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Electrical resistivity of antiferromagnetic chromium near the Neel temperature
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Precision electrical-resistivity measurements around the Neel temperature, T„, of three samples of
polycrystalline chromium with different thermal histories are reported. The critical exponent of d p/dT
below T„ is found to be 0.65 +0.05 over temperature ranges that are sample dependent. Thus, the Suezaki-
Mori theory for the resistivity of an antiferromagnet predicting the dominant behavior below T„ is
confirmed. However, above T„, our data cannot be fit into any meaningful power law.

I. INTRODUCTION

In recent years considerable effort has been
spent on the measurement of equilibrium and non-
equilibrium properties of solids in the immediate
vicinity of second-order critical points. Much of
this work has been stimulated by the success of
the scaling-law approach in predicting the criti-
cal exponents. It is expected that the critical ex-
ponents and certain other parameters will be uni-
versal in the sense that they are identical for
apparently vastly differing systems, provided the
physical dimensionality d and the number of
degrees of freedom q of the order parameter are
the same, and provided the interactions have a
sufficiently short range. The effect of critical
fluctuations on the electrical resistivity in a
variety of ferromagnets can be understood by
taking into consideration both the short-range and
long-range correlations as well as the details of
the Fermi surface. The situation is less clear in
the case of resistive anomalies at the Neel tem-
perature T„of antiferromagnets. The various
theories proposed are in substantial disagreement
in many details. Among the existing few experi-
mental studies, results on chromium especially
are inconsistent indicating possible sample- or
system-dependent characteristics. The role of
critical fluctuations in antiferromagnets was first
studied by Suezaki and Mori' and later, but in-
dependently, by Geldart and Richard. ' The for-
mer authors concluded that energy gaps in the
electron dispersion relation reflect the long-range
order below T„, while the long-range correla-
tions dominate throughout the paramagnetic region
assuming the scaling relations. Thus, according
to these investigators, the contribution to dp/dT
due to the critical scattering above the Neel tem-
perature is given by

with e = (T —T„)/T„, where C is a constant and
and y are the critical indices of the specific

heat and the magnetic susceptibility, respectively.
For a Heisenberg antiferromagnet, ~ =0 and y =;.
Thus dp/dT varies as e 'ls. More extensive cal-
culations by Takada' confirm these results. Be-
low T„a term equivalent to Eq. (1) should also be
present in dp/dT. However, the band gap arising
from the superzone effects leading to a sharp in-
crease in resistivity must play an important role.
According to Suezaki and Mori, the dominant term
in dp/dT below T„and close to it, therefore, is
of the form

(2)

where e = (Tn —T)/T„, C is a constant, and p is
the critical exponent of the order parameter re-
lated to Q. and y by the usual scaling relation
n+2P+y =2. Equation (2) assumes that the num-
ber of effective conduction electrons n,ff is re-
duced proportionally to the increased order para-
meter h. If instead, n~ --6', as assumed by
Takada, both terms in dp/dT below T„have the
same exponent corresponding to that of Eq. (1).

More recent theoretical work predicting the
critical indices for the electrical resistivity of an
antiferro~agnet include the following. Alexander
and co-workers4 find that there should be a tem-
perature region (close to the critical point), where
dp/dT due to short-range correlations is pro-
portional to the specific heat, thus confirming
earlier results for antiferromagnets by Richard, '
and Kasuya and Kondo. ' They further state that
for large e one should have dp/dT-e 'ts, and that
values of the exponent in between the specific-heat

18 3665



3666 RAPP, BENEDIKTSSON, ASTROM, ARAJS, AND RAO 18

d-=-A e ~+B.
dT

(4)

Below T~ they find thatA, ~0.5 and above T~ that
A.,= 1.5. They also concluded that the indices are
almost isotropic with respect to the Q state.
Their measurements on chromium in a multi-Q
state give X, =0.8 and A. =0.3 for the cooling run
and A, =0.4 for the heating run. They also state
that the heating-run data did not fit a power law
above T„. According to Salamon, Simons, and
Qarnier, "polycrystalline chromium obeys Eq.
(4) below T~with X =0.17 +, 0.02. Furthermore,
they state that according to their data, A,,c —,

' as
obtained by Meaden and Sze." Muir and StrOm-
Olsen'4 analyze their measurements on single-
crystal chromium below T„with the somewhat
arbitrary assumption that B in Eq. (4) is equal to
the phonon slope at low (-125 K) temperatures
and find X =0.43 both for single- and multi-g
states over more than two decades.

exponent and --,' are characteristic for a transi-
tional region and do not have any physical signifi-
cance. Fenton7 develops a theory for T &T„and
finds that X is of the order of 0.1 in dp/dT- e ".
Ausloos reconsiders the temperature dependence
of the number of conduction electrons due to long-
range spin fluctuations above as well as below T„
to obtain an expression of the form

dp ( j)
p dT

where "+" refers to the region T&T„and "-"to
T &T„. Here the constant C, incorporates the
fluctuation and the gap effects. The first experi-
mental work on the critical indices of polycrystal-
line chromium near TN was carried out by Amitin
and Kovalevskaya, ' who found approximately log-
arithmic behavior of dp/dT below T„. However,
above T„ they were unable to fit the experimental
data of dp/dT to any meaningful power law. The
second experimental study of p, also on poly-
crystalline chromium, from the viewpoint of cri-
tical indices, was done by Meaden and Sze,"who

obtained d'p/dT' = e '~"l, with X=0.34+0.02,
between 0.1 K and 1.0 K above T„. Thus they con-
cluded that the localized spin model of Suezaki
and Mori could also be applied to the SDW anti-
ferromagnet. Unfortunately, this finding is not
substantiated by other more recent irivestiga-
tors" "on polycrystalline chromium and chro-
mium single crystals in either single-Q state or
multi-Q states, where Q is the wave vector of the
spin-density wave. Specifically, Akiba and
Mitsui, "'"using single crystals with well-defined
Q states, find that dp/dT satisfies the general
equation

In short, the results obtained so far on the
critical behavior of chromium appear to be mutu-
ally inconsistent. Often this is attributable to
very severe problems which make it impossible to
obtain sufficient homogeneous samples for mea-
surements very near T~. Two other reasons are
important for this observation. One stems from
the influence of strains on the detailed behavior
of the electrical resistance in the neighborhood of
a phase transition. For example, in thin (10 p, m)
dysprosium single crystals we have observed"
that pressing copper potential edges onto the
sample surface is sufficient to change the well-
known first-order nature of the ferroantiferro-
magnetic transition into a second-order behavior.
It might therefore be conceived that various dif-
ferent thermal histories and strain conditions have
contributed to the large range of exponents report-
ed for the resistance of chromium in the critical
region. Practically, the number of parameters to
fit a single set of data precludes an unambiguous
determination of the parameter of greatest inter-
est, the critical exponent. Thus, a further reason
could be the various methods of analysis employed
in different studies. Published work can some-
times be criticized on the basis that a large vari-
ety of different "power laws" can be fitted over
sufficiently restricted temperature intervals to
a smoothly curved experimental plot. -Details on
whether a different choice of T„would fit equally
well another power law over a different tempera-
ture range are often missing. Moreover, ob-
taining several successive derivatives may result
in a considerable loss of the accuracy of the data
and, unless carefully checked, spurious effects
can arise.

We thus feel that careful work on the critical
resistivity of chromium is highly desirable. fn the
present work we aim at avoiding the fallacies just
discussed. Thus, three samples from the same
chromium stock but with different thermal his-
tories have been investigated. We give details
of the numerical methods and obtain power laws
that reproduce the original data very satisfactorily.

II. EXPERIMENTAL CONSIDERATIONS
AND RESULTS

Three samples labeled chromium (1), chromium
(2), and chromium (3) were sparkcut from an arc-
melted irigot prepared from high-purity chromium
stock (Chromally Corporation). " After cutting,
the samples were etched in HCl, placed in silica
tubes, flushed with high-purity helium gas, evacu-
ated to about 0.1 Torr and encapsulated and heat
treated as summarized in Table I. Following
these heat treatments the samples were reduced



18 ELECTRICAL RESISTIVITY OF ANTIFERROMAGNETIC. . .

TABLE I. Heat treatment of Cr samples.

Sample Approximate size Temperature (K) Time (b) Cooling

Chromium (1)
Chromium (2)

Chromium (3)

(0.1 x 1) mm X 20 mm
(1 x 1) mm2 x 20 mm

(1x1) mm x15 mm

1250
1250

1250

100
24

100

Water quenched
Furnace cooled
in12h

Furnace cooled
in 24h

to the size suitable for our electric measurement
system by further etching in HCl.

The facility for electrical measurements is
based on a conventional four-probe dc measuring
technique and a Guildline (model 9970) comparator
bridge. It has been recently described in some
detail elsewhere. " Under favorable conditions
(resistances-1 0) a, resolution in-resistance of
1 part in 10' is possible. In the present case, how-
ever the resolution was only about 2 parts in 10'.
This is due to the fact that sometimes we worked
with rather thick samples (Table I) (hence, low in
resistance) in order to reduce the sensitivity to
strains introduced while making contacts for the
potential leads. The chromium samples were
mounted on a copper block which also contained a
platinum resistance thermometer. Copper poten-
tial contacts were carefully pressed into the sam-
ple surface. The block was placed in a Dewar and
was surrounded by helium gas. The Dewar was
enclosed into another Dewar. A wire-wound re-
sistor of the length of the inner Dewar provided
a uniform and controllable heating of the copper
block, and hence the sample. All measurements
were done with increasing temperatures using the

heating rate of about 1 K/h. The chromium (2)
sample was thermally cycled before the measure-
ments, while chromium (1) and chromium (2)
were cooled only once through the phase transi-
tion. The results are shown in Pig. 1, where each
resistance has been normalized to its value at
7.'„. It is clear that the detailed behavior in the
critical region is influenced by the thermal his-
tory of the sample. In particular, the water-
quenched sample [chromium (I)], which sup-
posedly is more strained than the other samples,
shows a more Qat and spread out transition re-
gion than the other samples. Qne measure of the
)onditionof the sample at the transition may be the
normalized difference between the maximum and
minimum resistance for each sample, Lp/p. In
unannealed condition (Ref. 16) this quantity is
0.8%. In chromium (1) its value is 0.5%, in
chromium (2) it is 1.1%, and in chromium (3) it
is 1.2%. Another related quantity, the maximum
of —(1/It)(dR/d T) for each sample, shows a
similar trend, as shown in Table II. These numer-
ical values signify that we have successfully
diminished the strain effects on the transition for
chromium (2) and chromium (2) samples. Our
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TABLE II. Results to fit (dp/dT)lp{TN) =-Ae +B below TN.

Observed quantitiea

10 B 10A-
Sample A (K ) (K )

TN

(K)

Temperature range
of fit,

&Wn-~max

dp

rms 103& P d T max

deviation (K ~) (K ')

Temperature at max
slope
(K)

Cr (2} 063 256 153 31079 17 x 10 3 27 x 10 2 3 x 10 5 247
Cr (3) 0.67 2.19 1.13 310.77 1.5 x10 3 2.1 x 10 4 x 10 2.27
Cr (1) 0.68 Limited power law 1.2 x 10 3 x 10 2.40

8.2
9.9
1.9

310.6
310.5
311.5

figures for ap/p are comparable to the best found
in the literature. The largest value of b, p/p (-2/p)
ever obtained for chromium is that for a single-
crystal single g state"'~ when measured with
the electric field parallel to the Q vector.

III. ANALYSIS

A. Method

A major problem in experimental studies of
critical phenomena is the determination of the
critical temperature. The exponent of a power law
obtained over a limited temperature range can
vary drastically with small changes in T„. Fur-
thermore, in chromium the minima in p and
d p/d T are separated by only about 1 K, which
probably has contributed additional difficulties
to the data analysis. The older method'~ of iden-
tifying the p minimum with TN has been shown to
be wrong. " Recently, in the absence of other
independent methods of determining TN, the most
plausible approach is identification of TN as the

temperature at which d p/d T is a minimum. "' "
This approach is justified, for example in dys-
prosium, where" a least-squares analysis with

TN as one of the parameters gives a value of T„
which is almost identical to that obtained from the
minimum in d p/dT.

In our first attempt" to analyze the data of Fig.
1 we therefore simply took TN to be the tempera-
ture at the minimum in d p/dT. Several different
power laws were then obtained for different sam-
ples which led us to a conclusion that the critical
indices in chromium are sensitive to a variety of
different parameters such as heat treatments,
strains, etc. As will be demonstrated below,
such a conclusion is, however, much too coarse.
Using a more detailed analysis, it is possible to
make more precise statements. This analysis is
now described. First, we make no initial assump-
tion of TN and treat it as a variable parameter.
This approach is equivalent to assuming that there
is a power law of the form of Eq. (4) and T„ is
then determined as the temperature giving the
best fit to the selected power law. Second, in
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view of the decreased accuracy of the second
derivatives of the data, we have fitted the first
derivatives to Eq. (4). This implies that the linear
term B is not eliminated. Rather than assuming
at the outset that it is equal to the linear term well
above T„, as was done by Akiba and Mitsui, ~ we
allow 8 also to be a freely varying parameter.

The first-temperature derivatives of the resis-
tance were calculated by using spline functions
of order 2, a standard ALCOL procedure avail-
able at our computer center. This method re-
sembles that of a sliding third-degree polynomial
fit, but has the additional advantage that the de-
rivative of each fitted curve section is continu-
ously matched at the end points to the neighboring
intervals. Small errors in one measured point
are magnified and spread through the data on
taking the derivative numerically. To diminish
these effects, some points were adjusted to a
smooth curve through the bulk of the data. This
correction was always below Sx10. ' of the mea-
sured resistance. %e checked particularly that
this smoothing did not violate the observed be-
havior as described below.

A typical plot of the first-temperature deriva-
tive of the resistance as a function of temperature
is shown in Fig. 2.

B. Data below T&

In the analysis of the data below T„we first
constructed plots of logged p/d T —B)vs loge for a
large range of values of B and 7'.„. From these
plots it w, as concluded that it is not possible to
fit the data below about q s 1.5x 10 ' to a
straight line, and that the value of e;„ is not very
sensitive to the variation of TN or B. Similarly,
there is for chromium (2) a value of e,„=2.7
x 10 ' beyond which the data deviate from a
straight line for any choice of T„and B [For.
chromium (3) the measurements were extended to
only about e = 2x 10 '. ] The best fit of about 50
data points to Eq. (4) in this temperature range was
then constructed by a least-squares analysis with
A. , A, B, and T~ as parameters. This analysis
is very similar to that used before for the deter-
mination of the critical behavior of dysprosium. "
In this case the minimization was done for the
resistance data. The critical indices of chromium
samples were obtained using the values of the
first derivatives calculated from the measured
p data. Figure 3 illustrates the least-squares pro-
cedure for the chromium (2) sample. The sum of
the squared deviations Z between Eq. (4) and the
first derivatives are plotted versus 7'.„. Each
broken curve is associated with a constant B with
A and A. chosen so that Z is minimized for given
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FIG. 3. Illustration of procedures for chromium (2)
data in order to find the best fit for Eq. (4). B values on
the dashed curves are from left to right 0.020, 0.013,
and 0.008 mQ/K. The data in this figure are not nor-
malized to the resistance at T~ of about 5 mg. Fur-
ther details are described in the text.

The full curve is the locus of minima of the
broken curves. The minimum of this curve gives
the parameters for the best fit of data to Eq. (4).
An increase in Z by 15% for a fixed value of B,
corresponding to about one standard deviation,
changes X by only 1%.

Identical data analysis was also done for chro-
mium (3). Characteristic values for all three
chi.omium sampleS are collected in Table II. In
order to compare conveniently the different sam-
ples, the resistance in each case has been divided
by its value at the Neel temperature. From
Tab/. e II we observe that the calculated values of
B for chromium (2) and chromium (3), obtained
from fitting the data below T„, are close to those
obtained from the linear slope above T„. The
quantity B represents the phonon- scattering term
which would not be expected to change much
through the transition. The fact that this is con-
firmed by our results gives our calculations a
high degree of consistency.

Figure 4 illustrates the best power-law fits for
chromium (2) and(3). The range of validity is given
in Table II. Over this temperature region, cor-
responding to about a factor of 15 in e, the data
are well described by straight lines. In. particular,
it is observed that the value of the exponent X,
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FIG. 4. log(B-dp/dT) vs
loge for Cr (2) (open cir-
cles) and Cr {3) (filled
circles) below Tz.

-2.5
log6'

equal to the slope of these lines, is rather in-
dependent of the different thermal history of the
two samples.

In contrast, it was not possible to fit a power
law of the form of Eq. (4) to the data for chro-
mium (1) over the same temperature range. We
plotted log IdpldT B I vs log& —for a range of T„'s
(from about 311 to 312 K) and for several values ofB
below as well as above the observed phonon value.
No straight line could be fitted to these plots.
Apparently this sample is too strained to be char-
acterized by one single power law. Different
regions of the sample may have different values

of T~ and, if the width of this distribution of T„'s
is considerable, it is clear that the functional
relation given by Eq. (4) cannot be satisfied over
a temperature region as close to T~ as for the
samples with more well-defined transitions (Fig.
4). If our assumption that the failure to fit a
power law to chromium (1) is due to a wide range
of distributions of T„'s is correct, one would ex-
pect the influence of such a distribution to be
much reduced at temperatures far away from T~.
This is observed. In Fig. 5 we show the data for
chromium (1), where B was taken to be the pho-
non value- above T„ in accordance with the results

013
I

Zl

O

FIG. 5. log(B —dp/dT) vs
loge for Cr (1) below T„.

-2.5 -2
lo 6'
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for the other samples and T„was close to the
temperature where -d p/d T has a maximum (Table
II). The slope of the straight line fitted to the high
c end of the data is —0.68, thus confirming our
previously obtained A..

Finally, we checked our analysis for chromium
(2) and chromium (3) to convince ourselves that
no spurious effects have occurred in the data
handling. The power laws (Fig. 4) were integrated
and, with the integration constant as an adjustable
parameter, the original data (Fig. I) were re-
produced almost within experimental error over
the entire range of the fit.

C. Data above T+

We were unable to fit a power law to our data
above T~ for any of our chromium samples. A
typical example of an attempted plot of log ~dp/dT
—B~ vs loge for chromium (3) is shown in

Fig. 6. Here B is equal to the observed linear
term at high temperatures and T„ is taken from
the analysis below T„. Obviously, Fig. 6 does
not give a straight-line fit. ,It should be pointed
out that the failure to obtain a power law above
T~ does not necessarily imply the nonexistence
of such a power law even in the temperature re-
gion studied. With our experimental resolution of
2 parts in 10' the deviation from a straight line
through the high-temperature data, i.e. , the part
of the total resistance which would account for an
exponent, is observable only b'elow about 312.1 K.
Still at the minimum, at about 0.5 K above T„,
this deviation is below 10 ' of the measured re-
sistance which itself is at most of the order of a

few mQ for reasons discussed previously. Thus
it is a quite formidable experimental task to ob-
tain a power law for the resistivity of chromium
above T„. A very large density of data points
combined with even higher resolution seem to be
required for this limited-temperature interval.
Therefore we conclude thatif there is a power law
in the resistivity of chromium above T„, this
power law is applicable in a restricted-tempera-
ture range only, say, within 2 K above T„. This
conclusion is consistent with other attempts
to fit the power law to the resistivity above T„.

IV. RANGE OF THE POWER-LAW FITS

The development of the Suezaki-Mori theory'
appears to be at least partially founded on the
mean-field theory. Fluctuations in the order para-
meter are considered but they are taken to be
small, certainly smaller than the order parameter
itself. Therefore, approaching the critical point,
a temperature region is reached where this con-
dition is no longer satisfied. We now try to esti-
mate this temperature limit e, in order to check
independently that the temperature region over
which our power laws were obtained are consis-
tent with the theories on which they rely.

Kadanoff et aE. have given' as anorderof magni-
tude estimate of e„ the Ginzburg temperature,

1 k'~ 2 1
c 32 2 ~g g8

where $, is the zero-temperature-'coherence
length and AC the jump in specific heat per unit
volume. The quantity g, can be estimated from"

Ol -3

FIG. 6. log(B -d p/d7')

vs loge for Cr (3) above pN.
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$, = Kv~/wb, , (6) Eq. (4.10)], i.e.,

where b, is the energy gap and v~ the Fermi velo-
city. We obtain (o=6 A using the measured" gap
of 0.14 eV at low temperatures and Fermi velo-
city, determined from neutron-scattering experi-
ments, "of 3.8x 10' m/sec, which is considerably
lower than that obtained from more recent calcul-
ations' but in agreement with other experimental
data. " This value of $, is 40% smaller than one
previously used, "which implies about one order
of magnitude differences in e,. Various values of
AC have been reported. Some results in the
literature, expressed in J cm ' K ', are 4x10 ',"
gx10 ',26P 5» 01» a.nd 4.6x1P '" These large
differences further illustrate the extreme sen-
sitivity of some of the properties of chromium.
However, one would not expect the factors in Eq.
(6) to depend strongly on strain. Thus it is the
estimate of e, [Eq. (5}]that appears to be very
sample dependent.

If we use AC =0.1 Jcm ' K ' (Ref. 28), which is
approximately consistent with values measured by
some of us' on polycrystalline samples of the
same stock as presently used and with a heat
treatment similar to that of chromium (3) sample,
we obtain e, = 1.1x10 '. This value is consistent
with the range of the power-law fit for the chro-
mium (2) and (3) samples. In fact, it may be an
open question whether the failure of our power
laws below about a=10 ' is due to breakdown of
mean-field theory approximations or the handling
of data. These qualitative arguments also apply
to the heavily strained chromium (1) sample.
When strains are released by annealing, AC is
known to increase. "' Our chromium (1) sample
may therefore be expected to have a low hC
which from Eq. (5) implies a high value of e, and
a restricted range of applicability of Eq. (2), in
agreement with the observations illustrated in
Pig. 5.

It should be remarked that our experimental
results seem to imply that P = -„not —,

' as expected
from pure- molecular-field approximation. It is
possible that Eq. (5) is not directly applicable to
our data. However, we feel that the above simple
estimate of e, provides some insight into the prob-
lem of the validity of a power law. Lastly, Ref. 11
also uses Eq. (5) for the same purposes in spite
of the fact that p is different from —,'.

We also ask ourselves why there are deviations
from Eq. (2) at the low-temperature end of the
straight line in Fig. 3 for about e &Sx 10 . In
view of the agreement between our data and the
Suezaki-Mori theory in the range 10 3 S &62
x 10 ', we attempt to apply the complete expres-
sion of this theory for dp/dT below T„[Ref. 1,

This analysis takes into account the phonon term
and uses the numerical value of p= &, which is
justified from our data. The constant C is deter-
mined from the observed maximum in p. If the
slope X of log(B —[I/p(T„)][(dp/dT )) vs loge is now
evaluated, we find as required, that A. at &=10 '
differs only slightly (below 3%) from the value in
Eq. (2) (-—', in this model). Far from T„, however,
at q = 5x 10 ', the value of X obtained from Eq. (7)
is -0.8, which gives a correction of the right
sign, but smaller than required to account for the
experimental slope of about. -1. A further reason
for discrepancies in this temperature region may
be the choice of the B value. The ordinate in Fig.
3 is very sensitive to B for low values of the argu-
ment. Moreover, the measuring temperature is
only about half the Debye temperature of chro-
mium~' and variations .in the phonon resistivity
may be expected to be observable over a 15-K
temperature interval.

V. CONCLUSIONS

We have found that the electrical resistivity of
chromium below T„ is of the form of p-q' ~,

with X close to -', for several samples with differ-
ent thermal histories. Although the phase transi-
tion is somewhat smeared in a strained sample,
this conclusion remains valid over a more limited
temperature interval. The ranges of the fits are
consistent with mean-field theory estimates and
the value of A. agrees with that obtained in the
Suezaki-Mori theory' for the dominant term in
the resistivity below T„. Thus we conclude that
in the temperature region of the observed power
law, smearing of the order parameter b, as con-
sidered by Takada' is negligible. The effective
number of charge carriers n,~ follows the rela-
tion

n,n -n(1 —bK),

with 6- e8. b here is an appropriate constant.
Prom a Heisenberg large-spin model and scaling
laws one then obtains P = —,', in accordance with the
experimental results and Eq. (2}.

Unresolved questions include t'he departure from
a single power law for e ~ 2x 10 ' below T„(which
apparently can only be partly accounted for by con-
sidering an additional term in the Suezaki-Mori
theory). Furthermore, we have not resolved the
behavior of the resistivity above T„. The experi-
mental difficulty of this problem is stressed.
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