
PHYSICAL REVIE% B VOLUME 18, NUMBER 7 1 OCTOBER 1978

Phase diagrams and mnlticritical points in randomly nnxed magnets. I. Mixed anigotropiese
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The critical behavior of a quenched random alloy of two materials with competing anisotropies is studied by
renormalization-group techniques. Averaging over the random variables yields a translationally invariant

effective Hamiltonian, in which the m-component spin is replaced by a nm-component spin vector and the

limit n ~0 is taken at the end of the calculation. The only physical stable fixed point is "decoupled, "
leading to a Hamiltonian which separates into two parts, each depending on m& or m2 ——m —m& spin

components only, asymptotically close to criticality. This leads to breakdown of standard scaling in the

vicinity of the multicritical point. The resulting phase diagram exhibits two critical lines, corresponding to
ordering of only nt, (or m2) spin components, intersecting at an angle at a tetracritical point. The phases

where only m, or m, components order are separated by an intermediate phase, where all components order.
The efFectof corrections to scaling on the shape of the critical lines in the vicinity of the tetracritical point is

examined. Experiments on rare-earth alloys and layered materials are discussed.

I. INTRODUCTION

Many physical systems exhibit critical behavior
which depends on the interpj, ay of more than one
order parameter (or the different components of a
multicomponent order parameter). A well-studied
example is that of a uniaxially anisotropic anti-
ferromagnet in a uniform magnetic field, in which
the spins may order antiferromagnetically parallel
to the field (at low fields) or transverse to the field
(at high fields). ' A second example is that of the
structural displacive phase transitions in stressed
perovskite crystals, where the direction of the
rotations of the atomic octahedra depends on the
external uniaxial stress. '" Recent renormaliza-
tion-group calculations, following earIier mean-
field theory studies, show that these, and many
other examples of competing order pw ameters, '
exhibit phase diagrams like those shown in Fig. 1.
The parameter g in this figure denotes the addi-
tional external variable, e.g. , the magnetic field
in the antiferromagnet or the uniaxial stress in the
perovskites. Depending on details of the system,
the phase diagram exhibits a bicxitical point and
a first-order "flop" line [Fig l(a)] or a tetxa-
cxitical Point and a nzixed inte~ediatePhase
[Fig. 1(b)] . Note that calculations of these phase
diagrams predict that the second-order lines ap-
proach the multicritical point tangential to each
other. '

In the present series of papers we consider a
special type of such phase diagrams, i.e. , that of
random ql,enched alloys of materials, in which
each component has a different order parameter.
The variable g thus represents the relative con-
centration of the components in the alloy p. Clear-
ly, there exists a large variety of such alloys. One
can mix components which have different types of
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FIG. 1. Schematic pos-
sible phase diagrams for
systems with two com-
peting order parameters.
Qne of these order para-
meters orders in phase
I (or IQ, while both order
simultaneously in the
"mixed" phase. (a) Phases
I and II are separated by a
first-order "Qop" line,
ending at a bicritical point.
(b) There exists a "mixed"
phase, and the four second-
order lines meet at a tet-
racritical point.

(b)

magnetic ordering (e.g. , ferromagnetic and anti-
ferromagnetic), like Fe(Pd&Pt, &)„4 (Mn, &Fe&)WOs, s

or UAs~Se, ~,
' different types of structural order-

ing, like NH4Cl, ~Br~,
' different easy axes, like

K,MnsFe, sF„s different helical orderings, ' etc.
One can also consider introducing completely dif-
ferent order parameters, such as magnetic ions
embedded in superconductors, "etc. Unlike the
examples mentioned earlier, most alloys seem
to exhibit a tetractitical (and not a bicritical)
point.""The shapes of these observed phase
diagrams are quite different from those predicted
for nonrandom systems. In particular, they do
not exhibit the tangential approach of the second-
order lines to the tetracritical point. ' It is our
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aim to understand these differences, and to clas-
sify the possible phase diagrams for such alloys.

In the present paper we consider a mixture of
ions with eomPeting sPin anisotzoPies. If the spin
space is rn dimensional, then one component of the
mixture tends to align the first m, spin compo-
nents, while the other tends to align the remaining
(perpendicular) m, (=m —m, } components. " The
same theory is expected to apply to many other
mixtures, in which the interdependence of the two
order parameters is not too strong, e.g. , a mix-
ture of materials undergoing ferromagnetic and
ferroelectric transitions. Mixtures of ions which
have antiferromagnetic orderings with different
periodicities (or ferromagnetic and antiferromag-
netic orderings) will be treated in the second paper
in this. series. It turns out, that the fact that both
order parameters in that case derive from the
same basic spins affects the analysis, and usually
does not allow a stable multicritical fixed point
(see also Sec. VI).

The nature of phase transitions in quenched
disordered systems with a single order parameter
has been the subject of several recent renormal-
ization-group studies. "" The lack of transla-
tional invariance means that one should either
construct recursion relations for the distribution
function of the random variables, "or derive an
effective translationally invariant Hamiltonian
which will yield the same free-energy density. '3""
In the present paper we follow the latter approach,
i.e., the "n-0 replica trick." The main conclusion
of these studies was that the random system still
exhibits a sharp transition. The critical exponents
at this transition are the same as those of the pure
system if its specific-heat exponent n,„„is nega-
tive" (i.e., for XI' or Heisenberg systems at tf =3),
IRnd have new, "random" values if Q.,„„is posi-
t.ive." These new exponents deviate from mean-
field values at order s = 4-d (d is the dimension-
ality of the system) for m-. component order pa-
rameters with m & 1,""'and at order f lf vl
=1." The exponents do not depend on the concen-
tration of impurities. In the present papers we
generalize these results to competing order pa-
rameters. "

As we reported earlier, " the main result of our
analysis of the phase diagram of the alloy with
competing anisotropies is shown in Fig. 2. The
tetracritical point is "decoupled, " i.e., each order
parameter undergoes its own transition even when
the two transitions occur simultaneously. Such
decoupled behavior was previously predicted only
for unphysically high values of the number of spin
components, rn. ' '" In our earlier report we con-
centrated on discussing the stability of this "de-
coupled" fixed point. In the present paper we give

ent
n
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FIG. 2. Schematic phase diagram for an alloy with
competing anisotropies. The tetracritical point is
described by a "decoupled" fixed point. Phase I (IE)
denotes ordering of the m&- (m2-) component vector
Sq (S2}. IT=D (/= 0) is a measure of the average aniso-
tropy [see discussion following Eq. (2.10)J.

all the details of the calculation and describe the
complete renormalization- group analysis. The ef-
fective translationally invariant Hamiltonian is
derived in Sec. II for bond randomness. Site ran-
domness is considered in Appendix A. The recur-
sion relations, fixed points, and stability expo-
nents are obtained in Secs. IQ and IV. Some of
the numerical calculations involved are described
in Appendix B, and and a specific stability expo-
nent, which can be calculated generally, is dis-
cussed in Appendix C. The resulting shape of the
phase diagram is described in Sec V, with details
of the corrections t:o scaling given in Appendix D.
In Sec. VI we discuss experimental and further
theoretical consequences of the results.

II. HAMILTONIAN

The Hamiltonian of anisotropic spin systems may
be written in the form

J&Si S j +Dz m, 'S, i S, j

where 5(i) =—(S,(i); S,(i)) is an m-component spin
vector at the site i of a d-dimensional lattice, Sy

and S, are m, —and m, -component parts of S
(m, +m, =m}, J,&

is an isotropic exchange coupling,
while D,&

introduces an anisotropy aligning the
spins in the 5, (D,&)0) or the S, (D,&

(0) sub-
spaces.
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If J,&
and D,~ are uniform in space, then one ex-

pects a crossover from the isotropic m-component
critical behavior to that of m, components or m2
components as function of D.' This was the basis
of the calculations leading to the phase diagrams in
Fig. 1.' ' In the case of interest here, J,&

and D,~

are random variables, characterized by a distribu-
tion P(jJ(&,D&z)). Denoting their averages by J(&
and D(&, we shall assume that ID(&/Z (&I & 1, so
that each component orders ferromagnetically (or
antif erromagnetically) for all concentrations.

The distribution P((J(~, D(~)) may arise from
many sources. In the case of bond randomness,
it is usually assumed that each bond (ij) has its
own distribution function,

Z = Tr exp( —X/kT)

d »»)o (i} »z~ (2.4)

[d 'S(z)e z(f"'»] e zz (2.3)

where k is the Boltzmann constant and T is the
temperature. Instead of calculating the free ener-
gy F =- kT lnZ, and then averaging over the dis-
tribution (2.2),"we now replace lnZ by (Z"- 1)/n,
average, perform calculations for finite n, and
then take the limit n -0."" Considering Z"
amounts to replacing each m-component spin vec-
tor S(i) by an nm-component vector o(i}
-=(S'(z), . . . , S "(z)), and

P((~(g, D(g)) =, .I P(~(g&D(g), (2.2)

and that each. bond is independent of all other
bonds. This may occur for superexchange interac-
tions, mediated by different impurities, or for
amorphous systems, where the distances x,&

are
random. In the case of site randomness, J,&

and

D,&
depend on the identity of the ions at the sites. i

and j, and P((J &(,
D &() }results from the distribu-

tion of site occupancy. We consider this case in
more detail in Appendix A.

As usual in renormalization-group studies, ""'"
we next consider a continuous spin model, in which
the spin 5(i) has a weight function e Zs("», with

&C((Z„&)„;S (,i))) "g, .
) ))o~ 1 i

(2.5)
We next write

X({Jo,D,~, S (i)) ) =X({J,~, D,~, S'(i)) )
+ X((~(g, b D(g, S~(i))), (2.6)

where b,J,&
=J&& —J,&, &D,

&
=D&&- D,&, expand the

exponential in (2.4) in powers of hZ(& and nD(&,
average over the distribution (2.2}, and then ex-
ponentiate again. Finally, the configurational
average [Z"] becomes

zU(5(i)) = z I&(i) I'+v, Is(') I'+ ~ ~ ~

The partition function is

[Z"].„=f d""rr(&)e""',

with

(2.V)

K„,=-g K((J~, D~, S".(()) ) + P w(S"(')))
e~& kT

+g g g [A",„,S,"(z) S,"(j)Se(k) Se(f}
&&j& &kl) e g

+ 2A', »,S, (i) ~ S, (j)S, (k) ~ S()(f) +A",~„s,(i) ~ S, (j}S()(k}.S(((l) + ~ ~ ~, (2.8)

A'(z»( = [(aJ(~+aD(~/m, )

x(dZ» —b D„(m/, )],„ 2/(kT)',
(2 9)

x(~g„, (»D„/m )] /2(kT}

where the dots represent higher-order terms and

[(~Z(&+ ED(g/m
»

x ((»Z„+aD„/m, }],„/2(ks}',

By the assumption (2.2), [EJ(&dJ'»],„e0 only if
(ij)= (kl) . Our results also remain valid if these
correlations have a finite range. With (2.2), A'(z&((

and A', 2&,
&

are positive.
We now follow the usual renormalization group

routine. '""'z We Fourier transform o(i) into
o( q), rewrite E(l. (2.8) as an expansion in powers
of the components of o'(q}, expand the coefficients
in powers of the momenta q, and rescale the spins
&,((l} and o,((l) so that the final form of X,«be
comes
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&, +Q + ~ ~ ~ 0' q .0' -q + f2+q + ~ ~ 02 q .p —q
q

u + v „~~~ q ~ S q2 S q 'S~ —qi —q —q
Qg qp 03 (g g =1 gv& 1

(2.10)

The integrals aze over the range iqi&A. The
initial values of v „are all proportional to v„
those of u„„are proportional to Z&, ~A",J,», while
the coefficients x, and x, areyropoJtional to
kT —J'(0) —D(0) /m, and k T J(0) -+ D(0)/m„where
J'(q) is the Fourier transform of J,&, etc. Varia-
tion of the temperature and of the relative con-
centration of the two components (i.e., of D(0)) is
equivalent to variation of r, and r, . When D(0))0,
one has r, (r, and S, orders first. The tetra-
critical point should occur near the point D(0}=-0
(see Fig. 2). In the following analysis we thus
concentrate on the region r, = x, .

yields, to lowest order,

r,'=b' "z(rz+4K~I(rz)[(nmz+2)u»+(m, +2)v„]

+ 4K~I(r, )(nm, u»+ m, v»}+ ~ ~ ~ ],
r,'=b' "2(r, +4K„I(r,)[(nm, +2)u»+(m, +2)v»]

+ 4K„I(r,)(nm, u»+ m, v»)+ ~ ~ ~ j,
where

K '=2" zzz"i'I'(d/2)

(3.1)

(3.2)

III. RENORMALIZATIONGROUP RECURSION RELATIONS
AND FIXED POINTS

We now perform the standard Wilson renormal-
ization-group transformation"'"'" on the Hamil-
tonian (2.9). We integrate over spins o(q) with
A/b & iqi &A, rescale all momenta by q-bq, and
rescale all spins by o„(q)-o„(bq) = g„o„(q), with
V„=b~" "~ (iz =1,2). The recursion relations are
obtained under the assumptions of Bruce et al. ,

'4

from the diagrams depicted in Fig. 3. Figure 3(a)

A qd 1 dqI(r)=, =-.'A'(I - b-') rlnb+0(ra}
ii/b ++ 0 7

and the z)„'s are calculated from Fig. 3(b),

ziz =8K~[ (nm, +2)u»+ (2m, +4)u»v»+ (m, +2)v'„

+nm, u2»+2m, u»v»+m, vm ] + ~ ~ ~

(3 3)
with g, being obtained by interchanging the indices
1 and 2. From Fig. 3(c),

ui, =b' '"z{u„—4K~lnb[(8+nm, )u'„+(4+2m, )u»v»+nm2u»+2m~u»v»]

+ 32K2~ lnb[ (6nmz+ 22}u» + (12m, + 24)u»v.„+(3m, + 6)u»v» + 2nm, u,'2 + Sm, uz2vz2

8 2 2+ 2m, u»vz2 y 3nm, uzzu„+ Sm,u»u„v»+ m, u, zv»]. + ~

v,', = b' '"z(v„—4K~ lnb[ (8+m, )v2»+ 12u»v»+ m, v»]

+ 32K', lnb [ (5nz, + 22)v,', + (12m, + 60)u„v'„+ (3nm, + 42)u'„v„+ 2m, v'„+ 4m, u„v,', + 3nm, vz, uz

+Sm, vzzu»v„+ (m, +2)vzzv'„+ 2m, uzzv'z2] + ~ ~ ~ ]' (3.4a)

ui =b~ ~z ~2(u„-—4K, lnb[4$, +(2+nm, )u„u„
+ (2+nm )u„u„+(2+ m, )v„u„+(2+ m, )v22uz, + (m,u„™,u, 2)vza] + j ~

"z "2(v„—4K Inb[4v»+Su»+2(u»+u»)+(2+mz)vzz+(2+m2)v22]vz2+ ' ' ']

with E =4- d and with the recursion relations for
u» and e„again obtained by 1—2.

We now turn to search for all the possible fixed
points of Eqs. (3.4a). In order to find solutions
with u„„and v„„oforder E, one may ignore the
g„'s in the prefactors, and the terms of third
order. However, - if m, or m, is equal to 1, then
some of these solutions go to infinity as n-O. In
these cases, one must add the higher-order terms

(a)

(c)

(b) FIG. 3. Diagrams used
in the calculation of re-
cursion relations.
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and then solutions of order a' ' are found. " In the case m, =m, =1, one needs the explicit expressions for
the cubic terms in the recursion relations for u» and v». The dots in the last two Egs. (3.4a) then represent

bu, 2
= 32K' lnb[ (n+ 4)u,'2+ (Sn+ 6)(u»+u»)u', 2+ 9(v»+ v»)u2»+ 2u2»v»+ (Sn/2+ 3)(u2»+u22, )u»

+ 9 (vqq +v2~I)u»/2 + Su»vqa + 9(uqqv» +u»v»)u»

+ 2(tP~~ +u23)v~2+ (u4~ +u»)v~2+ 4(u» +u22)u»v»]+ ~ ~ ~
~

bv„= 32K', lnb[ 5v,', + 8(u„+u»)v»+ 9(v»+ v»)v»+ 14v»u»+ (n/2+ 3)(u»+u»)v»+ 9(v,', +v„)v„/2
+ Suv u&&+ 9(u»v» +u»v22)v» + 18(v» +v»)v»u» + (2n+ 12)(u~~ +u22)» ~2] + ~ ~

(3.4b)

We first note that v~¹,=0 is a solution of (3.4).
When v12' 0 in the limit n-0, u» does not appear
in the recursion relations for u„„and v„„. Thus,
one can solve separately the recursion relations
for u„and v„and those for u» and v». The re-
cursion relations for u11 and v„, in the decoupled
case, are the same as those considered in the case
of a single order parameter. "'"'" They yield four
fixed points

Qaus sian,

u* =v* =011 11

m, -component "pure, "
u,*,=0, v,¹,--e/[4K4(m, +8)]+ ~ ~ ~

the Hamiltonian breaks into two separate parts, in-
volving only 5, or 5, . We therefore call these fixed
points decoupled.

It now remains to find the fixed points with v»
WO. This was done numerically; the procedure and
the results are described'in Appendix B. It turns
out that none of these additional fixed points has
much physical relevance. For each of the fixed
points found above, we can now solve Eqs. (3.1) for
r,* and r¹.Both are of order e (or e'~'). at the
multicritical point. For the decoupled cases, the
solutions are the same as for each order parame-
ter separately. ""

IV. FIXED-POINT STABILITY

isotropic "n =0,"
uq+~ =e/32K4+ ~ ~ ~, v~+~ =0,

"random, "
u,*, =(m, —4)e/[64K, (m, 1)] + ~ ~ ~

v,*j =e/[16K4(m, —1)] + ~ ~ ~ (m, )I)
or "Khmel'nitzkii, "

u,*, =+ (Se/106)'~'/4K4+ ~ ",
v~¹,= a (Se/106)'~'/SK4+ ~ ~ ~ (m, =1) . (3.5)

In this section we shall examine the stability of
the fixed points found in the previous section and
in Appendix B. For this purpose, we linearize
Eqs. (3.4) about the fixed points, and calculate the
stability exporients. If v,*,=0, then the matrix of
the linearized renormalization-group transforma-
tion can easily by diagonalized, because it decou-
ples into submatrices operating in the (u», v»),
(u», v»), u», and v» subspaces separately. In the

(u», v») subspace, the stability exponents about the
fixed points are" "

Similarly, there are four fixed points for u,*, and
V242

%e now turn to the recursion relation for u„
(still with v» =0). For each of the above solutions,
this has two fixed-point solutions,

or

u ~¹2 = 4 [6/4K4 —[2(u,*,+u,*,) + (2 + m, )v,*,

Gaussian,

A,1 =A.2 =E';

m, component,

x, =-e+. . . , g =(4-m, )e/(m, +8)+. . .
isotropic "n = 0, "

c+. . . , -4 = -c/2 +. . .

"random, "
+ (2+m, )v¹,]}+ ~ ~ ~ (3.6) A., = -e +. . . , A., = (m, -4)e/[4(m, —1)]+.. . ;

In total, we have thus found 32 fixed points with
v¹»=0 {counting the doub1e solution for the
Khmel'nitzkii random fixed point, in the case m,
=1 [Eq. (3.5)], only once). Of these, 16 fixed
points also have u,*,=0. At these latter fixed points,

"Khmel'ni. tzkii, "
X, = -2m+. . . A, =+4(Se/106)'~'+. . . . (4.1)

The calculation of X, for the Khmel'nitzkii fixed
point is described in Appendix C. The exponent X,
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+(2+m, )v,*, +(2+m2)v2*2]+ ~ ~ (4.2)

The values of u,*, are given in Eq. (3.6), and one
easily checks that at this order,

A. (u,*,220) =-X(u,*2=0), (4.3)

and only one of each pair of fixed points is stable.
An explicit calculation shows, that the "decoupled"
fixed point, with u,*,= v,*, = 0 and with u,*„v,*„and
u,*„v,*, at their respective stable fixed point values
("pure" or "Khmel'nitzkii") is always stable, and
that it is the only physical stable fixed point

This conclusion may also be derived from gener-
al scaling arguments. " The parameter u» is the
coefficient of the operator (o, ~ o, )(o, ~ o, ). Since at
the decoupled fixed point o, and o, have separate
scaling behavior, the two factor operators scale as
the energy densities of Sy and of S„ i.e., as' "'t"i and $

a "2t"2. Remembering the factor
E" from the volume, one finds"

Z» =d —(1 —u, )/v, —(1 —u, )/v,

2 (ul/Vl + u2/V2 ) (4.4)

Since +, and a, are negative at the stable one com-
ponent fixed points, one always has A»(u,*2=0)&0
at the corresponding decoupled fixed point. A sim-
ilar argument works for v».

The stability exponents of the fixed points with
v,*,40 were calculated numerically for m, =1, m,
= 2, and for 2n, = m2 = 1 (see Appendix B). None of
these fixed points is physical and stable.

for the m, -component fixed point is exactly equal
to u, /v, , where u, and v are the specific heat
and the correlation length exponents of this fixed
point. "" The m, -component "pure" behavior is
thus stable when z, 0, i.e., for m, ~ 2 at d =3.
The "random" fixed point thus has little relevance
at &=3.

As we mentioned above, we expect u,*, to be neg-
ative (A', &,, is positive) in the physical region.
Therefore, one must choose the upper sign for the
"Khmel'nitzkii" fixed point in Eqs. (3.5) and (4.1),
and this fixed point is stable (at least for small e).

The "isotropic n =0" fixed point is also stable,
but is unphysical, since u,*,&0. It will never be
reached under renormalization-group iterations. "

In summary, the stable physical fixed point for
Qy] and v» is the m, -component "pure" one for m,
~ 2, and the "Khmel'nitzkii" one for m, =1. In both
cases, the specific-heat exponent is negative. The
same applies to the fixed point in the subspaee of
u22 and V22 ~

We next turn to the eigenvalues for u» and for
v». At v,*, =0, these turn out to be equal to each
other, having the value

g» =2 —4K, [8u,*2+2(u,*, +u,*,)

V. PHASE DIAGRAM

In Sec. IV we concluded that the multicritical
point is decoupled, i.e., uia = v,*,=0 at the corres-
ponding fixed point. We therefore start our discus-
sion of the phase diagram with the simple case u»
=v„=0. In this case, the Hamiltonian (2.10) sim-
ply breaks into two separate parts, involving only
0'y or o, . Each of these has the eritical behavior of
a single order parameter random material, as dis-
cussed in Refs. 12-17. The only effect of one or-
der parameter on the other is through the depen-
dence of r, and r2 on D(0), or on the relative con-
centration P of the two components in the alloy.
The critical temperature T, (or T2) for %, ordering
{or for S, ordering) will decrease with the addition
of the S,-ordering (or S,-ordering) component.
This results with the phase diagram shown in Fig.
2.

The average value of [(S,)]„ is nonzero for all 7
& T,(p), and it approaches zero as (T,(p)- T(s2,
irrespective of S, (and vice versa). The exponents
are those of the pure system for m, =2 (d = 3), and
those of the "Khmel'nitzkii" fixed point for my:1.
The intersection of the lines T,(P) and T2(P) is thus
a tetracritical point, at which both S, and S, under-
go a phase transition simultaneously. The lines
cross each other at an angle, and not tangential-
ly.' 'In the "mixed" phase, both [(S,)] and [(Sg] „
are nonzero.

In the usual analysis of bicritieal and tetraeriti-
cal points, ' ' the two relevant scaling parameters
are the temperature T and the anisotropy D(0),
corresponding to mp', +m,r, and to g =r, -r, . The
recursion relation for the former yields the cor-
relation length exponent v, and the one for the lat-
ter yields the crossover exponent" P, which also
determines the shape of the phase diagram. The
situation at the decoupled fixed point is quite dif-
ferent: the correct scaling fields are r, and r„
each having its own correlation length exponent py

and v, . There is no crossover exponent, as the
free energy is simply the sum of the free energies
of the two order parameters.

We now turn to the general case, where u» 10
. and v» w 0. Asymptotically close to the decoupled

fixed point, these are irrelevant fields. However,
irrelevant fields may some time affect the shapes
of phase diagrams, ' and therefore, one should con-
sider them with care. From Eq (3.1) it is.clear
that jn the limit n-0 u» does not affect the recur-
sion relations for r, and r, . This is expected to
remain true to all orders. " The effects of v» on
these recursion relations are carefully studied in
Appendix D. The main result is shown schemati-
cally in Fig. 4. The shift in T„due to v» (i.e. ,
relative to Fig. 2), is of the form
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FIG. 4. Effects of corrections to scaling, due to
v f2 on the phase diagram of Fig. 2 (see text) .

bT2= -A, v, 2+A2v~2(t, —t ~), (5.1)

where t, = T -T„where the coefficients A, and A,
are positive and where

(5.2)

Asymptotically, the shape of the phase diagram
near the tetracritical point is thus unaffected by
V»

VI. DISCUSSION

Our results for the alloy with competing aniso-
tropies are summarized in Fig. ,2. In this section
we wish to make clear the limits in which these
results apply, discuss other cases to which they
may be relevant, and mention existing and wanted
experiments.

First, the theoretical limitations. . One repeated
question has to do with the approachabili. ty of the
stable fixed point. If the initial Hamiltonian is
not in the range of attraction of the decoupled
fixed point, it will not be relevant to the tetracrit-
ical point even though it is stable. Returning to
Eq. (2.9), one sees that by an appropriate choice
of the distributions of D,&

and J,&
one can make

u» as small as needed. It is less easy to affect
the initial value of e». However, explicit numeri-
cal calculations show that even lar'ge values of v»,
e.g., of the order 10m», flow to zero. Thus, there
is clearly a finite physical range of parameters
for which the decoupled fixed point may be ap-
proached. If it cannot be approached, then there
is no other physical stable fixed point, and the
flow "runs away. " The resulting behavior in this
case is not clear. It may lead to a smeared trans-
ition, to a nonuniform ordering, to a spin-glass
phase, etc."

Another basic assumption is the use of the "n -0

replica trick." Unlike the case of spin glasses,
where this trick raises some questions, "we feel
that it is justified here just as it was in the case
of a single order parameter, due to its equivalence
to recursion relations for the cumulants of the
random distribution. "

Of more practical importance is the question of
the width of the asymptotic region, in which the
decoupled critical behavior is to be observed. As
i,n the case of a single order parameter, the
crossover from "pure" to "random" behavior is
rather slow, being governed by the small specific-
heat exponent +.. The width of the critical region
is of order p', where p is the concentration.
However, in our case we are in the most favor-
able situation, since the relative concentration
of the two components is of order —,'-. Note also
that other deviations from the decoupled behavior,
e.g., Eq. (5.1), involve larger crossover exponents
and a faster approach to asymptotic behavior. In
any case, even if delicate details of the critical
behavior are difficult to observe, the observation
of the general structure of the phase diagram,
and especially of the existence of the mixed phase,
will be quite helpful.

Another word of caution refers to the uniformity
of the random alloy. If the length scale of the im-
purity correlations is larger than the correlation
length for magnetic ordering, then one will ob-
serve a smeared transition with parts of the sys-
teM undergoing the transition at different tempt„'r-
atures. One, therefore, must be careful to use
homogeneously distributed impurities without
clustering.

The Hamiltonian (2.1) is quite general and should

apply to many alloys with competing interactions,
e.g. , ferromagnetic and ferroelectric, etc. Vfe
should note, however, an important exception.
If m, =m„ then in some cases Eq. (2.1) may also
involve couplings like K,jS,(i) S2(j), with K,z = 0.
Such terms arise, e.g., in alloys of ferromagnets
and antiferromagnets. Following the procedure
outlined in Sec. II, these terms generate a new
quartic coupling, of the form [o,(i) ~ o,(j)P. The
coefficient of this term is relevant near the de-
coupled fixed point and leads to new critical ef-
fects. %e discuss such cases in the second paper
in this series.

Finally, we mention experiments. In order to
check experimentally the predictions of this work,
one has to prepare a random alloy of two magnetic
materials, such that the components of the mag-
netic moments that order in one (pure) material
are perpendicular to the components that order
in the other (pure) material. To avoid structural
effects, one should study mixtures of materials
having the same crystal structure. The heavy-
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rare-earth metals Tb, Tm, Er, Ho, Dy, and
Gd are natural candidates for this purpose, be-
cause (a) they all crystallize in the simple hexa-
gonal close-packed structure with nearly the same
c/a ratio and (b) different components of the mag-
netic moments order. For the following materials
the component in the c directiori orders at temper-
atures lower than given in the brackets": Tm
(-60'K), Er (84'K), Ho (20'K), Gd (293'K, re.-
mains ordered in the c direction only down to
248 'K). The basal components (perpendicular
to c) order for the following materials'7:
Er (53.5 K), Tb (229 'K), Ho (132 'K),
Dy (178 'K). To study the effect of the competing
anisotropies, we should mix randomly a material
from the first group with one of the second group,
for which different components order over an
overlapping temperature range. Studies' on ran-
dom mixtures of Tm-Tb and Er-Tb confirm the
existence of the~ized phase and of the tetracriti-
cal point, as predicted in the present work. De-
tailed measurements near the tetracritical point,
as well as studies of additional such alloys, will
be very helpful.

Another case of competing anisotropies has been
observed in K,Mn, „Fe„F,.' The Mn ions in
K MnF4 order in the c direction, while the Fe ions
in Rb, FeF~ order in the perpendicular direction.
A mixed phase was observed in the alloy. ' How-

ever, the analysis of the phase diagram is corn-
plicated here due to the layered nature of the com-
pound, which leads to crossover from two- to
three-dimensional behavior. It would be interest-
ing to do measurements on similar materials with
stronger (or weaker) interlayer coupling, so that
the observed phase diagrams correspond purely
to d=3 (d=2).

Future experiments should concentrate on the
following main features: (a) the existence of the
mixed phase (coexistence of the two order para-
meters), (b) the shape of the phase diagram in
the close vicinity of the tetracritical point, and

(c) critical behavior near this point and near other
points on the second-order lines. For example,
the asymptotic behavior of the specific heat at the
tetracritical, point should be of the form

consider a random alloy of the type A~X, ~, with
exchange and anisotropy couplings J&&, JA&&, J&&

and D";z", DA&&, D,&
depending only on the identity

of the ions at the ends of a given bond. Defining
a random site variable Ps~ which is equal to 1(0)
if site i is occupied by A(B) we have"

&;~=&;";"p;P;+&;"[p;(I -p~)+p~(1 -p;)]
+~'; (I -p;)(1 -pg), (A.l)

and a similar expression for D,&. The distribution
function (2.2) is now replaced (if there are no cor-
relations among the p,.'s) by

~((~...B,,})= II p(p, ). (A2)

If p'~= p is the concentration of A ions, then we
have

p2gAA+ 2p (1 p JAB'+ (I p)EBB (A,3)

JAA 2JAB+ JBBij 4j $1 ij & (As}
JAB JBB+pg

A simple calculation then yields

A",„,= 2p(1-p) [p(1 p)(A—,,+A,~/m, )25~,

+ 2(B J+B;~/m, )(B&&+B, /m, )]6„, (A6)

where A and B are defined similarly to (A.5), with
D",&" replacing J",-,-", etc. We can now follow the
same steps as iri Sec. II, and finally arrive again
at Eq. (2.9). One again checks that u» and u22
must be negative. The rest of the analysis is ex-
actly the same as for the random bond case.

Note that in the discussion based on the effective
Hamiltonian presented in Sec. II, only the average
magnetization [(S}]„canbe calculated. One does
not calculate the average magnetization of type A
atoms, [(P» S,.)] „or of type B atoms, separately
For the abandons site case, one probably can per-
form a more detailed calculation, to find these
separate average magnetizati«s. "'"

LT;y=A&y(P& P)(P-y P)+-B&y(P g+P~ -2P), (A4)

where

C = A, t, &+ A2t2 (6.1) APPENDIX B: FIXED POINTS FOR, v12 4 0

where t, and t, measure the distances from the
two lines T, and T„and where n, and z, are two
distinct (for m, &m2) negative exponents.

APPENDIX A: SITE RANDOMNESS

In the discussion of Sec. II, J,~ and D,~ were
considered random variables, with a separate
distribution for each bond (ij). We now wish to

+ (2 + m, )v„+ (2+ m, )v„]), (B1)

with R = c/4K, . To the same order, we thus re-
main with five quadratic equations,

In this Appendix we search for fixed points of
Eqs. (3.4), with v„~0. The last equation in (3.4)
then yields, at lowest order,

v, 2
= 4(e —[8u,2+ 2 (u„+u22}
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[8u11 + (4 + 2m 1}uylvll + 2gmau»v/2]

v»e —[(8+m, )v»+ 12u»v„+gm, v»] = 0,
u»e —[8u', , + (4+ 2m2}u»v»+ 2gm, u»v»] = 0,
v»i —[(8+m, )v»+ 12u»v»+pm, v»] = 0,
u»R —[4u„+2(u„+u„)+ (2+ m, )v„

+ (2+ m, )v»]u» -gv»(m, u»+ m,u»} = 0.

(B2)

with g = 1 and with v» given by (B1). Unfortunately,
we are not aware of any algorithm that enables
us to find all the solutions of (B2}. A general sys-
tem of five quadratic coupled equations has 32 solu-
tions. However, specific systems may have few-
er finite solutions, because some solutions may
be multiple or may "run away" to infinity. Al-
though we are interested in solutions of (B2) for
g= 1 and m„m, integers, we can define general-
ized solutions for any continuous value of g, m„
and m, . 'These solutions can be followed along
trajectories in the g, m„m„space. For g =0,
N». and v» coincide with their values for vy2 = 0,
found in Sec. III, and v» is trivially found from
(Bl). We can now vary g by small steps, from
g = 0 to g =1. In each step, we solve the equations
(B2) by Newton's method, using the solution of the
previous step as an initial guess. In this way, we
keep track of all the expected 32 solutions. If
m, =1 or m, = 1, then some of the solutions of (B2)
are infinite even for g = 0, (corresponding to fixed
points of order e'~'). " In these cases, we start
with values m, 0 1 and m, 4 1, and vary m, and m„
as well as g, in the iteration procedure. Having
the freedom to change m, and m, as well as g en-
ables us to avoid singularities in u„„(g) and v„„(g').

We now define trajectories in the g, m„m, space
starting at g =0, m» and m, arbitrary and termin-
ating at g =1 and at m„m„values for which the
solution is required. Each solution can be clas-
sified by a parameter n specifying the trajectory
and a "length" parameter P specifying the point on
the trajectory. The solutions are defined as u„„(P),
v„„(P), where P= (g, m„m, ). We try to choose
trajectories in a way that u„„(P) and v"„„(P)are re-
gular functions. If a solution of (B2) "runs away"
to infinity, it will exhibit itself as a pole at the
end point in one of the functions u„„(P), v~„(P)
for all the trajectories. If the residues satisfy
Eqs. (B2) when we substitute e =0, the ratios of
the residues will give the ratios of the values ob-
tained (of order e'~') when the higher order terms
in (3.4) are introduced. This enables us to ensure
that we do not lose any solution, because the total
number of the finite solutions (taking into account
the multiplicities) and of the "run-away" solutions
equals 32. The multiple solutions can easily be
identified, because linearization of (3.4) around

u„=u» = u» = a(3c/68)'~'/4K, ,
2

V j.~
—V22 ——3Q&2, V j.2

—-2' j.2

(B4)

'The stability exponents of the last solution are

X, =-26, X2=65, A3 4= (3 +iI.732)5,

x, =2g, X, =O,

where

(B6)

Study of the "run-away" solutions show that two
solutions "run away" to E' ' solutions of the type
(B3) and one to a solution of the type (B4). Two
solutions run away in a way that can be extrapolat-
ed to poles with residues that do not satisfy (B2)
when i =0. Therefore, these "flows" do not cor-
respond to a solution of the order &' '. 'The finite
solutions and the distinct "run-away" solutions sum
to 32; we conclude that we found all solutions.

All the fixed points found in this Appendix are un-
stable. The marginal fixed point 10 in Table I is
unphysical (note it is degenerate with one of the
decoupled fixed points discussed in Secs. III-IV).

APPENDIX C: STABILITY OF THE KHMEL'NITZKII POINT

Experience in c expansions shows that if we lin-
earize the recursion relations about a nontrivial
fixed point of order z, one eigenvector points, to
order e, towards the trivial (Gaussian) fixed point,
and the corresponding eigenvalue is —a. We shall
first give a general proof for this fact. Let the
Hamiltonian depend on N quartic couplings X,. The
recursion relations to leading order are

X]——O' X] —4K4lnb Aq~~ X„X~, i =1, . . . , X.

'The fixed points satisfy the equations

these points (ignoring the higher-order terms)
leads to a vanishing (order e) eigenvalue due:to
the vanishing of the appropriate Jacobian.

The only physically interesting eases are m,
=I, m, =2, and m, =m, =l. The solutions of (B2}
for m, = 1, m, = 2 are given in Table I. We do not
have any physical interpretation for the complex
values. " In this table we also present the stability
exponents for the corresponding fixed points (real
solutions). In Table II we present the solutions
of (B2) and the stability exponents for m, =m, = 1.
Solution 1 in Table II has multiplicity 3, as can be
verified analytically. Solutions of the order c' '
are [see Eq. (B1)]

Vgg ——V22p Vg2 —0) Q j.2
—0 t

where u» and v» are given by (3.5), and
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N

X)*e —Q A~~~~'X~~X~ = 0,

where R = e/4K, . Linearizing (Cl) about the fixed
points, one obtains

(c2}

4Xf = Q' &Xf —4K4lnb 4k~
kg~1

+X( &Xi)) . (C3)

Consider now the vector &Xf"-——aXf*, pointing to-
wards the Gaussian trivial fixed point (X, = 0}.
Substituting in (C3), and using (C2), we find for
this vector (at order e)

gX(1)' y-& gX'(1) (C4)

Xf ——y' Xf —m„ in& A k~&f ~xkx&
ky g=&

which completes the proof.
%e now follow the same lines for a fixed point

of order a' ', and show that one eigenvalue is al-
ways equal to -2e. The recursion relations now

r ead

APPENDIX D: CORRECTIONS TO SCALING

dr A, V»
dl

= 2r1+ 1+r, +~' ' 1+r, '.
dk2 A, V12

dl
=2r2+

1 +4K4ml
1

(Dl)

.where

A„= -2r„*.= 4K,[2u„'„+(m„+ 2)v„*„] [= O(e)]

and l is the continuous renormalization-group pa-
rameter. In the immediate neighborhood of the
decoupled fixed point,

v„(l)= v„(0)e' (D2)

where A» is given by Eqs. (4.2) or (4.4). When

v»(0) = 0, the solutions to (Dl) at lowest order
are"

r„(t) = t„(l) ——,'A„+ -'A„t„(l)in[1+ t„(l)]

In this appendix we study the effects of a non-
zero value of e» on the shape of the phase diagrams
near the tetracritical point. %e follow Wegner and
Houghton;" and write Eq. (3.1) in the differential
form

+SRIC', 1nb P Aa~&~IXaX&Xi)
kgf, l~1

(C5)
with

= t„(t)+O(e), (D3)

while the fixed point equations are

N N

For fixed points of order a' ', we write

Xf* ——Yf&'~ + Zfc+ ' ~ ',
and the coefficients must satisfy".

N

Q A~~q"Y~Y~ -=0,
k, f~l

Y) -4K~ Q Aqt~(Y~Z~+ YyZq)

(c8)

(C7)

(C8)

t„(l)= t„(0)exp(2 -A„)l, t„(0)= r„(0)—r„*.

The exponent 2 A„ is equ-al to 1/v„.
We now assume v»(0) «u~», v„*„, and consider

for definiteness the shape of T, in the vicinity of
the decoupled fixed point (Fig. 2). This means
that S, is much more critical than S„r,«r, . %e
continue the renormalization-group iterations until
r, (l*)= 1, while r, (l*)=0(r,*). At this point

t, (t*)=1+O(r,*,v„)
or

exp[-(2 A, )l*]= t, (0)[-1+0(r,', v»)]. (D4)

During the iterations r, (l) =O(c) [or O(e'~')], and
therefore we may expand

+32K4 Q A~~q", Y~YqY, =0. (C9)
km'. &

' = (2 A, )r, +A-, + 4K,m,4 1 ]+r (D5)

Linearizing (C5) about X,*, and choosing

&XI"= a(Y)t' '+ 2Z)f + ' ' ' ),
now immediately gives (at lowest order)

gX(l) y 26 gX(1)
f f

(C10)

(C11)

'The solution of this inhomogeneous linear equation
is

4Kmv 't'
{f) (2-&2&& r (0) A 4

Note that the pr'oof is independent of the values of
Zf. To calculate these, one must go beyond the
diagrams of Fig. 3. Thus, the eigenvalue which
vanishes at order a' ' is actually negative, and the
"Khmel'nitzkii" fixed point is stable near d=4."

(D8)-(2-A2) l'g p,

At lowest order we replace r, by t, in the last
term. Since r, (l) &1 for l &t*, we also expand the
denominator, use (D3) and. integrate,
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12& ~ -(2-A2)f'df2 v (0) e(122-20A2)f g'[ f (0)j» e2( 1»

(0) g (zr, - t )n 1)[—1 (0)] /[2 —2+A +k(2 —A )1 ~

For $021, the denominator is 2(k —1)+O(e), and we ignore the order s terms. Thus,

I = -2[v»(f)e (2 "2"—v»(0)] —[v»(l)t, (l)e (2 "2"—v»(0)t, (0)]/(X»+A2 -A, )

+ -,'v„(f)t, (f)e-&'-A. » in[1+ f, (f)] —,'v„(O)t, (0) 1/1+ f, (0)] .
Finally,

2 (f) =f (0)e(2-A2" -A2/2 —2K4mfv»(l)-4K4mfv»(l)tf(l)/(X»+A2-A1)

+ 2K,m,v„(f)f,(f) in[1+ f, (f)],
with

t, (0)=r, (0)+A,/2+ 2K m, v„(0)+ 4K,m, v„(O)f,(0)/(~„+A, -A, ) —2K,m, v„(0)t,(0) in[1+ t, (0)] .

(D8)

(D9)

(D10}

Therefore,

& ff &22 f (0)e(2-A )l2' 4K4mlvla'(~*)tf(f*)
X„+A,-A,

{D12)

At the critical line T = T2, (r2ff —r22') vanishes.
Therefore,

(0) 4 1 12 14K m v (l*)t (l*)e-' -"2 f *
+A -A (D12)

By (D4), t, (f~) =1, and exp[-(2-A, )l*]=t1(0).
Thus, using also (D2) and (2-A ) =1/p,

& (0) 4K4m, v»(0)[t (0)]'"1 "2' "12"1
2

X~2+A2 —A.~
(D14)

The actual shift in the critical temperature T„
or in the critical value of r ( 2),0due to the existence
of v»40, is thus due to three sources: first, there
is a constant shift to lower T„proportional to
v»(0) [the third term on the right-band side, E(l.

At l = l", r, (l*)=1, and we can integrate the vari-
ables S, out of the partition function. " As a re-
sult of this, we obtain an effective Hamiltonian in
S„with

1 3

f,'ff =r, (f2') + 4K,m,v»(f*)

E(t12 t22v12)=tf~vff (t2/tfvf~v2)v12t1 12 1) . (D16)

At the line T = T„ the function f (X, Y) must be
singular. In the X-F plane, this singularity must
have the form X=AY, with 8 to be determined.
Thus, the singular part of the shift in T, is given
by

si))g/f vl/v2 A (v f 112vf)8 (D17)

Qur explicit calculation, at low order, gives 6 =1.

(D10)]. Second, there is a term proportional to
v»(0)t, (0), which changes the slope of the straight
lines in Fig. 2, bringing them closer to each other.
Last, there is the nonanalytic piece, E(l. (D14),
which brings the lines in Fig. 2 further apart from
each other at, larger distances from the tetracriti-
cal point. These final lines approach the above-
mentioned straight lines tangentially. The modified
phase diagram, near the tetracritical point, is
shown in Fig. 4.

The result (D14) can also be derived by general
scaling arguments, similar to the ones used in
Ref. 3. To start with, the appropriate scaling
fields at the decoupled fixed point are t„ t2, and
v», with scaling exponents 1/v„1/v„and X».
Therefore, the free energy has the scaling form

E(t„t„v„)=b~E(b ~ "1t, b'~ "2t2 b»v„),. (D15)

Scaling until b' "&t, =1, this becomes
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