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The high-temperature expansion is used, to all orders, to obtain an equivalent description of the X- Y
model in terms of a quantized vector field interacting with itself and with a system of quantized charges.

This description is used to all orders to obtain some exact and some approximate results. The exact results

are (a) an alternative description in terms of integer Ising spins interacting via a nearest-neighbor interaction;

(b) upper bounds on the correlation length and transition temperature in two and three dimenisions. It is also

shown that at low temperatures the system can be viewed as a system composed of a few kinds of charges

(the number depends on the dimensionality), where the interaction between charges of a given kind is

electrostatic, while the interaction between charges of different kinds is zero.

I. INTRODUCTION

Two-dimensional systems possessing a con-
tinuous symmetry pose a very interesting prob-
lem. On one hand, it is rigorously known that
such a system cannot exhibit spontaneous sym-
metry breaking, ' ' while there are indications
that some systems undergo a transition of some
kind. ' ' The classical X-F model is special, be-
cause according to current beliefs models pos-
sessing higher than O(2) symmetries do not have
a phase transition. " The relation of the X-F
model to the sine-Gordon field-theoretical model
adds to the importance of understanding its be-
havior. "

The main purpose of this paper is to present
exact and approximate analog descriptions of the
X-F model that may enable better understanding
of the system.

The high-temperature expansion for the classi-
cal X-F model is obtained in Sec. II, and given a
graphical representation. In Sec. III it is shown
that evaluation of the X-F partition function is
equivalent exactly to the evaluation of the partition
function of a system composed of a quantized field
(generated by the interaction terms of the X-F
model), that interacts with itself and with a system
of quantized charges (generated by the external
field appearing in the x-y Hamiltonian). In Sec.
IV, it is shown that in the absence of an external
field the two-dimensional system ~ay be viewed
as a system of spins in the Z direction attaining
only integer values and interacting via a nearest-
neighbor interaction. The spin must obey a sub-
sidiary condition such as the requirement that
the total magnetization is zero. It is shown that
this transformation is the analog of expressing
quantities that depend on a divergence-free vector
by its vector potential. An upper bound is obtained
in Sec. V for the transition temperature of the

two and three-dimensional X-F models. Above
this bound the spin-spin correlation function has a
factor that decreases exponentially with distance.
Sec. VI describes an equivalence of the model to a
plasma model at low temperatures. It is shown,
that the longitudinal degrees of freedom of the field
mediate an interaction between the charges that is
electrostatic at large distances. This result was
earlier derived by Zittartz" using an entirely dif-
ferent approach. In Sec. VII we show also that the
transverse degrees of freedom are equivalent to
systems Of charges interacting via the Coulomb
potential. In two dimensions we find only one kind
of charge, while in the three-dimensional case we
have two kinds of charges, corresponding to the
transverse degrees of freedom, that are mutually
noninteracting. This result agrees with the de-
scription given by Thouless and Kosterlitz" in the
two-dimensional case, in the absence of an ex-
ternal field.

The treatment given in Secs. VI and VII reveals
the origin and relation between the charges dis-
cussed by Zittartz" and the charges discussed by
Thouless and Kosterlitz. " The charges of the first
kind are generated by the external magnetic field
and their long- range Coulomb interaction arises
from the longitudinal degrees of freedom of the
vector -field. The charges of the second kind and
their electrostatic interaction form an alternative
description of the system of transverse modes.
The fact that enables this description is that the
Hamiltonian describing the transverse modes of
the field can be also expressed in terms of its
curl.

In Sec. VIII we discuss a model that is more gen-
eral than the X-F model, the cos interaction be-
tween the angular variables being replaced by a
general periodic function. It is shown that the
structure of the high-temperature series is the
same, except for the weights attached to the ele-
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ments of the graphs composing the expansion. The
different derivation of the high-temperature ex-
pansion may be used as an alternative to the
derivation presented in Sec. II for the X-Y model.
One of the reasons to consider a more general
model is its possible importance in the construc-
tion of coordinate-space renormalization proce-
dures. for 0(2'} symmetries.

The results are discussed in Sec. IX. The ap-
proach of this article is related to the approach of
Kadanoff et al.' for the X-Y case, to the treat-
ment of the roughening transition by Chui and
%'eeksi5 and to the discussion by Kogut et al i6 of
extended dual models.

II. HIGH-TEMPERATURE EXPANSION OF THE
FREE ENERGY OF THE I-Y MODEL

Consider a large but finite v-dimensional cubic
lattice, consisting of N sites. The X-Y model de-
scribes a system of unit-length classical spins
restricted to rotate in the X-Y plane. The spins
are coupled via a nearest-neighbor ferromagnetic
interactiori and subject to an external magnetic
field, tending to align them in the X direction. The
X-Y Hamiltonian is

J g cos(y~ —y~ ) —B g cosy;,
P

where J and B are positive, the summation over P
is over nearest-neighbor pairs, P, and P, are the
members of the pair P, and y,. is the angle vari-
able attached to the site i.

It may be easily verified that the partition func-
tion of a system described by a Hamiltonian of the
form

The terms that contribute to the integral corres-
pond to configurations obeying the two following
rules: (a) the number of arrows leaving a site mi-
nus the number of arrows entering it equals the net
charge at the site. (The net charge is the number
of positive charges minus the number of negative
charges}; and (b) the total charge on the lattice is
zero. The partition function is

1 ( I3J np(C)
Z = (2&) Zi .[I

Py

l g~)n~(c)

n, .(C)!n, (C)! 2 &

(4)

nf nf + nf~e (6)

It is convenient to restrict the summation to a sub-
set (C'j of the configuration set (C), defined as the
subset for which either np or np and either n, , or

1 2
n, are all zero. This may be achieved by noting
that each configuration in (C] can be obtained from
a configuration in (C'] by adding pairs of arrows
connecting the same pairs of sites in opposite di-
rections and adding pairs of opposite charges to
the sites. One obtains

(see Fig. 1). The summation is over all contri-
buting configurations C of arrows and charges,
n~ (C) is the number of arrows connecting the pair
P in a given direction, np (C) the number of arrows
connecting the same pair in the opposite direction
and

n~(C) =n~, (C)+ n~ (C).

The numbers of positive and negative charges at
the site i are n„and n&, respectively, and

H = Jg F(y~, cp—~ ) —B Z G(y &)
p 1

(2)

may be written as

In the case of the X- Y Hamiltonian it will prove
useful to give the integral a, graphical represen-
tation. This may be done by denoting the term
e ""p& "p&'appearing in the integrand by an arrow
from the lattice point P, to the lattice point P„a
term e'" ' will be denoted by a, 6 at the site i and
e '"' will be denoted by a e. The 6 and e will be
called positive and negative charges, respectively.
To each configuration. of arrows and charges cor-
responds a term in the expansion of the integrand. FIG. l. A typical C configuration.
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lowed configurations. The distribution of arrows
may be thought of as a distribution of a v-dimen-
sional vector field, having integer components.
The reduced-partition function may be expressed
in terms of the integer field components E, at the
site i

G

FIG. 2. A typical C' configuration.

(12)

where E&, for example, is the number of arrows
starting at the site i and pointing along the edge in
the x direction and where I- is a unit vector in the
l direction. We see that the charge density is in
fact the discrete divergence of the field.

We may define now an equivalent field Hamilton-
ian be defining

ez(l) = —1nQ(l, PZ),

~=(2~) [+(W)]"'[~(P~)]"ZI..[Q(1,W)]"~' '
C'

&& g [IQ(~ gy)]E"(0)

e~(l) = —1nQ(l, PB).

It may be easily verified that

ZZ„=Tre

wheie

(14)

&qn4() g [ /) ] ~

=tT(ix)
n even=0 ]

(/2)"
[(n+ l)/2]! [(n —l)/2)]! 4(x)

J,(ix)
J,(ix)

where J, denotes the Bessel function of order l.
Note that

(S)

Q(l, x) ~1, for a11 landx~0. (10)

III.: EQUIVALENCE TO A VECTOR-FIELD HAMILTONIAN
THE REDUCED PARTITION FUNCTION

The reduced partition function

'.=g Jg [Q(l, P')]" "'H [Q(., P~)]""'
Q l n

may be viewed as a partition function of the al-

(see Fig. 2), where N'is the number of nearest-
neighbor pairs, n, (C) is the number of pairs. con-
nected by l arrows(bydefinitionof C'allthear-
rows connecting a given pair are in the same di-
rection), K„(C) is the number of sites occupied by
n charges. The functions are

The requirement that the total charge is zero
can be written as a condition on the E field, that
is the discrete analog of J E ~ ds=0, where S de-
notes the boundary of the system. , (17)

IV. THE CASE OF ZERO EXTERNAL FIELD

An interesting mapping of the X- Y model is ob-
tained, when the external magnetic field B is zero.
The only configurations, that have to be considered
are, those for which the number of arrows entering
a site equals the number of arrows leaving it. Let
us consider first the two-dimensional case. In
two dimensions the field E is completely deter-
mined by a field D defined on the lattice squares
in such a way that the difference of the D on two
adjacent squares is the number of arrows on the
common edge. For the sign convention see Fig. 3.
Clearly each distribution of the E field corresponds
to many distributions of the D field. To have a one
to one correspondence, we have to fix one of the
degrees of freedom of D. The most convenient
choice is

ga, =o,
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FIG. 3. The numbers denote squares while the capi-
tals denote edges, E is positive on a vertical (horizontal)
edge if it points to the right (up). The value of E on a
horizontal (vertical) edge is the difference between D
above the edge and D below the edge (D to the left of
the edge minus D to its right).

where the summation is over all lattice squares.
The equivalent Hamiltonian, H* becomes, in
terms of the D field,

B*= g e, ([D, -D.(), (19)
(r,m)

where the summation is over nearest-neighbor
pairs of squa, res. We see that H* describes a,

system of Ising spins attaining all integer values
and interacting via, a two-body nearest-neighbor
interaction. The spins must obey the subsidiary
condition (18) that me'ans that we have to consider
only configurations of zero-total magnetization.
It is interesting to obtain also the spin-spin cor:-
relation function in terms of the D field.

Let g(i, j) be the spin-spin correlation function,

g(i, i) =&s; s;&=&et«t "&.&}

FIG. 4. A typical graph contributing to the numerator
in Eq. (20).

L4 R4

L5

near. It may be easily seen that the spin-spin
correlation function may be written in terms of
the D field as

t(i, j) = (exp (Qa ((D„D~) —a ( (D q
—D-

—sgn(a„-D, )~) &~ „*,
(21)

where the average is taken with respect to H*
[E(l. (16)B=0], and the summation is over near-

fjg2g~'s i ( rpt(tlt
- 8 tt

f 2 (( I'g d~ e
- 8 t(t (20) L2 R2

The numerator in E(l. (20) may be expanded in a
similar way to the expansion of the partition func-
tion. The graphs are the same except that the net
number of arrows leaving the site i and entering
j is one instead of zero (Fig. 4).

Since for most purposes we will be interested
in the behavior of g(i, j) at large separations, we
may simplify matters by taking i and j to be coli-

Ll Rl

FIG. 5. The right and left squares adjacent to the
line joining i and j.
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est-neighbor pairs of squares (ft, L), the member
g of the pair is located to the right of the straight
line connecting i and j and L is located to its left
(Fig. 5).

As the reader may have already observed the
transformation from the E field to the D field
presented above for the two-dimensional case, is
just the two-dimensiorial example of expressing
a divergence free-vector field by its "vector" po-
tential. (In the iwo-dimensional case the D field
-may be thought of as the Z component of a vector
that is perpendicular to the lattice plain. )

V. UPPER BOUND ON THE TRANSITION TEMPERATURE

The high-temperature expansion obtained in Sec.
II can be used to obtain an upper bound on the
transition temperature in a similar way to that
discussed in Ref. 17 when considering the Ising
model.

The x-y Hamiltonian in the absence of an ex-
ternal magnetic field can be written in the form

P

where the spin components, S," and S,'- must obey

(s".)'+ (s,". )' = 1. (23)

H~= -J' Q (S~ Sg +S~j. S~~ )+X+ (S; —1)

S', = (S",)'+ (Sf)'.
When X is increased the range of important con-
figurations narrows around the configurations
obeying Eq. (23). It is clear that

»m &FHS"„S;B).,= &F((s,",S",)». (26)

where E does not depend explicitly on X and & )~
denotes thermal average with respect to H. (Re-
member the lattice is finite. For an infinite sys-
tem we must take first X to infinity and only then
take the volume limit. ) We may apply now the
equipartition theorem to obtain

We consider now a very similar system for which
the spin components can attain any value between
-~ and ~, but for which the important configura-
tions are those where (Sf)'+ (S f)' is in the vicinity
of 1. Such a system is described by the Hamilton-
ian

FIG. 6. Jn the given graphLg=l, 12=1, 13=2, 14 =l.

for i + j, where the n(i)'s are the nearest neighbors
of i . The x -y results are obtained by taking X to
infinity. The procedure is similar to the corres-
ponding procedure for the Ising model outlined in
Ref. 17. The details are discussed in Appendix
A. For each configuration contributing to the nu-
merator in Eq. (18) one may define a quantity

8 c'
s(
—
p~) Q(I'„, , p~)

M, ~(C)= Q q(I, pJ) (28)

where l'„, is the number of arrows connecting the
site i and the site n(i) (Fig. 6).

We define now M, z to be the average of M, z(C')
over all configurations |"'contributing to the num-
erator of Eq. (18).

Some algebra is required to obtain

S (g) Sg
n&f) X~Y

+~ +Z '+M)~ &Sq $))=0 (29)
1 4'(PJ')

for i & j, where Z is the coordination number of the
lattice. Equation (29) can be put in a more con-
venient form

g (&S„&,& 8, ) &S,. S, ))
n(k )

c'(pJ)
p~ @(p~)
—+z —1 i+M)~ &S) S )=0.

+4~(&s,'s",. s",)„&s",s",)„)=0 (27)

(30)

At large distances the functions depend on the dis-
tance only and Eq. (30) becomes
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V'g(r) -E(r)g(r) = O, (31) TABLE I. Upper bounds on transition temperatures.

where g(r) is the spin-spin correlation function
at large separations and

E(v)= &+zl &
-1)+M(r).1 /4 '(PJ')

EC J
As long as

li~ E(r)=-E( )&O,

(32)

(33)

v'g(r) —E(~)g(r) = 0

that has a solution of the form

(34)

the behavior of g(r) at large distances is deter-
mined by the equation

Lattice Dimension

hc
sq

pt
diamond
sc
bcc
fcc

C81Co
Ix-F

(Ref.)

0.303
0.338
0.376
0.397
0.408 0.402

(»)

0.253
0.284 0.675, 0.425

(i3) (i8)

Upper bound
onyx y
(Ref.)

0.277
0.353

0.407
0.353
0.407
0.432
0.456

(20)

e-rl 5

g(r) =g«„»~, , for large r,y'" (36)

where

1/[E(ao) ]&/2

d, ie(X)
X I, C(X) ) Q(l, X)

The correlation length diverges when

E(oo) —0 (3V)

The critical temperature T, is the highest tem-
perature for which Eq. (3V) holds. The fact that
below T, , E(~) = 0 enables an exact evaluation of
M(~) below T, :

kTz z~XX gJ (44)

are presented in Table I versus

The bound we obtain depends, thus, only on the
coordination number of the lattice.

The bounds for the normalized dimensionaless
transition temperature,

M(~)=& ~1 —
pJ
—~- —J, for T& T, . (38)

C'(P J)) 1 kTI
2ZJ (46)

In Appendix 8, it is shown that

q(1,x), Q(l, x)
8 a

for x ~ 0 and f ~ 1.

where TI is the Ising transition temperature.
It is interesting to note that the transition tem-

peratures calculated by Thouless and Kosterlitz
and by Villain

If follow's that

(39)
kT,rx/J =2.2 and kT,"/'J = 1.V

are much higher than the upper bound found in
Table I.

(46)

s(pJ') Q(1 i P )

e(1,PJ)

for all x and any lattice. So

(40) VI. EQUIVALENCE OF THE X-Y MODEL TO A

PLASMA MODEL

kT,
(42)

where X* is the solution of the equation

(c f(pJ) s(pJ) Q(1, PJ)

PJ «(PJ) Q(1 PJ)

(41)

The critical temperature for a given lattice is
bounded by

In the attempt of obtaining a better understanding
of the X-F model, various authors related it to a
plasma. Zittartz argued that at low temperature
the excess free energy due to the introduction of
the external field behaves like the free energy of
a plasma. Thouless and Kosterlitz argued that in
the two-dimensional case, the spin configurations,
in the absence of an external magnetic field, may
be described in terms of vortices, that in turn can
be viewed as charges interacting via a Coulomb
potential. In the following we will show how these
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&~(l ) = l '/2P 8 (47)

two descriptions follow in a most natural way
from the vector field Hamiltonian, obtained in Sec.
m."

For PJ»1,

behaves at large distances as the v-dimensional
Coulomb potential. The interaction between two
charges separated by a large distance is electro-
static, so we may conclude that for PJ»1, H*
describes a plasma that is decoupled from the
transverse degrees of freedom.

so that H* can be written as

$ al
(48) VII. TRANSVERSE MODES

where N& is the number of sites possessing total
charge j and pz is the corresponding "chemical
potential" given by

&~ = ~ a ( I& I) ~ (49

It is interesting that the transverse degrees
of freedom, may be also viewed as a system of
charges interacting via the two-body Coulomb
potential.

Consider the transverse Hamiltonian
Writing

(50)
E~r
2PJ (54)

it is clear that p, can be treated as a total chem-
ical potential, while 6&N& can be treated as a
short-range many-body interaction

2
H= ' + 5~N~ +2p~N,

w'here N is the total positive charge. The field E,
can be written as sum of a longitudinal field and a
transverse field.

(51)

E= Ei+ E~. (52)

Summing by parts one finds

F2H*=Q
2

~'+
2 ~ Q Q, V" (r, -r, )Q, , (58)

where Q,. is the charge at the site i and V" (r, —r&)

In terms of the Fourier transform

[E ( )] Q E elq'B)
N

the Hamiltonian is

H = Q [E(q)] ~ [E(-q)]

We do not include the q =0 term because

[E(0)] = 0 .

We rewrite

~, [E(q)]r.[E(-q)]r

Noting the identity

(55)

(56)

(57)

(58)

PqlE[E'(q)] [&'(-q)] =gq;E'(q) Zqg&'( q) + —Z-(q;[&'(q)] -q;[&'(q)],k

x (q,.[&'(-q)] -q&[& (-q)] ), (59)

and using the fact that for small q

Qq, [E'(|l)]r=0.

We obta, in a Hamiltonian whose long-distance (small-q) behavior is identical to the behavior of Hg:

(60)

p g Q~[&'(q)]r —q~ [&'(q)]rHq;[&'(-q)1, —qg&'(-q)l ]
2PJ'

qo )~ q
(61)

Denoting

A (q) =f(q [&'(q)],-q [&'(q)],] (62)

(in fact the subscript T can be omitted because the

same expression vanishes for the longitudinal
field), we may express the Hamiltonian as

1 ~ A(q)A*(-q)
(63)
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Cg
of the div and the curl, respectively.

In terms of the charges Eq. (68) can be written
as (Fig. 7)

q q(&)+q(2)+q(3& 0 (69)

I

Gx

I J~

I

I

I

G

Gx

at the center of each lattice cube i.
Using the last relation we see that H~3' can be

expressed in terms of two independent charges;

QV'(~ y )(2Q«&q&»+2@&'~q& )1

2pZ
+

q()) q(2) q(a) q()))

(70)
FIG. 7. The x component C„defined at the center of

the cube is the arithmetic average of Q~ and Q"„defined
on the left and right faces of the cube. C"„ is obtained
by taking the path summation of E along the edges of the
right face.

Fourier transforming we obtain

q&+) q&)& q(2&

and

(71)

We can decouple the charges obtaining two mu-
tually noninteracting charges by introducing the
two charges

Hr= gT A;A~ V "(r; -x;),
(y J

(64) q (- ) q (I )
Q

(2)

we obtain

1
Hr= V" (x& —r~)C;'Cg,2P~

where C, is the discrete analog of curl E (Fig. 7).
(In two dimension the curl is perpendicular to the
lattice plain. )

The components of the vectors C are integers
or half integers since the components of E are
integers. In the two dimensional case we may
write

(66)

Hr&2& = QV'(x( —rj) Q((&)~,
(e J

(66)

where Q& is the charge located at the site i and
this charge must be a multiple of an elementary
charge.

In the three-dimensional case we may write

where A,. is the matrix Fourier transform of the
matrix A((I). In two and three dimensions we may
write

H&3) g Vs(& & ) (3 q(+& q(+) ) q(-) q(-&)
f, j

(72)

The same pattern will be obtained in any higher
number of dimensions.

VIII. RELATED MODELS

The X- F model is a special case of a set of
models defined by the Hamiltonian

(73)

where & and C are periodic with period of 2m. Con-
sideration of such models might prove important,
for example, in the construction of coordinate
space renormalization procedures for models pos-
sessing 0(2}symmetry.

We write the partition function as

(3)H r&

' =
2 Q V '(&'( —r~)

)& (q()& q(» + q(2) q(2) + q(3) q(3)) (67)

where instead of the single charge appearing in
the two-dimensional case, we have three different
charges that seem to be independent and mutually
noninteracting. We have to remember, however,
that the (&)&(J"s, being the three components of the
discrete curl, are not independent. In fact they
are subject to a condition

where

x.
ng

2'
(pg ) e 8JF(P)8&~P+

(74)

(75}

(76)
div' curl'E =0, (68)

where div' and curl' denote the discrete analogues A graphical representation of the partition function
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xg p(n, pa)]» &"&

where

g, (x)R(l, x) = '
)

(77)

(78)

(79)

and all the other notations are those appearing in
Eq. (7).

We conclude, that the high-temperature expan-
sion corresponding to the general model (73) dif-
fers from the high-temperature expansion of the
X-Y partition function only in the weights attached
to the different elements of the configurations.

IX. DISCUSSION

Evaluation of the high-temperature expansion of
the X-Y partition function was shown to be equiva-
lent to the evaluation of the partition function cor-
responding to a system of quantized field and quan-
tized charges on the lattice. The field arises from
the interaction terms in the &-& model while the
charges arise from the external magnetic field.
The low-temperature properties of the system
are studied by considering separately the longi-
tudinal and transverse modes of the field. It is
shown that the longitudinal modes of the field give
rise to an interaction between charges that is elec-
trostatic at large distances. It is also shown that
the transverse degrees of freedom, when ex-

may be obtained by representing the term
s ~"~~~~, "&,~ appearing in the integrand by ~m~ arrows
from the lattice pointP, to the lattice point P, and
representing the term &'~~"~ by g~ positive charges
at the site i. Integration over the y's leads to

& =(2») g(P)P [X(P&)1"QTIA(&,@)""
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APPENDIX A: PROOF OF EQ. (29)

Proof of Eq. (29)

(S';S";Sq)„—(S";Sq) =N;", (X)/D(A. ),
where

(A1)

pressed in terms of the curl of the field, may also
be described as systems of electrostatically inter-
acting charges. In the two-dimensional case, the
transverse degrees of freedom, are equivalent at
low temperature and small 9's to a system of
charges interacting pairwise via the two-dimen-
sional electrostatic interaction. In three dimen-
sions we have a system composed of two mutually
noninteracting subsystems, or we may say that
the transverse degrees of freedom correspond to
a system made of two kinds of charges, that do
not interact with one another. These results sup-
port the results obtained by Thouless and Koster-
litz that for the two-dimensional case showed the
system to be equivalent to a system of interacting
charges in the absence of an external magnetic
field. These charges correspond to the transverse
degrees of freedom in our description. They also
support the results of Zittartz that showed equiva-
lence of the two dimensionalX- Y model to a system
of interacting charges, that arise from the magnetic
field. These charges arise from the magnetic
field and the electrostatic interaction between any
two of them is mediated through the longitudinal
degrees of freedom of the field.

Another application of the high-temperature ex-
pansion is an upper bound on the transition tem-
perature. This bound is much lower than the cal-
culated transition temperatures obtained by Thou-
less and Kosterlitz, "by Kosterlitz, "and by Vil-
lain" for the square lattice.

OQ

S2-
N', (X) = g dS", dS" e ' " exp(PZ g S', S'+SP'„)S,"S',(S', -1

OQ (S,m)

TTA ds" ds'e BX(sk-1)
k k

(A2)

OO

-Bx s2-
D(A) = ~ ~ QdS~S„e 8 ~ ~ ~ exp(PJ Q S*,S" +S,S ) ~ ~ ~ g dS~dS„e

~ 00 k (m, l) k
(AS)



STUDIES OF THE CLASSICAL X- Y MODEL

We transform to polar coordinates

S. =S cos+. (A4)

tegrating over the y's and then integrating over
the S's that are positive. Since

lim N,*,. (A.) =0,
g-+ oo

(A6)

S'; =S& sing&, (A5)

and perform the configurational integration by in-
only the correction to order 1/d). of N;*,-(A) is to be
considered when calculating N, ~/D to order 1/X:

oo 2'
N,",, (A) = ~ ~ ~ IIdS, S,e e ~e» '~ (S';S,-S;S,) ~ ~ ~ ] [dy,

0 k 0

-BX(S2 -X) 2
)(' cosy; coscp,.exp (6J' +S~S„cos(y,—y„) II dS„S»e 8»~8»

r, m ~ p

We employ now the identity proven in Ref. l7:

J JgdS, -'""+(&S3) 1 ( 1 ~'C f~'(1)
JJ'gdss)(~(e»~-((3)+2(6„13( f,)(,)». «»-[f(.)(,)] m)»((3)'"

)I

(A8)

where . denote higher order in 1/A, f(x) has its only minimum at x=1, f ' and f~'~ are second and
third derivatives, respectively, neither f nor 4 de pend on X, and p(f13) denotes that all the arguments of p
are taken as 1.

In our case

where

J.Jrr, d"-'~&"'~,(IS3) J.JH. d " '~'"'
J,"J g, dS e 8»f&»-) J, J g»ds, exp[-)6Xf(S )C,((S3)]

' (A9)

2 'l('

,({3)=(l;—;II. " II q. o1, o9 P~P g -o(9 -9.)l
k p t,m

(A10)

c,((s3) =I(s„.
So

(A12)

where

N, (X)= *,. ~( co;cocos)„o+ ~ ~ f ll doc coco;coso; c-c"xx-
i 0 k s]=i j

cos(V
& V.,), -

fthm

(A13)

Nz(X) N(&(X)+N(&(l)= =~(cos(S, —Nl))„+ j lid(o cos(S, N ) so x xc( g'I &).x
k i

Sg=l

This equation leads directly to Eq. (29). (A14)

APPENDIX B: PROOF OF EQ. (39)

[Q(1,x)]' [Q(~, x)]' Pl(x) P',(x)
Q(l, x) Q(l, x) P, (x) Pg(x) '

where

P, (x) =J((ix).

We prove now that

P,'(x)P„(x)—P„'(x)P,(x) & 0, (B3)
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for x&0 and l &m (l, mt 0). Consider the differen-
tail equations obeyed by P, and P: E)„(x)=P„(x)—Pg(x) —P, (x) —P~(x),

d d
(Bv)

d d f'l'

d+ P, (x)+ —
d P,(x)- I —,+1 ~P, (x)=0, (B4)

d2 1 d (yg
d~P (x)+ ——P (x) —i, +1(P„(x)=0. (B5)x dx (g j

G,.(x) = (1/x')(p - m')P, (x)P„(x),

Eq. (B8) can be rewritten as

d 1F, (x)+ —F, (x) =G,„(x).

(B8)

(B9)
By multiplying (B4) by P (x) and (B5) by -P, (x) and
summing the resulting equations one obtains Solving for F,„(x) in terms of G,„(x) one obtains

d2 d'P (x) d/ P$(x) —P, (x) P (x)
F, (x) = — x'G, „(x')dx',

0
(B10)

Defining

+ -i P (x) —P, (x) —P, (x) —P„(x)
i

= —,(P —m')P, (x)P„(x). (Bs)

by using the initial condition

F,„(0)= 0, for l, m o 0.

For x&0 and l&m

G, (x) &0.

so Eg. (B10) implies (B3).
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