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Anderson’s model for a disordered system is studied numerically by a direct simulation of the particle
diffusion on the two-dimensional square lattice. The energy-dependent diffusivity and the participation ratio
are evaluated in extended regime for various sets of band energies and disorder parameters. Far from the
mobility edges our results are qualitatively consistent with the coherent-potential approximation, which is
shown to generally overestimate the diffusivity. In the critical regime, our data indicate a continuous nearly
linear variation of the diffusivity and thus contradict the concept of minimum metallic conductivity. The
participation ratio also reveals a critical dependence. The results are interpreted in terms of classical
percolation character of the particle diffusion near the mobility edges.

I. INTRODUCTION

Mott’s notion! of the existence of mobility edges,
which in a disordered system separate the energy
regions of extended and localized states, has been
supported by a number of theoretical and numer-
ical investigations in the past decade.? It has
also been recognized that the behavior in the vi-
cinity of mobility edges has a relationship to the
phase-transition problems. Various renormaliza-
tion-group approaches which employed this an-
alogy have been presented recently.>® Further
progress in this direction would be facilitated if
one would have a list of critical quantities and at
least a qualitative understanding of their critical
behavior. The localized side of the transition is
at present better understood since it proved to be
more ameénable to the theoretical? and numerical
studies.®"® The situation in the extended regime
is much more controversial. For the conductiv-
ity, which is the central quantity in this region,

a discontinuous behavior was originally pro-
posed.” Cohen and Jortner'® argue for a contin-
uous variation analogous to classical percolation.
More recent arguments by Mott!! also seem to con-
tradict the concept of minimum metallic conduc-
tivity. At the same time, Licciardello and Thou-
less!? claim that in a disordered system the con-
ductivity should be always zero, in a strict sense.
Numerical studies of the conductivity, as well as
of other presumable critical quantities in the ex-
tended regime, like the participation ratio,® were
until now only of a qualitative character,®!® or
yielded indirect information.”!? Results would be
desirable also outside the critical regime; where
the validity of theoretical treatments like the co-
herent-potential approximation (CPA)!* should be
tested.

In this paper, we present the results of our nu-
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merical investigations of the extended regime
in the Anderson model for a disordered solid. The
study was performed for the two-dimensional (2D)
square lattice and the emphasis was put on the
critical regime. The basic idea of our approach
is to simulate directly the quantum-mechanical
diffusion of a particle with a well-defined energy
and to extract from the simulation data quantities
of interest, i.e., the conductivity, the participa-
tion ratio, the coherence length, etc. Some con-
clusions have already been reported in our recent
letter.'®

The organization of the paper is as follows: In
Sec. II we discuss the relationship between the en-
ergy-dependent conductivity and the diffusivity in
the extended regime. In Sec. III technical details
of our simulation approach as well as our method
of data analysis are described. Section IV is de-
voted to the presentation and discussion of results
for the diffusivity and the participation ratio. In
Sec. V, an interpretation of our critical-re-
gime data via classical percolation is given.

II. CONDUCTIVITY AND DIFFUSIVITY

We study the disordered system with the Hamil -
tonian, as it was originally introduced by Ander-
son,*

H= };_:e,c'{c,+ ;V,jclc,, (1)

where c](c;) are the creation (annihilation) oper-
ators for a particle on the lattice site {. The site
energies ¢; are uniformly distributed within the
interval —; W<¢,;<3W, while the transfer inte-
grals V,,;=V connect nearest neighbors.

To calculate the energy-dependent conductivity
o(E), defined by the relation

a=—f ggglo(E)dE, * (2)
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where f(E) is the Fermi-Dirac distribution func-
tion, we employ its connection to the energy-de-
pendent diffusivity D(E) for the case of the nonin-
teracting Fermi gas,

o(E)=2¢®n(E)D(E)/S: . (3)

n(E) denotes the normalized density of particle
states, @ is the cell volume, whereas the factor
2 which takes into account the spin degeneracy
has been introduced for consistency with other
authors. Equation (3) can be deduced from the
formalism of Kudinov and Firsov.'®* They proved,
for the case of a small concentration of mobile
electrons,

2

o B}i":z—t 20t -7y

x{(clt)e;@)cle ), - (4)

Here, B=1/kyT,T, is the site vector, and N, the
number of lattice sites. {{ )), denotes the thermo-
dynamic and configurational average. Equation (4)
relates o and the diffusion constant. Eliminating
the thermodynamic average in (4) in the same way
as in (2), we arrive at expression (3) [note Bf(E)
~-df(E)/dE], which for disordered systems was
also pointed out by Butcher.!

Theoretical investigations of ¢(E) and D(E) in
the extended regime start usually from the repre-
sentation

D(E)= —;(%1; 2 0f

Jekyl
X (ImG;(E) ImG 1,(E +0)), ,

(5)

where G,;(z)=(c,(z —H)c!). Within CPA!" the con-
figurational average in (5) can be decoupled into a
product of averaged one-particle Green’s func-
tions, whereby (G,;(E)), and n(E) are calculated
self-consistently. CPA thus neglects all statisti-
cal phase as well as amplitude correlations be -
tween the E and E +0 particle states in Eq. (5).
The Mott-Hindley'® value for the minimum metal-
lic conductivity is based on a similar assumption,
where also the coherence length is set to zero,
i.e.,

-v)ory =7 WiV

(Imcu(E»c =mn (E)ai.f ’

Dyy(E)=21a2V?n(E). ()
Equation (6) is given for the case of a 2D square
lattice where a, denotes the lattice parameter.
However, it has been shown by the author!® that
in the vicinity of mobility edges the correlation
corrections to CPA could decrease D(E) consider-
ably and seem to allow lower values then (6).

III. NUMERICAL SIMULATION METHOD

Our simulation procedure is derived into two
steps: (a) To obtain a wave packet with a well-
defined energy E, we first find in a smaller sub-
system for the generated configuration of ¢; an -
exact eigenfunction of the Hamiltonian (1), i.e.,
¥,{T;) with E,~E. To reduce the storage and
time requirements we use the diagonalization for
band matrices, which yields for given E only the
closest eigenvalue with the corresponding eigen-
vector.?® The modulated ¥,(T,;),

@(F,,t=0)=cexp(~|T, -T,|/40*W(F,),  (7)

represents the initial condition for diffusion in the
enlarged system. Now, ¢(¥,,t=0) corresponds
only to an approximate eigenstate. Its energy res-
olution 05 can be evaluated directly,

o2=(¢|H?|@) ~(@ |H|p)?. (8)

In Eq. (7), we choose the parameter p so that o
is minimized. oy is in the extended regime pre-
dominantly determined by the dimensions of the
subsystem. In our calculations, which involve
21 x 21 =441 sites, we obtain oz~ 0.3V. In the vi-
cinity of mobility edges, the functions ¥,(F,) ex-
hibit large amplitude fluctuations and become
more insensitive to boundary conditions.” This
manifests itself in larger variations among o
values. By selection we are thus able to achieve
in this regime 0;<0.2V. (b) The evolution of
@(T,,t) is then followed by the numerical integra-
tion of the time-dependent Schrédinger equation,
for which we employ the fourth-order Runge-Kutta
procedure. The dimensions of the 2D system are
increased steadily, under the condition that the
boundaries do not significantly influence the re-
sults. At most,. our sample contains 100 x 100
=10" sites. The time step is predominantly dic-
tated by the stability of o and proved to be strong-
ly dependent on E. We thus reach, in the low-dif-
fusivity regime, ¢~ 300/V at E =0 (band center) and
¢~150/V at band edges E/V ~4. Note that we are
using the convention Z =1 throughout the paper.
Finally, the diffusivity is evaluated using the rela-
tion (4)

D(E)=1lim{R2(t))/4¢ (9)

t—> 0
with )
(RA(t) = Zr?[lw(?f,t)_lz -

The extrapolation in Eq. (9) is performed graph-
ically, since we observe from the (R*(¢)) curves
that after a transient time, which is predominantly
a function of disorder, a steady-diffusion state
with a well-defined linear variation of (R%(¢)) is

lo(F;,0)]?]. (10)
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reached.

Further information about the nature of extended
states can be extracted from our simulation data
via functions

Z (F,0)= 'Z [@(F,, ) *(F,+T,0]". (11)

We are able to calculate from Z (T, ¢) the coher-
ence length, the Z (¥=0,¢) are related to the wave-
function amplitude fluctuations, etc. Usually, an-
alogous quantities F"(?) are defined directly for
the exact eigenstates ¥,(F;) of the system. The
participation ratio,® which in the extended regime
represents the effective fraction of sites occupied
by the eigenfunction ,(F,), can be thus expressed
as P=[N,F,(T=0)]". Although the Z (F,¢) in Eq.
(11) are not identical to F (T), we can establish
their relation by extending the diffusion ansatz (7)
to arbitrary ¢ with p>=(R%*¢)). Now, ¥,(F;)
=¢'(¥;,t) in Eq. (7) corresponds only to an approxi-
mate extended eigenfunction of the whole system,
It seems also plausible that the Gaussian function
is statistically uncorrelated to (¥,,#). The va-
lidity of the ansatz can be partly tested by identi-
ties stemming from (7), e.g., K, =(R*))/AR%))?
=1, etc. In our calculations, we observe larger
deviations due to unsteady diffusion only in the
low -diffusivity regime, where 0.9<K;<1.4. With
the help of expression (7) we can evaluate all
F,(T). For example,

P=limaZ[2(R*(t)Z ,(T=0,1)]"

>

=a2D N(E)/BTrD(E) , (12)
where
D (E)=1im [tZ (F=0,)]". (13)
t—>e

Our resolution in W can be estimated from the
effective number of sites N, ~ 2(R?¢)). Since in
most cases we are limited to (R%(¢,,,)) =500a2, it
follows that oy, /W~1/(N,,)*/2~0.02. Our method
could be used as well for the study of the localized
regime, where D(E)=0,D,(E)=0, etc. There,
(R*(¢)) and Z (T,t) approach or oscillate around
some stationary value specified by the given con-
figuration. To gain, besides the qualitative, also
some quantitative information about physical quan-
tities like the localization length and the participa-
tion ratio, it would be essential to perform an av-
eraging over a number of different configurations,
which would make this approach rather inefficient.

IV. RESULTS AND DISCUSSION

Our diffusion simulations were performed for
the following cases: (a) at fixed E=0 (center of
the band) and E/V =3 the degree of disorder was

varied, W/V=2.5-T; (b) at fixed W/V =5 and

W/V =6 for E/V=0-4. Note that the situation in
the square lattice is symmetrical around E=0.
The example selection was guided by the approxi-
mately known locations of the mobility edges
E(W),” where the best available values stem from
the work of Yoshigo and Okazaki,® i.e., W (E=0)
~6.5V and E (W=6V)~3.2V. The case (a) with E/
V=3 was chosen to represent the points where in
the weak-scattering regime the maximum conduc-
tivity occurs. The numerical procedure strongly
favors example (a) with E=0 since, owing to a
symmetrical situation, the numerical stability

is substantially increased (a time step at least
five times larger than in other examples is suf-
ficient). Furthermore, the requirements on oy
are rather modest;due to the smooth variation of
all quantities with E.

In Figs. 1(a) and 1(b) we present for the E=0
case some characteristic (R%(¢)) as well as the
corresponding N(t)=[Z,(¥=0,#)]™ curves. All pre-
sented W/V correspond to the extended region. In
the weak-scattering examples, W/V <3, the wave
packet exhibits an accelerated expansion at short
times and rather large volumes are needed to
reach the diffusion regime, which effectively pre-
vents an accurategstudy of W/V <2.5. For larger
W/V> 4 the steady-diffusion state is observed
after a transient time 7, which seems to be de-
termined mainly by the corresponding effective
number of contributing sites N(¢)~150-300. Since
D N(E) reduces strongly in the vicinity of mobility
edges and, moreover, we claim the vanishing of
P at W,(E), the condition ¢> 7 is increasingly dif-
ficult to meet for the most critical examples
(e.g., at E=0 for W/V>6.2). Nevertheless, as
seen in Fig. 1(a), the fluctuations around the ideal
linear behavior are rather modest except at W/V
~6.5. We also do not observe any clear indica-
tions of saturation in the (R?(¢)) curves, which
would confirm the recent conjecture of Licciardel-
lo and Thouless!? that the eigenstates are always
localized in two dimensions, independent of W/V.
Note that (R%(f,,,)) are already large enough that
these effects should become visible for W/V
>5.5, at least for localization-length values as
presented in Ref. 12. Thus, at W/V =6 the pre-
sumable localization volume should be approxi-
mately equal to our effective volume N, a2.

On the contrary, N(#) curves reveal consider-
able deviations from the ideal behavior already
for relatively weak disorder. Large fluctuations
and at the same time small values of D N(E) pre-
vent an accurate analysis for W/V>5 and do not
allow any reliable location of W, via the condition
D, (E)=0. This phenomenon by itself seems to
favor a smeared-out transition or an inhomogen-
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FIG. 1. Characteristic
examples for the time
dependence of (a) (Rz(t »
and (b) the corresponding

N(@¢)=[Zy(F=0,¢)]™ are
plotted for various W /v
- in the extended regime at

1000
N(t)
750

500
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fixed E =0. Dashed lines
represent graphical deriv-
atives as used for the
evaluation of D(E) and

D y(E) via Egs. (9) and (13),
respectively.

eous energy regime,!' where the localized and
extended states would coexist. Such interpreta-
tion is however inconsistent with rather well-de-
fined values of D(E).

In Figs. 2(a) and 2(b) our results for D(E)atE=0
and E/V =3 are plotted. The circles denote the
values obtained from independent configurations.
We present also the corresponding CPA result'*
as calculated from (5) 'as well as the Mott-Hindley
values for the minimum metallic diffusivity from
Eq. (6). In the evaluation of (6), we used the CPA
results for n(E) which are for our examples close
to the exact ones.”

The scatter of data remains rather modest also

1
tv 250

in the low-diffusivity region except for W/V> 6,
where we could not guarantee {>7. For the weak-
scattering regime W/V <4 our results confirm the
reliability of CPA. Consistent with the theory*®
they also indicate that CPA generally overesti-
mates the diffusivity. For W/V>4.5 CPA fails
qualitatively. Thus, the Dy,(E) curves are crossed
at W/V=4.5 and W/V=5.5, respectively. It must
be mentioned that we are able to test separately
the validity of the decoupling approximation to

Eq. (5) as well as the value of coherence length.
From the calculated lim,_, . Z, (¥,;,£)=¢ mG,(E)),/
mn(E) we can evaluate the coherence corrections?®
to Dyy(E) in Eq. (6) by summing the largest con-
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FIG. 2. Diffusivity D (E) as a function of disorder
parameter W/V at (a) E=0 and (b) E/V =3. Circles
denote the results as obtained from different configura-
tions. Plotted are also the corresponding CPA curve
as well as the Mott-Hindley values for the minimum
metallic diffusivity.

tributions to the sum in Eq. (5) where the decoup-
ling is assumed for the Green’s-function product.
In the case W/V =6, e.g., the corrections still
amount to 10% and 60% on the corresponding
Dy (E) values for E=0 and E/V =3, respectively.
At W/V ~5.5 for both cases the value correspon-
ding via Eq. (3) to o(E)=0.12¢? is reached. This
figure was claimed by Licciardello and Thouless’
as the minimum metallic conductivity in two di-
mensions. In their recent work,'? they correct
their previous arguments and present new results
which are consistent with ours at least for W/V
=6, i.e.; o(E=0)=0.078¢% (our value: 0.094¢?),
and o(E=3V)=0.058¢® (0.063¢%). Nevertheless, it
seems that some systematic errors are still pos-
sible within their approach, since for the other set
W/V = 4.5 the discrepancy between the values is
beyond the numerical errors of both methods,
e.g., o(E=0)=0.158¢% (our result: 0.26¢%) and
o(E=3V)=0.132¢% (0.224¢%). From Figs. 2(a) and
2(b) we can set the upper bound to the presumable
minimum metallic conductivity in two dimensions

T T T T T
20 |- — - .
-7 ~ WIV =5
D/qf)v L 7 N E/N~4
7
15 |- _ < —— diffusion simulation \ .
- — — CPA \
— . — Mott -Hindley \

15 —_—— T
- ~
- N
D/ -7 WiV =6 N
- E/V~ 375 \
10 - \ -
\
\

\
\ -

‘< \

N
L
50 ENV

FIG. 3. D(E) as a function of E/V at (a) W/V =5 and
(b) W/V =6. The designation of the curves is the same
as in Fig. 2. The values of E,/V are estimated from
our data.

0,<0.04¢%. Since such a small step could be hard-
ly defended theoretically, at least in the sense of
the original Mott’s arguments,® we would interpret
our results by a continuous variation D(E)c< (W,
— W)’ in the critical regime |W,-W|<V. For
the Yoshino and Okazaki® value W, (E=0)=6.5V we
would obtain s~0.7. It seems, however, likely
that their analysis slightly underestimates W,.
Therefore, we cannot exclude the possibility s
2 1, which could correspond to the classical-per-
colation critical exponent in two dimensions.?

In Figs. 3(a) and 3(b) we plot the D(E) results
at fixed W/V=5 and W/V=6. Both cases corres-
pond to the strong-scattering regime. CPA curves
grossly overestimate D(E) and also reveal maxi-
ma at E/V~3 which are in our results only weakly
pronounced. Again, we observe that for W/V =6
D(E)<Dyy(F) for all E. From Figs. 3(a) and 3(b)
conclusions about the critical variation are more
ambiguous. The rather steep E dependence is to
some extent smeared out by our resolution o
~0.2V. Nevertheless, we cannot recognize any
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FIG. 4. D,/V as a function of W/V at E=0. Circles
denote the results obtained from different configurations.

contradiction with the continuous-variation as-
sumption. We must also mention the difference.
between our E,/V~3.75 at W/V =6 and the value
E,/V~3.2 Yoshino and Okazaki® which seems ques-
tionable on account of the extensive extrapolation
used in their procedure.

It has been realized from Fig. 1(b) that an an-
alysis of DN(E) is less accurate. The results at
E =0 plotted in Fig. 4 reveal a large scatter of
data especially for W/V>5, where the evaluation
of DN(E) becomes more subjective. In spite of
this, the qualitative difference between the D(E)
and DN(E) behavior becomes evident in the crit-
ical regime W/V>4.5. A physical interpretation
can be given via the participation ratio. In Figs.
5(a) and 5(b) we present the values for P at E=0
and W/V=5, respectively. We extract them from
our simulation data in two separate ways: (a)
from the curves D(E) and DN(E) as plotted in Figs.
2 and 4 (a similar analysis was performed also
for W/V =5) employing Eq. (12); (b) inserting into
(12) (R3(tq,)) and Z (¥=0,¢,,,) for each configura-
tion separately. As seeen in Fig. 5(a), both
methods yield consistent results for W/V <5. Sys-
tematically overestimated values by method (b)
in the critical regime could be attributed to the
transient time effects and show the necessity for
an extrapolation procedure. Note also that for
Ww=0, i.e., for a stationary Bloch wave, we are
able to evaluate from the definition P=%. Our
results in Fig. 5(a) are consistent with those re-
ported by Weaire and Srivastava® for W/V<4.
Their values P~0.2 at W~ W, could be traced back
to the small systems used in their calculations.
Our results reveal much lower values P< 0.1 in the
critical regime and seem to be consistent with the
critical ansatz, P oc(W, - W)°,6~1.4.

T T T T T T
P
E=0
sl W,/V~ 65
~N
\\\ °
04t i\%\i\ 4
o4
EAN H
02/~ \t\ i . .
X o
NN
(a) o \*8
1 1 ] | LT~
10 20 30 40 50 60 WV 170
P T [ T
SRR
> _ -
C'
02 & //-g %é'\\
s \
.|.—/ (o] o ~
o \ o
01 - ’& ° ooo—
) o ©°
\ ¢
8 o N\ ° |
_\ o]
(b)
Il 1 1 ° ~N
10 20 30 E/V 40

FIG. 5. Participation ratio P at (a) fixed E =0 vs
w/V and (b) fixed W/V =5 vs E/V. Circles represent
the results for different configurations as calculated
from Eq. (12) and Z(F=0,¢,.)s (Rt max)) without any
extrapolations. Crosses denote the values obtained from
the average Dy(E) and D (E).

Some results for P in the extended regime have
been reported also by Yoshino and Okazaki.? It
must be mentioned that they disagree with ours as
well as with those of Weaire and Srivastava® al-
ready for a weak disorder, e.g., P~0.25 at W/V
=2, which seems to be inconsistent with the exact
value at W=0. The origin of this discrepancy is
not yet clear, therefore we cannot exclude the
possibility that the procedure employing the exact
eigenstates yields in principle different values for
P. Figure 5(b) indicates an analogous critical be-
havior of P when E is varied, although the results
are not so accurate as for the E=0 case.

A similar analysis as for P was performed also
for higher functions Z"('F= 0,#). They confirm the
divergence of the eigenfunction amplitude fluctua-
tions at W, and lend also an additional information
about the amplitude distribution. Within our ap-
proach it is convenient to study the ratios
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dn'_"le(?: 0)/[F2(F= o),

_n+ 1 lim Z ., (F=0,¢)

21: t—>o [Zz(.f’:()’t)]" ’
where in the second line Eq. (7) has been used.
Note that the d,, in contrast to F (¥=0), remain
finite in the extended as well as in the localized
regime. Both limits can be evaluated exactly.
Thus, at W/V -« d,~1, whereas at W=0, i.e.,
for stationary Bloch waves,

d,=2""T(n+3)/V71 3"T(n+2), (15)

which gives d,=1.11,d,=2,59, etc. Analysis of
our simulation data via (14) yields results which
are consistent with both limits and indicate a
cusplike behavior in the critical regime. For in-
stance, we obtain at E=0 W/V=6, d,~3, and d,
~14, whereas the variation of these quantities with
W is approximately linear. Although the scatter
of the d, values at W~ W, is not so pronounced as
in the case of Dy (E) we are still not in a position
to present more quantitative statements about
the critical exponents for d,.

We have also evaluated the ratios F,(¥)/F,(¥=0)
in contrast to the d, do not seem to be affected by
the transition and vary smoothly between both
limits.

(14)

V. CONCLUSIONS

Our main results on the critical behavior in
the extended regime can be summarized as fol-
lows: (a) The diffusivity D(E) seems to vary con-
tinuously in the vicinity of mobility edges. At least
our values at fixed E favor the critical ansatz
D(E)< (W, — W)*® with 0.7<s<1.2. The data anal-
ysis for fixed W/V also indicates a smooth falloff
at E, although the conclusions are less definite.

(b) The participation ratio P also exhibits a criti-
cal behavior. At E=0, e.g., Px (W, -W)° with
5~1.4. Thus, the fluctuations of the eigenfunction
amplitudes diverge at W, which is reaffirmed

by the results on F,(¥=0) and d, that reveal a cusp-
like dependence at W~ W,.

It hasbeenalready recognized® that even conclusion
(o) separately would violate the assumption
underlying the notion of minimum metallic con-
ductivity. It can be argued that both conclusions
are consistent since they essentially confirm the
conjecture of Cohen and Jortner!® that large amp-
litude fluctuations in the vicinity of mobility edges
force the classical percolation behavior of o(E).
Similar arguments have been used recently by
Mott!! to predict a continuous variation of o(E)

FIG. 6. Snapshot of the particle probability density
at ¢ =180 /V > 7 for the case E =0 and W/V =6.15 (W,/
V ~6.5). The circle areas are proportional to the local
values [¢(T;,#)[%.

at W~ W, although the proposed functional form
was not of the ordinary power-law type. To visual-
ize the classical percolation character of the dif-
fusion near the mobility edges we present in Fig.
6 a snapshot of the particle probability density
|(p('1’-‘ ,'t)[ 2 at ¢>7. It can be easily seen that dif-
fusion of the particle has taken place mainly along
some rather well pronounced channels. Also,
large fluctuations between densities on different
sites are recognized. On the other hand, from
the minimum -metallic-conductivity concept one
would expect a uniform spreading of the wave
packet.

The statement on the percolation-type diffusion
at W, does not necessarily lead to the classical
percolation value for the exponent s, which in
two dimensions is s~ 1.1. Our results do not,
at least, exclude this possibility. That the quan-
tum-classical analogy is not complete can be con-
cluded also from the participation ratio which rep-
resents a quantum counterpart of the site per-.
colation probability.?* Here, our value for the
critical exponent, 5§~ 1.4, is clearly different from
the classical result §<0.5.%
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