem when the separ-
ation of the charge and spin potentials tends to
Zero.

Peculiar effects associated to the strong SK
scattering in modifying the usual AM resonant
phase shift are discussed in a quite detailed form
in Sec. IVA. However, those effects should be
observed only for rather large fillings of the d
hump. So due to the trivalent character of the -
magnetic rare earths (occupation of the d hump
by a small number of d electrons) those unfamiliar
results are expected to be absent.

A possible candidate to observe simultaneously
strong conduction electron scattering (important
in providing relaxation for an ESR experiment)
could be provided by Mn impurities in Sb or Sn.

In fact, a strong repulsive potential is expected

to act in the s-p host, (e.g., AZ,=3 for Sb host)
and the d hump should be occupied by 5d electrons.
Also, since these hosts are at the end of the s-p
series (i.e., a Fermi level near the top of the s-p
band), we expect that the unfamiliar results dis-



3726 TROPER, DE MENEZES, LEDERER, AND GOMES 18

N, () z
3o Hnf /97 Aett (22¢SD
(c)
20L ———————————————— — Hpt a)
1.0}
o I
2 3 4. 5 6 7 Band filling
-1.0f T~ - o)
- tot
\'\\ Hht
20+ N
20 \ 2
\ chdl =005
30 N
o)
~i}
(c)
200 - Jp— th b)
1.0
i
0] - —
2_._3 4 5 6 7 Band filling
—
-10 ~ v, =04
. ) cd
N ld
-2.0} ~Hyp¢
20 _ c)
_____________ dhf c)
1o} \
(tot)
Hht
° —e——— Band filling
\'\‘\‘\ 1V 41?015
-1or " ~.(d) ¢
PN Hit
20k 5@

FIG. 7. Total hyperfine field, contact contribution to
the field (dotted line), and d-core polarization contri-
bution (dot-dash line) in units of J'9 A 4¢(Z)(S?) as a
function of the band filling (Z, ranges from 2 to 7).

One takes J ‘2 /7 (¢)=2 and A{3’ /A 44(Z)=%. The fields
are plotted for several values of |V, |2

cussed in Sec. IV A are closest to be detectable.

Concerning self-polarization hyperfine results
apart from the conclusions reported in Sec.
IVB, we emphasize again two points, namely,
(i) Ev®" impurities in s-p hosts could be an experi-
mental tool to investigate the sign and magnitude
of the J©> exchange coupling. Moreover, these
impurities could provide an experimental test of our
assumptions about the construction of the SK poten-
tial. (ii) Gd®** impurities ins-p hosts is suggested
throughout to produce changing self-polarization
hyperfine fields along an s-p series. If this turns
out to be true experiinentally, the strength of the
hybridization parameter | V,;|? could be another
mechanism as compared to Blandin-Campbell**
and Daniel-Friedel® source of sign changing
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FIG. 8. Total hyperfine field, contact contribution to
the field (dotted line), and d-core polarization contri-
bution (dot-dash line) in units of J¢)44,(Z) (S%) along
the s-p series for J'¢)<0. One considers |J @) /(¢ |
=2 and A{4)/A4:(Z)=%. The fields are plotted for sev-
eral values of |V,,|°.

hyperfine fields, involving, however, different
symmetries d and s-p.

Some remarks concerning the connection of our
theoretical results and possible experiments are
in order. In our general expressions (4.2) and
(4.3), the hyperfine field is obtained in units of
J@A ;. (Z){S%). To avoid the numerical estimate

. of the quantity J‘©A . (Z) we suggest the following

way for plotting the experimental results and sub-
sequently checking the consistency of the model.
Suppose one has experimental results for H{%"
for a series of s-p host metals, with atomic num-
bers Z,. One elects a particular host of atomic
number Z,, and plots H{"(Z,)/H(Z,,) as a
function of Z,. Clearly this curve should pass
through the value 1 for Z,=Z,,. The theoretical
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FIG. 9. Total hyperfine field in units of J ‘¢ A o (Z)S%)
along the s-p series for the band model (4.1) per-
turbed by the SK potential. No d resonance is included
(case of Eu®*). One considers positive and negative
effective values for J(¢,

results of Figs. 7-9 are then correspondingly
normalized and comparison to experimental re-
sults depends now only on the parameters A’/

A (Z), TP /T (as discussed in Sec. IV B) and

of the strength of the | V,;|* matrix element.

Finally the above-mentioned hyperfine measure-
ments if complemented by making Mdssbauer-
isomer-shift experiments and measurements in-
volving density of states at the Fermi level such
as electronic specific heat, residual, and spin-
disorder resistivity would provide new tests and
guides for the choice of the relevant parameters
of the simple model developed in this work. The-
oretical studies on the isomer-shift behavior?® and
Fermi-level properties®® for the systems discussed
in this paper are now in progress.
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