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A zero-temperature real-space renormalization-group method is presented and applied to the quantum Ising
model with a transverse field in one dimension. The transition between the low-field and high-field regimes is
studied. Magnetization components, spin correlation functions, and critical exponents are derived and
checked against the exact results. It is shown that increasing the size of the blocks in the iterative procedure
yields more accurate results, especially for the critical "magnetic" exponents near the transition.

I. INTRODUCTION

A new real-space renormalization-group method
for quantum systems, introduced by Jafarey et al. ,'
has been used by Drell et al. ' to study quantum
fields on a lattice and by Jullien et al. ' to study a
model Hamiltonian for the Kondo lattice. Like
the other methods' recently introduced for quan-
tum spin systems, it is a block-spin method, but
it emphasizes the ground-state properties of the
system by working at T =0. The method consists
of an iterative and approximate construction of
the low-lying states of a quantum system. The
lattice is split into blocks which are solved exactly.
A given number of low-lying eigenstates are re-
tained to write the interblock interaction, and the
scheme is repeated until it converges to a "fixed
point. " This is, in a simpler case, similar to
the work of Wilson' on the Kondo impurity problem.
But Wilson used an "onion" scheme instead of
using a multiplicative block method valid for trans-
lational-invariant problems.

The method is well suited for a number of pro-
blems where the nature of the ground state chan-
ges drastically at a critical value of one para-
meter Atypical .example is the Ising model in a
transverse field' where there is a transition from
a low-field regime ls &h„with a degenerate ground
state, to a high-field regime l't &b, with a singlet
ground state. This model is studied here as a
test of the method since it has been extensively
studied by other methods and exactly solved in
one dimension. ' Jafarey zt pl. ' treated the more
simplified version of the method applied to the
Ising model in a transverse field in one dimension;
they worked with blocks of two sites and they re-

tained only two levels at each iteration. In this
case, the recursion relations are very simple
and take analytical forms. The main physics of
the transition is reproduced but there are some
quantitative discrepancies concerning the location
of the transition, the field dependence of the
ground-state energy and the values of the critical
indices near the transition. Particularly the index

P for the longitudinal component of the magnetiza-
tion below the transition is far away from the ex-
@et result: 0.40 instead of 0.125. Drell et al.2

have already improved this estimate of P by use
of some extensions of the method based on a var-
iational procedure. Unfortunately, their technique
yields an estimate for the location of the transi-
tion which is worse than that of Jafarey et al. '
We have already presented another extension
which consists of retaining many more levels at
each step. ' Both the location of the transition and
the critical exponent for the gap after the transi-
tion are much improved by this method. Unfor-
tunately we have not evaluated P in this method.

The purpose of the present paper is to present
an alternative extension which consists of increa-
sing the size of the blocks, but keeping always
only two levels at each iteration. The advantage
of keeping two levels is that the Hamiltonian can
be written as a spin Hami1tonian at each iteration.
As a direct consequence, the magnetization com-
ponents and the spin correlation functions can be
derived by use of spin recursion relations. In
Sec. II the method is described. In Sec. III we
present the renormalization-group trajectories
and the fixed points, the location of the transition
(It/4)„ the calculated values of the ground-state
energy and the energy gap between the ground-
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state energy and the band of excited states. In
Secs. IV and V the magnetization components and
the correlation functions are calculated. The cri-
tical behavior of the transition close to (h/J'), is
discussed in Sec. VI, where the various critical
exponents are calculated, compared with exact
results and tested with the scaling laws. A gen-
eral discussion and conclusion is proposed in
Sec. VII.

II. DESCRIPTION OF THE METHOD

The Ising model in a transverse field is des-
cribed in one dimension for a chain with free ends
by the following Hamiltonian:

« = —
l sQ s& s,"„+«ps;)
t'

We consider the limit of a large number N of
spins. P, and S& are, for each sitei, the usual
spin-2 Pauli matrices:

(0 1) (1 01
1 0) (0 —1~

'

Our method uses an iterative procedure which
yields the following form for the Hamiltonian at
the iteration n:

~ (n) P (g(n) pr(n) S&&(n) +I (n) S«(n)) +C(n) g f (n)

where I&"~ is, at step n, a single-site 2X2 identity
matrix. We start at n =0 with the initial spins en-
tering (1) and the parameters

(4)

At the iteration n., we divide the chain into adja-
cent blocks of n, sites. We then use new indices
(j,p): j being the label of the block, and p (1 «p
«n, ) being the label of the spin in the block. We
write H{"~ under the form

«&'& =p~«&"&+«» +c&& g r&"&)
p lan ~ ~ ~ AS

where Hz" is an intrablock Hamiltonian:

in the block. This diagonalization can be simpli-
fied by observing thatH&, acting on a basis vector,
does not change the parity of the total number of
(+) or (-) signs. Thus, we diagonalize Ifp separ-
ately in the two different subspaces e,. and c,- of
dimensionality 2"s ' generated, respectively, by
the basis vectors having an even and odd number
of minus signs.

After the diagonalization of H &", we retain only
the lowest energy states of each subspaces c&'

which we designate by [+& "+' and
~

—&~+', the cor-
responding eigenvalues being E+ +' and E++'~,
respectively. We write

y
(n+&) & (E(n+1) E (n+1))

2 (10)

Taking the matrix elements of the old spin S& p be-
tween the block states [

+}("+')and ~-)("+')s we ob-
tain the following spin recursion relation:

$x{n) ggn) Sx{n+1)
jgp ~p

with

~+&("")=
~ ~ ~ f (»p f ~ ~ ~ f 6f1

X I&ps & &ps ~ ~ ~ s &n ) sS

)(n+i) - g- {n)
6] $ ~ ~ n f +p ) n ~ ~ ) 6'ggS

s~ps ~ )ens

where g+ and g are summation signs restricted
to the subspaces c,. and c&, respectively. The co-
ordinates A.,', , and the eigenvalues
E,"+' are determined by machine as a function of
the parameters fg" and J + at each iteration. Our
choice for cz+ and e& yield E,"+' & E "+'; we ob-
serve that no first excited state of one space lies
below the ground state of the other so that these
E++' and E "+' levels are always the two lowest
levels of the whole spectrum of H &"~.

We then introduce a new set of spin operators
Sz

"+' attached to each block j, the eigenstates of
Sf("+') being precisely [+&"+') and ~- &("+'. Kp") is
rewritten in the new spin representation as

ff (n) I (n+1)g«(n+1)+ & (E(n+1) +E(n+1) )f(n+I)i 9 2 +

with

II (n) g (n) ~ 8'n(n) gx(n) I (n) ~ g« (n)
f~p jp p+j. ~ j p

p= j.~ "~&s-X p= j. pn n n p ng

gx{n) + y+ {n) g {n)
wp f jpn- ~ n p-6p p ~:~ ~ p fpg 6y p ~ ~ ~ .p 6p) ~ ~ ~ Q 6'g

S S

(12)

and where Hz"&„ is the interblock interaction:

H{ ) g(n)g (n) Sd) (7+j. &~s &+

First, we solveH&" exactly in the space 6g of
dimensionality 2"«generated by the basis vectors
[e„e„.. . , ep, . . . , e„},where ep takes the value
+1 or -1 corresponding to the eigenstates of S&{~

The quantities g", functions of pi(" and J'(n), can
be evaluated at each iteration; for symmetry rea-
sons, we observe that t'~" ~, = Pp(n and especially

The relation (11) allows us to rewrite
the interblock Hamiltonian H&"~J+„ in terms of the
new spins

H {n) g {n+j.)$x{n+3.)gx{n+x)
deS+& /+I
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with

J' (n+1) —(~n(n))nJ(n) (14)

Then, inserting (9) and (13) into (5) we recover
the same form (3) at iteration n+ 1 with the new
constant:

g(n+&) n g(n) + 1 (E (n+1) +E (n+z))
S 2 +

The recursion relations (10), (14), (15), along
with the initial condition (4), define a renormal-
ization-group transformation. The parameter
@ "~ provides information on the splitting of the
two lowest levels of the system and Eq. (15) may
be used to find the absolute value of the energy
per site Eo/N of the ground state in the limit N
through the relation

0.75—

0n5

0.25—

III. FIXED POINTS OF THE RENORMALIZATION-GROUP
TRANSFORMATION AND DETERMINATION OF THE

LOWEST-ENERGY LEVELS (GROUND-STATE ENERGY
AND ENERGY GAP)

We have done the calculation for n, =2, 3, 4, 5, 6,
7. The general features of the transition already
described in the simplest case n, =2' are recov-
ered:

(i) for h/J smaller than a critical value (h/J)„
h"-0 while J "-J"g 0 when n-~, so that the
ground state is a doublet. The renormalization-
group trajectory converges to a fixed point cor-
responding to a simple Ising chain (without applied
field) with a coupling constant equal to J".

(ii) For h/J greater than (h/J')„when n ~ hi")

Q"g 0 while J " —0 so that the ground state is
a singlet separated by a gap 6 =2k" from the first
excited states. The renormalization-group trajec-
tory converges to a fixed point corresponding to
a chain of independent spins with an applied field
in the z direction equal to h".

In the one-parameter space h/J', (h/J), is an
unstable fixed point separating two stable fixed
points h/J =0 and h/J =~. In the two parameters

spaces',

J. there are two fixed lines'=0 and J =0
corresponding to the two fixed-point Hamiltonians.
(In fact the apparent marginality of these fixed
lines is only due to the fact that h/J is the true
physical parameter, it follows then that h "/J' and
J"/J are only functions of h/J. ) Figure 1 gives
the plot of J"/J (below the transition) and h"/J
(above the transition) as a function of h/J. We
observe that h"/J =b, /2J becomes more and more
linear when n, increases and follows fairly well
the exact relation'

6 =2(h-J)

represented by the dashed line in Fig. 1. This has

1.5

FIG. 1. Plot of ~"/~ (below the transition) and A'"/~

(above the transition) as a furiction of &/~ for different
&& values. The exact results are represented by the
dashed curve.

been made more precise by extracting the critical
exponent s for the gap defined just above the tran-
sition by

The results for s are given in Table I. We ob-
serve that s increases and tends slowly to one
when n, increases.

We observe also that J "/J becomes close to the
parabolic relation

J"=J[I —(h/J)'] (19)

which is represented by the dashed curve in Fig. 1.
This result will be explained at the end of the pa-
per when we establish the link between J"/J and
the end-to-end x-x correlation function. ' The lo-
cation of the transition (h/J), tends to the exact
value (h/J), =1, when I, increases, as shown in

Table I.
We have calculated also the ground-state energy

per site Eo/N and we have plotted, in Fig. 2, its
second derivative with respect to the field, which
represents the g magnetic susceptibility y,
=s(O~S'~0)/sh, as a function of h/J. The logarith-
mic divergence which appears at the transition in
the exact results (dashed curve) becomes quite
well reproduced in our calculation for large n,
values. This is a real improvement over the sim-
plest case n, =2 where there is no peak but only
a change of slope at the transition. The same
kind of improvement was obtained by Drell et al. '
with their variational renormalization-group
method.
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(22)

p
P9

I

h/J
l

plot of- 82/Bh2 E
1.2 1.3

The exact result is represented by
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Relations (21a) and (21b) can be used to obtain

(p) gv(0) gy(1) . .~y(n &)-(p(n))
Pp Pj Pn-y

(Sg) Z O,n-l + ps(0) ~s(1). . .(t(tl l)(St(n))
i Ppy ~ ~ ~ ~ Pn 1 Pp Pn

(24a)

(24b)

where for. m &n we define

Zn, fn g(n) + ga(n)ge(n+1) + ~, , + gg(n)
P ~ ~ - P Pn P P P

x (z(el.l). . .gs(m-1)gg(m) (25)
Pn+j. P & Pm

If n is sufficiently large, the Hamiltonian goes
to a fixed-point Hamiltonian described in Sec. III:

(i) For h/J& (lg/J), we obtain the Ising chain in
the x direction, thus (S ~" ) =+ 1 while (S' +) =(S' "~)

=0. In principle we cannot distinguish between
(+) or (-) for (S*f"~)since there is no applied
field in the x direction. '

(ii) For h/J& (h/J), we obtain the free-spin chain
in a positive z field, thus (S" ") =(S'I"~) =0 while
(Sg(n)) —+ 1

In addition, since ZP', ,"..'P, must converge when
n- ~, the cumulative infinite product g&

o
g&

'
tends to zero when g- ~.

Pn
In conclusion

values of g, are more interesting to evaluate p,„
and p, , due to the peculiar situation of the site
—,
'

(n, +1) just on the middle of the block.
These quantities have been evaluated through

our recursion scheme. p„and p, , are plotted as
a function of k/J in Fig 3(.a) and 3(b) for n, =2, 3, 5.
The exact results' for the magnetization are rep-
resented by the dashed curves. Also, in inset of
Fig. 3(b) we compare for n, = 5 the calculation of

p, by formula (30) and by taking the first deriva-
tive of the approximate ground-state energy per
site: —8(E,/N)/sly. This second procedure is
less accurate.

0.75—

0.5-

l im g &g '~. .pt"~ fork/J& (h/J) (26a)
Sx)

0 for a/J& (yg/J), (26b)

(P,') =0 everywhere, (27)

(26)

=lim P&'& P ' ~ P " when h/J& (h/J)„,

(Sf) = lim Z~o ~"
~ everywhere .

n~~
In these formulas the result depends on the set

of the p„.. . ,p„values and thus on the location of
the spin S,. in the original chain. This dependence
is an artifact of our approximate renormalization-
group method. It is due to the way the division in
blocks is made. In the renormalization procedure
described in Sec. II, the spins at the edges of a
block are not correctly included in the new approx-
imate ground state. Thus we would make an error
by taking the p& equal or close to the values 1 or
n, . The best way to estimate the magnetization
components is then to consider, at each step, a
spin in the middle (or close to the middle, if n,
is even) of the block. So we expect that the x and

z magnetization components p,„and p, , are well
represented by the following quantities:

0.25—

st Ii

0.75

0.5

0.25

I

0.5

I

I

I

I

I

I5 3 2
I

I

I

I

I

1.

h J

(b)

I

2,

(29)

(30)=lcm Zp'"p ...pp0 0 0

where p, is always the same and is —,
' (n, +1) for

n, odd and ,' n, (or the —symmetrical value 2 n, +1)
for n, even. One can understand that the odd

0.5 1.5
I

2.

FIG. 3. Plot of the & component (a) and ~ component
(b) of the magnetization as a function of &/~ for &&

= 2, 3, 5. The exact results are represented by the
dashed curves. In inset of (b) is shown for +,= 5 the
results for -~/~&(E0/Q.
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In the case of the x component the results can
be made quantitatively precise by extracting the
critical exponent P defined just below the transi-
tion by

( „-[(a/J). -a/J ]'.
The results for P are reported in Table I. We
recall that the exact result is J3 =0.125.' The bad
value P =0.40 obtained for n, =2 is already greatly
improved by considering blocks of three sites.
Also, we can see that increasing n, by 1 from an
odd value does not improve P. This confirms the
advantage of taking n, odd to calculate the magne-
tization. For n, = 7 we obtain P =0.145 (15 /0 error)
which is remarkably near the exact value.

In Table I we compare the results for P with the
results for the "wrong" exponent P*, P* being
the critical exponent of the cumulative product
taken always at the block edges:

(e'", . ",e'"))- [(IIJ).-I/Jl'
fl ~oo

(32) .

Note that, through relation (14), this product is the
square root of J"/J. Thus P* is also the half of
the critical exponent for J"/J'.

g
n (n) (

+n. (n) + - n (n))fx
P P' 2 9PP' ~ PP'

~n. (n) (
+n(n) -~(n))-1

PP' 2 PP' PP'

(34a)

(34b)

and

~~(n) &~(&)~ PP 6 f ~ ~ ~ f6'P f 6'Pi f ~ ~ ~ f6~S

x y'(")
Gj f ~ ~ ~ f~6P f fPi f ~ ~ ~ fuff S

&3)(n) — ~ ~ ~, y&(n)
~PP ~ P P . Cgf ~ ~ ~ ~ 'EPffPif n ~ ~ f&N~

x g'(
fg f n n n f-6p f-Cps'f n ~ ~ f6tfS

(35a)

(35b)

V. CORRELATION FUNCTIONS
I

Let us consider now the x-x, y-y, and z-z cor-
relation functions given by (OiS", S( i 0), (OiS& Sn

i 0),
(OiS( S i0). At the beginning we can transform the
spins S, and S, with the recursion relations (11),
(21a), and (2lb) but at a given step, which depends
on the distance between the spins and the way the
blocks are defined, we obtain two spins in the
same block and we can no longer use (11), (21a),
and (21b). Thus, at a given step n, we need to
express the product operators S&(f)S&(f) (n =x, y, z)
where P and p' are two different sites of a block

j as a function of the spin operators S&
"" of the

block.
We obtain

S&(n)S+(n), —gnt(n)f(n+1) + nnt (n)Sn(n+1)+~pp

with

g pp ~ CpCp i j''' ' p' p '''''~~si (35c)

In the case of the short-range correlation func-
tions the relation (33) has to be applied at the be-
ginning and we obtain

p„(1)=(S S" )=g"(), +g "(),lim Z'"
n~~

(36)

The best way to calculate these quantities is to
choose p =P, and p, =p, = ~ ~ =p„=p„where p,
=f (n, +1) for n, odd and pa =f n, for n, even. Here,
the most interesting situation is given for even
values of n, where p, and p, +1 take the symmetri-
cal values —', n, and ~n, +l.

The results for p„(1),p, (1),p, (1) are reported in

Figs. 4(a)-4(c) for n, =2, 4, 6 and compared with
the exact results of Ref. 6.'

Let us consider now the case where the spins
S& and S& are situated in two different adjacent
superblocks j and j +1 represented after n itera-
tions by the two adjacent spins S&" and S&"+,. We
obtain

(Sx Sx ) (gn(0). .. (n(n -1))((nf0). . .gn( 1n))
P() Pff- y Po P

X (g*(n), + $n(n) lim Zn+1, m „) (37)pgf pn pnf pn ~~ pg+zf ~ ~ ~ f pm'

A similar expression is obtained for (P,'P,') by
changing x into y. An expression much more
complicated and not reproduced here can also be
obtained for (S( Sf )

On this forroula we see that we obtain the same
result if 8& has a given place in the superblock j
or the symmetrical place with respect to the cen-
ter of the block. This pseudoperiodicity of the
correlation functions is again an artifact of the
method. The best choice is to consider S, and S, f

at the centers, or near the ct,nters of the two ad-
jacent superblocks and by taking then p, =. p„,
n, even, —,'(n, +I) for n, odd and p„' =P„+I with
p„=n, for ff, even and —,'(n, +1) for n, odd. The dis-
tance between the two spins is then R =n,". This
situation is sketched for n, =4 and n, =2 in Fig. 5.
Thus the method gives a good approximation for
the correlation functions p„(R) (n =x, y, z) for dis-
tances R =1,n„n,', . . . , n,", etc. Note that when
n- ~ the above formula and the corresponding
formulas for y and z give the square of the cor-
responding magnetization component as it is ex-
pected for long-range correlation functions. We
have reported in the case n, =6 the results for
p„(I~),p„(&),p, (&), as a function of log B =@logn,
ftor two values of If/J just below and just above the
ilransition (Fig. 6).

From exact results" and scaling arguments

p„,p„, and p, must behave when lf/J is close to
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iteration
number

superblock j superblock j+$

0.75

0.5

p-3

0.25

0.5
I I

1.5

hjJ
I

2.

FIG. 5. Sketch of the calculation of p (16) in the case
+g =4, ~.= 2, The thick lines show the spin recursions
used.

- 0.25—

we choose for instance h/Z& (h/Z),
ewg

F„(u)-,p4, u- ~,
Q

(41)

z (t}
tC

F (u)-,~„u-
Q

(42)

0.75—

F,(u)-e "(1+u '), u-~,
for u- o,

F,(u) =E,(u) =E,(u) =1.

(43)

(44)

0.5—

0,25—

0.5 1.5

(h/J), like

p„=(J„'+(s„/R~)F„(R/R,),
p„= (~,/R")F„(R/R.},
p, = p, 2+ (g,/R "~)F,(R/R, ),

(29)

(40)

where R, is the correlation length and varies like
[h/J —(h/J)cj "andwhereq, =-,', g„=-,', 7},=2 and if

FIG. 4, Plot of the short-range correlation functions
P& 0) (a), P& (&) (b), Pz (&) (c) as a function of Ig/~ for +,
=2,4, 6. The exact results are represented by the dashed
cuFves

(iimgx(o) ]x(x&. . .]x(n))2 J /J (45)

a„,a„,a, are adequate constants.
For comparison we have plotted log(p„—p,,') as

a function of logR in Fig. 7 (for n, =5) for h/J'

values near (h/J'), . We observe a linear behavior
for not too large R and a departure from this linear
behavior for R & R„where 8, is a measure of the
correlation length. When h. goes to jg„R, becomes
larger and the linear region (the power-law be-
havior for p„,p„p,) increases and thus q„can be
measured and is equal to 0.30 which is near the
exact value 0.25. The same has been done for
p„and p, and the values of g„,g„q, are tabulated
in Table I for n, =2, 3, 4, 5, 6, 7. %e shall discuss
these results in more detail in Sec. VI.

The scaling law for p„has been checked. %e
have plotted in Fig. 8 logF„as a function of
log(R/R, ) for various values of h/J' and all the
points fal.l on the same curve. %e should mention
that F(R/R, ) is not the same function for h/J
& (h/J'), and for h/J & (h/J), . We did not check the
function F„(u) versus the predicted theoretical
form given by E(l. (41).

%e want to mention here that the end-to-end g-g
correlation function for the infinite chain is given
by
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0.5 0.5

0.25 36
377

0,25

FIG. 6, Plot of the cor-
relation functions p~(&),
p, (~), p, (~) as a function
of log~ for +,=6 and two
values of &/~ just beloved

and just above the transi-
tion,

0.
log 6

{R)
0.

log R

-0.25— il
—0.25—

The results for the end-to-end correlation func-
tion are completely different (due to edge effects)
from those for the "bulk" long-range correlation
function given by the square of the magnetization.
The exact result' for p« is p« =1 —(h/J)' which
is the parabola reported by the dashed curve in
Fig. 1. We observe that p« =Z "/J tends to the
exact value when n, increases and at the same
time P* tends (very slowly) to 0.5 (Table I).

and by simple scaling arguments we extract

(48)

&~ ~o9 (Px(R)- P x )
2

For n, =2, p can be obtained by hand. For larger
values of n, the determination of p is done with
the help of the computer. The values of p are

VI. CRITICAL BEHAVIOR

As first suggested" and then proved", there is
a rigorous equivalence of the ground-state sing-
ularities of the one-dimensional Ising model in a.
transverse field. to the singularities of the two-
dimensional Ising model. The critical behavior of
the Ising model in a transverse field close to the
critical field (h/J'), is strictly equivalent to the
critical behavior of the Ising model in two dimen-,
sions", close to T,. We shall first discuss the
"thermal exponents" z, p, and s and later the .

"magnetic" exponents, . li, q„, q„and q, .
The exponent p tells how the correlation length

A, diverges

(46)

It could be obtained from the analysis of p„(R)
close to the critical field but a simpler and more
elegant way is to extract p directly from the re-
cursion relations (10) and (14) which give the re-
cursion relation for h(")/J' "&. This recursion re-
lation can be linearized for h("&/j" close to the
fixed point (h/Z), to give

0

0

0

log 6
I

log R
I

= 1.06377

(47) FIG. 7. Plot of log [P„(&)—P,ml as a function of log&OR
for &&= 6 and various values of ~/~ near the transition.
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h/J

~ 1.0634
o 1.0635
~ 1.0636
o 1.0637

0. log 6
I

IE )pg F

lk Ipg Fx
10

log("/Rc )

Z' =s.'Z(t' = t/n, ')
where,

g(n+ j.} g{n+1)

s g(n) I (n)

(49)

(50)

at the fixed point h/J' = (8/J), .
The value of z is obtained by hand for n, =2 and

with the help of the computer for larger values
of n, . The values of z for n, = 2, . . . , 7 are shown
in table I. pz and s should satisfy the scaling law

forming blocks of spins and reducing the length
by a factor of n, we have also, if we want to stay
in the one parameter space lg/J, to impose a dila-
tation of energy or reduction of time so that the
Hamiltonian H(gg/Z)~') has the same energy levels
as H((a/Z)"). Then

h/J

~ 1.0638

o 1.0639
~ 1.0640
a 1.0641

0 log 6
I

0 ~

log( R/R, )

FIG. 8. Plot of the logarithm of the function +& defined
by relation (38) as the function of log{~/~&) for &s= 6 and
various values of &/~ below the transition (top of figure)
and above the transition (bottom).

shown in Table I. p is larger than 1 (v =1.16 for
n, ='7 while the exact value is v =1).

The exponent z is a dynamical exponent related
to time or energy. When the critical field is
approached, the correlation length R, but al.so the
characteristic time v diverges (the gap b. goes to
zero) and 7- 6 '-R;. In the renormalization-
group transformation the length is changed by a
factor n„ I' =I/n„and the time is changed by a
factor of n,', t' = t/n,'. z =1 (exact result) means
that the time has the same dimension as the space.
This exponent z is important as it governs the
dynamical critical behavior and the effect of temp-
erature (the temperature effects can no more be
neglected when kT&[h/j —(0/j), ]~, where the
crossover exponent p is equal to the product vzj."
The exponent z can be obtained from the re-
cursion relations at the fixed point. In the re-
normalization-group transformation by forming
blocks of spins and reducing the length by a
factor of n, we have also, if we want to stay
from the recursion relations at the fixed point.
In the renormalization-group transformation by

s =pz. (51)

g„=2P/v,

q, =2(1+z —I/v),

fj g» +2z ~

(52)

(53)

(54)

The values of pz are shown in Table I and the
scaling law (51) is well satisfied (a sort of self-
consistent test of the calculations).

The values of v and z obtained by this method
are not very good. Even with n, = 7 the value of
v is 15% larger than the exact one and z is 15%
lower. The critical field is 5% too large. ' This
means that the energy is not rescaled correctly
and the first excited level and thus the gap 6 is
not represented accurately. This is due to the
fact that higher excited states are neglected in the
iteration scheme. In the method developed by
Friedman" and Subarrao" all the levels are re-
tained and effective Pauli spin operators are in-
troduced at each step. They get then better re-
sults (with n, =3 from first-order perturbation
theory they" get (h/Z), =1.01 and v =1.13; z or s
were not determined). We shall see however that
our approach is much better to describe the ground
state and get the "magnetic" exponents P, q„.. . .
The values of v and z plotted versus I/v n, con-
verge towards the exact values p =z =1.

The "magnetic exponents" P, q„g„,q, have been
. obtained from direct calculations through the re-
normalization group recursion relations of

p„,p„,p„,p, by choosing adequately the sites on
the chain to minimize the edge effects of the block
partitioning of the method. These values, reported
in Table I, are not too far from the exact ones;
p, q„and q, tend to the exact values linearly as a
function of I/n, with some oscillation due to the
effect of the parity of n, . For q„(which is related
to q„ through z) the dependence is linear in I/Mn, .
The exponents should satisfy the scaling laws
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The bvo first equalities can be easily recovered.
The third one is obtained as follows: At the fixed
point h/J = (h/J), the Hamiltonian

If =—QS)S~ ++Sf
J

(55)

is invariant but the energies are rescaled E'
=n,'E(t' =n, 'f). Sf is related to S*,.

S; =fe, S",1=—,', [S",(f)], , (56)

Thus if d„ is the dimension of S*, (S", t~'~ =n"&S"~"& ~

2d„=q„) then from (56) d„=d„+z and thus Eg. (54)
is obtained. The two relations (52) and (54) for
g„and g, are satisfied as shown in Table I. The
relation (52) for q, is not satisfied (this apparent
inconsistency is due to the fact that v and z are
related to a global calculation as q, has been ob-
tained from the dimension of S& at special site i
far from the block edges). As for v and z it is
possible and more easy (if we only want to extract
critical indices) to calculate p, q„,q„,q, by first
extracting at the fixed point the dimensions d„, d„,
d, of the operators S"„S~&, S; at the well-chosen
site i. These dimensions are defined by the re-
lations:

S~(n+i) n~+ S~(n)
s

where

n&a —((&(n) )-&
s

(5V)

(58)

VII. CONCLUSION

We have presented here an example of applica-
tion of a renormalization-group method for quan-

with p =—,'n, [or 2(n, +1) if n, is odd]. At the fixed
point h/J = (h/J), g ~I" is independent of n. From
renormalization-group arguments it then follows

(59)

The values of d„,d„,d, are reported in Table I and
the Eq. (59) is satisfied within a few percent.

Our method gives better results for these "mag-
netic" critical exponents than for the "thermal"
exponent. Already for n, =3 the value 0.18 ob-
tained for P is better than the value 0.21 obtained
by Drell et al.' by use of a sophisticated "varia-
tional *' renormalization-group method. Further-
more, the "thermal" exponents are easily im-
proved: as shown earlier, ' for n, =2 and keeping
four levels at each iteration, one already obtains
the result s =1.

turn spin systems (we have chosen the transverse
field Ising model because it is the simplest quan-
tum nontrivial system and because in one dimen-
sion almost everything is known exactly). Physi-
cal quantities such as magnetization components
p, ~, correlation functions p~, ground state, and

gap energies can be evaluated at T =0. The crit-
ical field (h/J), can be obtained and the critical
behavior in the vicinity of (h/J), can be studied.
The critical exponents (three of which v, z, q, are
fundamental) can be extracted either from the
analysis- of the various quantities close to the
critical field or directly through the analysis of
the renormalization-group recursion relations
near and at the fixed point.

The main conclusion is that taking blocks of two
spins in the recursion method gives poor results
since edge effects cannot be avoided. Considering
blocks of three spins gives significantly improved
results. The values of the exponents converge
towards exact values when n, increases. The
method is especially good to obtain the ground
state, and the "magnetic" exponents are well ex-
tracted in contrast to the method of Friedman and
Subarrao where on the contrary the "thermal"
exponents but not the "magnetic" exponents are
correctly obtained. (The "thermal" exponents are
related to the structure of the excited levels, the
"magnetic" exponents are related to singularities
in the ground-state properties).

These results are encouraging and the following
program is in progress: We shall (i) improve the
calculation for the Kondo-lattice-model Hamil-
tonian' by considering blocks of three spins; (ii)
extend the method to the study of time dependent
correlation functions and finite temperature ef-
fects, by retaining much more low-lying states;
(iii) extend the method to other quantum systems
(the study of the anisotropic X-F model in a field
is actually done); (iv) extend the method to higher
dimensionalities (the transverse Ising model in
two dimensions is actually studied); and (v) ex-
tend the method to include disorder effects.

ACKNOWLEDGMENTS

Work at Brookhaven was supported in part by
the Division of Basic Energy Sciences, U.S. De-
partment of Energy, under Contract No. EY-76-
C-02-0016. cwork at Stanford was partly supported
by the U. S. Army Research Office, Durham, N. C.



R. JULLIKX, P. PFEUTY, J. N. FIELDS, AND, S. DONIACH

*Laboratoire associe au CNBS.
~S. Jafarey, B. Pearson, D. J.Scalapino, and B.Stoeckley

(unpub1ished).
S.D. Drell, M. Weinstein, and S. Yankielovicz, Phys.
Bev. D 14, 487 (1976).

3R. Jullien, J.N. Fields, and S.Doniach, Phys. Bev.
Lett. 38, 1500 (1977); Phys. Bev. B 16, 4889 (1977).

4B. C. Brower, F. Kuttner, M. Kauenberg, and K. Sub-
barao, Phys. Rev. Lett. 38, 1231 (1977).

5K. 0.Wilson, Bev. Mod. Phys. 47, 773 (1975).
6P. Pfeuty, Ann. .Phys. 57, 79 (1970).
J is simply related by 523

——2J to the gap between the
ground-state doublet and the following excited states
when the fixed point is reached. In fact, one cannot
trust the results of the method for the third and fol-
lowing excited states since only the two lowest states
are retained at each iteration.

Note that the coordinates X',,...«have not a definite
sign. This yields, through formula (12), an indeter-
mination for the sign of (S"). Onthe contrary we can

see on formula (23) that the sign of 5 ) is unambig-
uous,

We found that the results reyorted for P~ (1) in Ref. 6
were approximate: in fact —p„(1) goes through a max-
imum after the transition and does not show a peaked.
maximum at the transition, The dashed curves of
Figs. 4 (a)-4(c) have been computed precisely by ma-
chine using the exact formulas of Ref. 6.
E.BarouchandB. M. McCoy, Phys. Bev. A 3, 786 (1971).
R. J. Elliott, P.Pfeuty, and C. Wood, Phys. Bev. Lett.
25, 443 (1970).

~ M. Suzuki, Prog. Theor. Phys. 46, 1337 (1971),
This model first solved by Onsager has led in the 1ast
twenty years to further developements well summarized
in the book by B.M. McCoy and T. T. Wu, The Two
Dimensional Ising Model {Harvard University Press,
Cambridge, Mass „1973),

~4P. Pfeuty, J. Phys. C 9, 3993 (1976).
Z. Friedman, Phys. Rev. Lett. 36, 1326 (1976).
K. Subbarao, Phys. Bev. Lett. 37', 1712 (1976).


