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The magnetic properties of a disordered A„B, „substitutional alloy, with A-A interactions only, are
analyzed in terms of a Heisenberg-type Hamiltonian. The critical temperature T,(x) and the critical
concentration x„below which no bulk ferromagnetism exists, are calculated for various ratios of the second-
to first-nearest-neighbors interactions. Results for x, are shown to agree with the critical percolation
concentration for each case. The dispersion relation and the density of states of the spin-wave spectrum are
calculated and compared with those obtained by other techniques an/ for different types of disorder. For
x & x„spin-wave excitations exit for wave numbers k above a certain lower bound k, (x). The inverse of
k, is interpreted as the linear dimension of the largest magnetic cluster that the system can sustain at x & x, .
Results are compared with those obtained by percolation methods. The magnetization and the specific heat
are also calculated and compared with experimental data.

I. INTRODUCTION

The magnetic properties of random alloys
AQ, „, in which the A (magnetic) and II (nonmag-
netic} atoms are distributed randomly on a regular
lattice, have been thoroughly investigated during
the last fifteen years. In the earlier works, at-
tempts have been made to calculate the ferromag-
netic transition temperature T,(x) and the critical
concentration x„below which no bulk ferromag-
netism can exist. Brout' has argued that, for
long-range exchange interactions, T, increases
linearly with x and extrapolates to zero at x= 0
(i.e. , no finite x, exists). For short-range interac-
tions, however, he conjectured that a finite criti-
cal concentration x, exists. This kind of behavior
of T,(x} was found by Sato et al. s for an Ising mod-
el with nearest-neighbors (nn) interactions only,
by Smart' for a classical Heisenberg ferromagnet,
and by Elliot and Heap"' for a spin-& system. As
for x„ it was found to be strongly dependent on lat-
tice coordination number [(z —1) ' in Refs. 2 and

2]. Charape improved Smart's result' by also
taking into account the fluctuations in the molecular
field seen by any first-shell magnetic atom. Re-
lating x, to lattice percolation properties was first
suggested by de Gennes et al."' and later used by
several authors. ' "

Another avenue of approach to the problem of
disordered ferromagnetic alloys is to treat the dy-
namics of the disordered spin system, such as the
spin-wave excitations that the system can sustain.
Murray'4 has used a variational method to calculate
the spin-wave energy of a Heisenberg ferromagnet.
In the long-wavelength limit (h-0), she found an
upper bound to the excitation energy which has the
form @(x)h' where P(x) is a nearly linear function
of x which vanishes at x,[= 0.44 for a single cubic
(sc) lattice]. Murray's variational principle was

recently criticized by Kumar and Harris, "mainly
for two reasons. First, it allows P(x} to be nega-
tive even though the system orders ferromagnetic-
ally. Secondly, a finite bound for Q(x) can be found
for x &x, although obviously no long-wavelength
spin waves exist. Following Murray's work, a
somewhat better estimate of P(x} and the corre-
sponding x, was found by Kaneyoshi, "and later on
by Edwards and Jones. " They obtained an infinite-
series expansion in powers of x and 1 -x, but were
able, however, to calculate exactly only the first
few terms of that series.

This difficulty can, in principle, be avoided if
one obtains a Dyson equation for the spin-spin
Green's function. That last equation js then
solved either by a T-matrix calculation" (with a
truncation scheme for T based on cutting off the in-
fluence of all but the nearest neighborhood of a
single atom"}, or by coherent-potential approxima-
tion'"" (CPA). These techniques are used to de-
rive the spin-wave density of states and dispersion
relations, as well as T,(x) and x,."

In the present work the AQ, „ferromagnet,
governed by a Heisenberg Hamiltonian, is ex-
amined. We derive, within the framework of the
spin-wave approximation, a Dyson equation for the
configurationally averaged Green's function
t (k, cd}. To this end we first derive an equation
for the unaveraged Green's function. . This equa-
tion is then decoupled using a quadratic approxima-
tion which is described in Secs. II and III. We thus
obtain a compact expression for 6 which is then
utilized to calculate the system's properties. In
Sec. IV, T,(x) and x, are derived for the three cub-
ic lattices and for nn and second-nn interactions.
For positive nn and second-nn interaction all T,(x)
graphs, when plotted against the reduced concen-
tration (x -x,)/(1 -x,), fall on a single universal
graph. The critical concentration x, agreed in all
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cases quite well with the relevant critical percola-
tion concentration

In Sec. V the response function is calculated and
shown to fit quite well the very accurate "moment
calculation" results of Nickel. " The response
function is directly used to derive the dispersion
relation and the density of states of the spin-wave
excitations. These are also compared to CPA cal-
culations of Harris et al.' and of Theumann and
Tahir-Kheli. " For x &x, the spin-wave excitations
are shown to be physical for k&k, (x) only. This
limiting wave number k,(x) may be interpreted as
a measure of the inverse linear dimension I(x)
of the largest cluster which can exist at x&x,.
The size of the largest cluster P(x) is shown to di-.

verge near the critical concentration as ~x -x,
~

5

with &= 1.5 close to the value 1.69 obtained by per-
colation-theory methods. "

In Sec. VI the magnetization c(T) is derivedf, or
various values of x, and compared with experi-
mental data. The thermal demagnetization is
shown to obey an a(x) T' ' law, where a(x) is a ra-
pidly decreasing function of x. a(x) is shown to
agree with values deduced from experimental data
in various systems. Finally we derive the specific
heat C~(x, T) and show how these results may be
used to explain the anomalous peak near the criti-
cal concentration in some magnetic alloys.

II. DERIVATION OF A CONFIGURATIONALLY

AVERAGED GREEN'S FUNCTION

The system consists of random 4 -B alloy in an
external field K A spin S is associated with each
A-type atom. We assume a Heisenberg-type in-
teraction between these randomly distributed
spins.

Hence, the Hami. ltonian of the system is

We then define the usual time-dependent Green's
function,

G-„,-„=ie(t) &[S=„(t),8'-„{0)])
-=«S=„.(t); S';(0)». (2.3)

+2+ ( J»„-J», -„„)

«s-,', ;„(t)s, (t);s;(o)». (2.4)

We now use the usual spin-wave approximation:

((S-„; -„„(t)s=,(t); S'-(o)))= (S„-', ;„)G-„„-„ (2.5)

Hence

(SS . )= —SoX.
g& half l I (2.6)

where

1Q f e i't»' »") r~ (2.7)

and

(S') = t (S') = - C„So', (2.8)

in which we assumed that (S') is site indejendent.
o depends both on x, the fraction of A-type atoms,
and on the temperature T. o will be calculated
self-consistently in Sec. VI.

A Fourier transform of Eq. (2.4) with respect to
t yields

Q) —Q) g
G~,y=N" X~,

We note. that G~, -„ takes into account spin-spin cor-
relation of A-type atoms only. The equation of
motion of G-„,~ is

8
i —G.„,-„= —2(sf, -„)6(t) +gijsHG», »

X=gP.,HQ S;-g J,sS, S,. (2.1)
(J»» ~ J»t»» E )Xgt p» G»t t»y. (2.9)

Here 3 =—f S where S is the spin on site n and
take the value one if site o. is occupied by an

A-type atom and zero otherwise. J'
8 is assumed

to be a function of
~
r —r~

~
only, independent of

local environment, so that J 8—= J, if sites n and P
are neighbors of order i.

Transforming to wave-vector variables

(v1 Y)G=N'X-, (2.10)

where X„-„,=—X» -„., Y»», —= (J„=„.—J„,)X»»„and
E =-(a& —&o„)/2So'. Eq. (2.10) can be written

where a„=gp, jX. This equation can be written in
a matrix form:

~-l~ g elle
~ (r~- rg)

at8

k

8"= 8-„e'"'o, p, =x, y, z, ~,
k

we obtain

where

8=N(pl —Y).

9 ' can be broken up into two parts:

(2.11)

X=Ngy, sHS~ —NP J-„(S-„s-»+Sjs "„). (2.2)
(2.12)

where 9,' is the configuration average of 9 ', i.e. ,



MAGNETIC PROPERTIES OF A DISORDERED. . .

9,'= 9 '=N(vl —Y) and d =N-(Y —Y); Note that 8
is diagonal, i.e., (9,')11.=N[v -x(J, —J'„)]51-„,.

It follows that 9 obeys a Dyson equation:

9= 9,+9,~9

and hence 6 also obeys a Dyson equation:

G = 9++ Q,b QX = 9@+Qob G.

(2.13)

(2.14)

The configuration average of the Green's function
G, however, does not obey a Dyson-type equation.
We are then faced'with the problem of finding a
self-consistent equation for G. This can, be accom-
plished by iterating Eq. (2.14) once and decoupling
(») 904G} =(690»))„G. In this approximation we
obtain

Introducing the reduced frequency Ii= v/x [where
v was defined in Eq. (2.10)], the averages are ex-
pressed by

k'k k'k y

[(»),9~).,]-,„,= (1 x)P(k, n) 6-„;„

=-'-(1 x)N-' 5 ~
"

l~

(2.18a) '

(2.16b)

[(d8,4}„]„,„=-N(1-x)Q(k, Q)6p"„

-=—(1 -x)

%- a %~( t- a a) (2 16c)
Jo —J- —0

a

6= t".,+ G,ZG, (2.15)

where G, =Q,[X+(AQUA)„] and G,Z= 9,(69,4}«.
To understand the spirit of the decoupling that

was done, we note that the "exact" equation for 6
ls

Hence, we finally obtain for 6
1 —[(1 -x)/x]P(k, 0)

(J,- J-„)+[(I-x)/x]q(F, n) "'"'

(2.19)

G = 90[X+(b QP'), + (69,b 8+)„
+(6906 Q,b9+),+. . . ]. (2.16)

III. DIAGRAMMATIC REPRESENTATION AND THE

HIGH QUADRATIC APPROXIMATION" (HQA)

G= 9,[X+(68+)„(I—[(&80)']«] i

= G,(1 —G,Z), (2.17)

which is exactly Eq. (2.15).
The present approximation for G is quadratic in

However, as will be shown later, only a sub-
group of these quadratic terms is included in this
approximation; hence, it will be referred to as the
"low quadratic approximation" (LQA).

The averages may be all shown to be diagonal.

Assuming that Y is distributed symmetrically
around Y we conclude that ~ =—Y- Y satisfies
(6'""),=Oforalln. Hence, in Eq. (2.16) it is quite
natural to treat separately terms [(d 9,)'"X]„and
[(hQ,)'""XJ, The former are decoupled according to

[(b 90) "]«Xwhile the latter as [(b,Q,)'"]„(b,QQ),.
Ne next adopt the approximation [(aQ,}'"]„,
= [(&90) ]a,. Inserting all these into Eq. (2.16) we
obtain

The Green's function and the averaging process
of Sec. II may be represented diagrammatically as
follows: we start by representing Eq. (2.16) for
the unaveraged Green's function by the diagram in
Fig. 1. Here a straight line with wave number k,
represents 9,&. , and a point associated with M,
flanked by lines of wave numbers k, and k&, repre-
sents the matrix element (in k space) M-„,-„of ak]kg
random matrix M. Also the summation convention
over internal lines is implicitly assumed.

Each variable Mk, ~ in this problem contains akg y
sum over sites of the random occupation numbers

at a site n, namely,

~t
peal ~ g 85&kg kg) p me . k]k~

Thus, on averaging an n-point diagram, one needs
to express the average (f . . . g ),. This can
be shown to be

(4 1' . . .g )„=P(x)6» )+P„,( )xP, ( )xg 6» ) P„+,( )Px,'g 6»

+P„,(x)P,(x) Q &»„) &,, + ~ +P,"(x), (3.1)

where &» )(6» ), &» ), , etc.) assumes the value uni-

ty, provided al n, 's all n, 's but for n„all n, 's
but for n, and n&, etc.) are equal, and zero other-
wise.

P„(x) are the polynomials given bye'

8 tl

P (x)= — ln(1 x+xe~)
ll

ay
(3.2)
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G-=
k' k

k' k

X

k' k) k
+

X

k' k) kg k

X
+ 0 ~ ~

FIG. 1. Diagrammatic representation of Eq. (2.16).
A straight line with wave number k& represents go»„..
A point associated with ~, Qanked by liney of wave
numbers k& and k&, represents the matrix element
Mp]p . .

+ +2
~t

«1
x 1 I"2 g go. Jq„» J-

(3.3)

where the lowest-order polynomials are

P,(x) =x, P,(x) =x(1-x),P,(x) =x(1-x)(1—2x).

Equation (3.1) may be represented by the dia-
gram in Fig. 2. Here, to any site a„a line with
wave number k, enters and k, „leaves. Sites
u, ~„etc., that are equal under the &-function con-
straint are connected by dashed lines. In Fig. 2,
all topologieally different diagrams, and the poly-
nomials associated with them, are included. It is
easily seen that wave numbers of internal lines are
free variables- and have to be summed over, while
disconnected sites lead to a &-function conserva-
tion of the incoming and outgoing wave numbers.
Thus, if a disconnected point is associated with a
matrix M it clearly gives M. In our. pazticular
case if M= 6, this diagram vanishes (since by defi-
nition Z =0}.

Returning now to Eq. (2.16) the simplest non-
trivial approximation to the averaged Green's
function may be obtained by retaining only the dia-
grams in which pairs of neaxest-nei gbbor points
are connected. This is shown in Fig. 3. Calcula-
ting the diagrams according to the rules mentioned
above and shown in Fig. 4, we find

which is just the LQA result of Eq. (2.19). We can
improve upon the LQA, still within the quadratic
approximation, if we retain all the diagrams with
connected pairs of points (not only nearest-neigh-
bor points), provided that the dashed lines do not
intersect. These diagrams are shown and summed
up in Figs. 5 and 6.

It becomes clear from the last line in Fig. 5 that
G~, ~ has an expression similar to Eq. (2.19) but
with P and Q replaced by P„and Q„which satisfy
the integral equations

and

(J-„;—J-,)(J-„;—J-„)
n (J, Z;)+ [(1-x)/x]q„(q, n)

(3.4)

fl —(J, —J;) + [(1 —x)/x]Q„((l, 0) '

e

e call this approximation the "high quadratic ap-
proximation" (HQA}.

In the next Secs. IV and V it will be shown that in
calculating static properties, such as critical tem-
perature, critical concentration, etc. , the LQA
provides rather good agreement with experimental
or exact numerical results; for dynamic proper-
ties, such as the response function, which depend
sensitively on the imaginary part of 6, we have to
use the HQA to get reasonable agreement with ex-
act numerical calculations.

At the high-concentration limit (x-1) it follows
from Eqs. (3.4) and (3.6} that the LQA and the HQA
coincide; they both deviate, however, from the
exact result. To lowest order in 1-x, one has to
sum all the diagrams shown in Fig. 7, which re-
present repeated scattering from the same site
[since P,(x)()(:(1-x)for n&1]. An estimate of the
discrepancy between our LQA result and the exact
expansion'4 is discussed in Sec. V.

y I ("g, )=P„(X) ~ j j, ~ Px j(X)Pj(X)
~ ~ aQ

a, a2a. a. a)

I
I &'~ +

a2 as an

/ +
l,

a~ a2 a3 an

iI 4/ n+ . . + / I
+ " + P (x)

1.~

a2 a3 an ai a2 a3 an

FIG. 2. Diagrammatic representation of the configurational average of g
&

~ ~ f „.Here the dots represent sites
e„. Connected sites are identical.
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h
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k'k
=+
X

h
I a

I

X

I %

b X

15

]& f4

b, X

I )
I

k' k) 'k

X Sglg
X

= X(&-X) X 9, (Jz, „-J„)8&,„X k) kg

i
lg

&', k'k
x ( ) -x) Z 9O„(J~i ~-J~) ( J~ ~-J~) S~I~'h h k)

FIG. 3. The sum of diagrams for Q which are taken
into account in the low quadratic approximation (LQA).

FIG. 4. Glossary of diagrammatic symbols used in
Fig. 3.

IV. FERROMAGNETIC CRITICAL TEMPERATURE AND

CONCENTRATION

The ferromagnetic critical temperature T,(x) has
been shown to be related to the configurationally
averaged Green's function by"'"

p,(x)=-- g ReC„I(n=o)
2
x =0H

where P, =1/(k~T, ). Using the LQA result, Eq.
(2.19) becomes

(4 1)

2,~ 1 —[(1—x)/x]P(k, 0)
x ~1 J, —J-„—[(1-x)/x]Q(K, O)

(4.2)

where in Eq. (4.2} we used the fact that both P and

Q are real at @=0 (cf. Appendix).
We have calculated T,(x) for the three cubic lat-

tices, taking into account first- and second-neigh-
bors interactions. This was repeated for several
values of q= J,/J'„ the ratio of second- to first-
neighbor interactions. For this purpose P(k, 0)
and Q(k, 0} were expressed as a sum of products
like f(k)C(q), where f(k} is an explicit function of
k and C(q) depends on lattice structure and calcula-
ted numerically (cf. Appendix, ). Results for
T,(x) are shown in Fig. 8. It can be seen that all
the T,(x) graphs are fairly linear functions of x,

except in the vicinity of x„where they all exhibit
a certain curvature. This kind of behavior was
predicted earlier' ' and was found experimental-
ly 37 29

In Fig. 9 the reduced critical temperature T,(x)/
T,(1) is plotted against the reduced concentration
g=(x -x,)/(1-x, ). It can be seen that for q~ 0
(for all three cubic lattices) the plots fall on a sin-
gle universal curve. The g&0 curves, however,
deviate quite considerably from this universal
curve.

It can also be seen that for each q there exists
a critical concentration x, for which

T,(x,) =0 P,(x,)-~. (4.8)

From Eq. (4.2), T, may be easily shown to behave
like ~x —x, ~' ' near x,.

Values of x,(q) are presented in Table I for all
three cubic lattices. For the cases of g=0 and
q= I, these can be compared with the correspond-
ing site-percolation concentration'OP, (either for
nn steps in the case g= 0, or both nn and second-
neighbors steps in the case of q= 1). We have also
calculated x, including third-neighbors interac-
tions. The special case J, J2 J3 is also tabula-
ted and shown to agree with the corresponding per-
colation concentration.

k' k k' 'k'k
+ = = +

X 6, X

h

I

k' 'k' k
+

X

IK
I

I 4 I i

k, k)' k~,ik

X

/

X

h,
I~

I
k' 'k&' k, 'k~'~k~k

+
X

/x

/ I
k' r'k)~~kg~kg~ kg kr c l +

b, 6, X

k' k +
X X b, X

k' k - k' k

X 6 X

FIG. 5. Same as in Fig. 3 but in the high quadratic approximation (HQA).
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0)
lg

I \
C

k' k k", ky', k

b)

I
k

1.0—
SC

0.8—

0.6—

0.4—

FIG. 6. Glossary of diagrammatic symbols used in
Fig. 5.

|LO

V. EXCITATION AND DENSITY OF STATES FOR A SC

CRYSTAL FOR NN INTERACTIONS

The excitations of the system can be studied
from the spectral weight function, pi(Q)
= -v 'ImG-„(0). As usual, one defines dispersion
relation A(k) from the condition that the response
function p„(Q) is maximal at A(k).

For small k, the maxima of p„-(0) are obtained
at Q «2J,Z„where z, is the number of nearest
neighbors (in a perfect crystal 0&0&2J,Z,). Since
at low 0, ImQ(k, 0) is very small, these maxima
are rather sharp and thus correspond to "good,"
long-lived excitations. Here both the LQA and the
HQA give similar results. We shall thus for sim-
plicity discuss the k-0 limit in the LQA. At large
k, however, the LQA underestimates ImQ(k, A),
i.e. , the width of the maxima of p.„(A). Moreover,
when the maxima are obtained at 0~2ZgJy,
ImQ(k, fI) in the LQA vanishes abruptly and anomal-
ously sharp maxima (5 function) are obtained for
p. It is thus imperative to use the HQA for large
k. The dispersion relation A(k) in the small k re-
gion are found from the zeros of the real part of
G.„' [Eq. (2.19)], i.e. ,

Q(k) —(J, —J„)+ [(1 -x)/x]Q(k, A(k)) = 0. (5.1)

This is an implicit equation in 0 which has to be
solved numerically. For k-0, however, Q(k, 0)

1.0-

4p Oo8

0.6—

04—

00

1.0—

0.8—

0.6—

04

0.2—

0.0
0.0 0.2

FCC

BCC

0.4 0.6
X

0.8 1.0

FIG. 8. Ferromagnetic reduced critical temperature
T~ (x)/T~ (1) vs concentration x for different values of
g—the ratio between second- and first-nn interactions.

k' k
= =+

X

I 4

k' ik, ~k

X

I a

X

I l

k ~ k,,fk~l, k~ik

X -Q,k' and J, —J~-Lk', and Eq. (5.1) yields

n(k) = {L—[(1 x)/x]Q, )k'= y(x)k-'. (5.2)

A

IK
I \

\

k' k)' krak

X

k' &k)'i kt.
~ ~ ~

X

FIG. 7. The series of all diagrams for Q to order
g -x).

L and Qo are structure-dependent constants:
L =Z Z, l,.a' where a is the lattice constant and the

I,. 's are given in Table II. Q, is given by Q,
=N 'Z;~V;J; k~'/(J, —J;) and can be calculated
from the explicit expression for Q, Eq. (A5).

A similar result was obtained by Murray'~ and
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1.0

TABLE I. Critical concentration x, vs q =—J2/J~ —the
ratio between second nn and nn interactions —for the
three cubic lattices.

0.8

0.6

~V

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1.0

Lattice

.Sc

bcc

-0;2
-0.1

0
0.1
0.25
0.50
1.00

Jg= J2= J3

—0.5
-0.2
—0.1

0
0.25
0.5
1.00

J( =J2= J3

0.763
0.444
0.296
0.223
0.174
0.147
0.141
0.102

0.479
0.29V
0.264
0.240
0.202
0.185
0.176
0.101

Pc
from Ref. 29

0.307

0.137
0.097

0.243

0.175
0.095

FIG. 9. T~ (x)/T~ (I) from Fig. 8 plotted ve the reduced
concentration $ =x- x~ (q)/1- x~ (g).

fcc —0.95
-0.75
-0.50

0
0.25
0.5
1

Jj =J2= J3

0.936-
0.656
0.403
0.197
0.163
0.147
0.140
0.066

0.195

0.136
0.061

TABLE Q, Several topological properties of the cubic lattices.

Lattice

i
Shell

number

Zg

Number of atoms
in the ith shell

Nf f (i) Nf2 (i) N22 (i)
Covering factors for the ith

shell (see Appendix)

sc

bcc

1
2
3

5
6
7'
8

1
2
3
4
5
6
7
8

1

3
4

6
7
8

6
12

8
6

24
24

12
6

24
12
24

8
48

8
6

12
24

8

24
24

1
4

4
20
24

1
1
6

10
4

28
4

1
1
4

11
4
4

19
20

4

2
1
0
0
0
0

0

2
0
1
0
0
0

4
0
3
0
1
0

2
0
1
6
1
0
0
0

0

0

0
2

For an sc lattice, the ith-shell distance a& satisfies a& =v'ia for all i in this table except
i=7. In this sense no seventh shell exists.
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l.O—
0.8

0.6
tm

0.4

0.5—
0.2

0
I

0.2 T 0.4
D.296—~0.507

0.6 0.8 l.O

0,8

0.6

x= 0.7
k-(11

FIG. 10. Spin-wave stiffness as function of concen-
tration x. Long-dashed line —Monte Carlo calculations
of Ref. 31. Short-dashed line —CPA results of Ref. 22.
Full —results of this paper. 0.307 and 0.2S6 indicate
values of x, of Ref. 31 and this paper, respectively.

3
0.4

0.2

S(x)/S(1) = 1 —Aiz(1 -x) + 0(1 -x)', (5.3)

used to calculate the critical concentration by the
condition that P(x) vanishes at x,. It follows that
for x &x„where P(x) & 0, no physical excitations
exist.

'&he spin-wave stiffness S(x) is proportional to
xaP(x). At zero temperature the ratio S(x)/S(1)
is a straight line which cuts the x axis at x=x,.
In Fig. 10, S(x)/S(1) is shown and compared to
Monte Carlo calculations by Kirkpatrick" and to
CPA results by Theumann et al."

It is apparent that near x, our S(x)/S(l) agrees
quite well with "exact" result. " At x-1, however,
our result deviates slightly from the CPA results
suits. "'" These coincide in the x-1 region with
the "exact" calculated S(x)/S(1) of Izyumov, '4

namely,

0 I

5

23
f~
Q

I

8

x= O.7
k= (1,1,1)

I

7

10

where A» is a numerical factor equal to 1.52.
Our S(x)/S(1), on the other hand, can be shown
from Eq. (5.2) to be equal to 1 —A(1 -x) with A = 1/
(1-x,) ~1.42.

For large k, p-„(Q) is calculated using the HQA
result for G, with P„and Q„given by Eqs. (3.4)
and (3.5). One finds that the maxima of pf(&u= 2SoQ)
shift continuously to lower energies (for fixed k)
as x is decreased. In Figs. 11-14 the present re-
sults for p„(&o) are compared, for some values of
x and k, with those of Theumann and Tahir-Kheli, "
Harris et al. 2O (CPA calculations), and Nickel"

FIG. 11. Response function of p(k, co) plotted vs or

for concentration x and wave vector k (in units of n/a)
indicated on the figure. Full line —this work; dash-dot-
Ref. 22; long dashed —Ref. 20; short dashed —Ref. 23
("exact" result).

(Pads-moment calculations). For k large enough,
and x & O. V, an additional low-energy peak in p.„(&u)

appears. As x is decreased, the low-energy peak
becomes more pronounced, as much as half the
height of the central peak. Of the references men-
tioned above only Nickel's has these low-energy
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x=0.5
g =(1/2, 1/2, 1/2)

0.1
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0.4—
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x *0.5
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FEG. 12. Caption same as in Fig. 11.A blow up of the
low-v region.

0
0

FEG. 13. Caption same as in Fig. 11.

10

peaks; however, their height is somewhat lower
and their location at lower energy than ours.

The central peak locations of p.„(Q),ReQ(k), and
width at half-maximum, Imp(k) are compared in
Fig. 15 to CPA results by Harris et al. 20 (which are
in fair agreement with ReQ(k) Pade-moment re-
sults by Nickel.

The two-peak structure of pI(Q) that was found

for x&O.V and for large enough k is also apparent
in the corresponding dispersion relation &o(k) which
we have plotted for k in the (1, 1,1) direction, in
Fig. 16. At large x there is a single branch of
e(k) for all k. At lower x (&O.VO), however, &o(k)

splits into two branches for k greater than some
ko(x). This kind of dispersion relation appears also
in Elliot et al."

It was suggested' ' that the additional lower
branch, which begins to appear at large k as x is
lowered, may be associated with excitation within
finite isolated clusters. These have a finite prob-
ability of existing for concentrations not too far
above (or below) the percolation concentration p, .

The density of states of the spin-wave excita-
tions is given by

D(Q) = --Q Im(t"1-„)„(Q)— 1

and can be shown to be normalized to unity. Ac-
cordingly, we have for the density of states in
terms of &o (=2SoxQ)

(5.4)

d(o $((o) = 2Sox. (5.5)

$(&o) is shown in Fig. 1V for several values of
x. It is apparent that for medium x (below O.V) the
full density of states is composed of two separate
contributions: a "finite cluster" contribution which
tends to peak sharply at low energies. , and "bulk"
contribution which extends to high energies. This
is compared in Fig. 18 with Theumann and Tahir-
Khelj. and He,rrjs et al. whjch do not exhjbit the
two-peak structure.

It is quite interesting to note that a somewhat
similar density of states was obtained by Montgom-
ery et al. '~ for the problem of a pure ferromagnet
with random exchange interactions. For laxge de-
gree of disorder (i.e. , for wide distribution of the
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FIG. 14. Caption same as in Fig. 11. Ig. addition the
dash double dot represents Nickel's calculation with
only eight exact moments.

J's} they also found a double peak in the density of
states.

We now return to the excitations below the cri-
tical concentration x,. As is apparent from Fig.
14, there exists, for all x&x„a cutoff wave vec-
tor k,(x) such that for k&k, (x), &@ &0. Hence, no
physical excitation exists. The inverse of k, (x),
more precisely mk,"', may be interpreted as the
linear dimension of the largest cluster that the sys-
tem can sustain. Clearly for x&x„no bulk ferro-
magnetism exists (o = 0), and hence no long-wave-
length excitations. However, within a finite clus-
ter [l,-v/k, (x)], there may still be a solution with
o WO (where o refers to the cluster magnetization)
which can be obtained from Eqs. (6.4) and (6.5),
provided that the sum over k excludes the region
k&k, (x). Following this reasoning, we have cal-
culated for some values of x&x„ the number of

the magnetic atoms n in the largest cluster. These
are presented in Fig. 19 and compared with values
deduced from calculations of the average cluster
size of type-A atoms in a substitutional A. -B al-
loy, ' '" The discrepancy between the two methods,
for x close to x„seems to originate from the fact
that their n behaves as (x, -x) ""'(with x, -0.28),
while in our calculation n = (x, -x) ' ' (with x,
=0.296). The exponent —2 is obtained as follows:
close to x„&~satisfies the equation

(o.„-y (x)k'+ P(x)k',

where Q(x} —~x, -x~ and where g(x) is regular
near x,. Since k, is obtained by the equation

(5.6)

(o(k, ) =0, (5.'I)

it follows from Eq. (5.5) that k, - ~x, -x~'~'. Since
n lo k, ', we finally obtain n ~x, -x~ ' '. More
recent calculations" of this exponent fall in the re-
gion 1.66-1.80.

VI. MAGNETIZATION AND HEAT CAPACITY

In order to derive an equation for the relative
magnetization we recall the identity

FIG. 15. Top section —central peak location of pp (a,z),
normalized to those of ~(e, 1). Full line —CPA results
of ref. 31; dashed line —this paper. Bottom sectiob-
width of half-maximum hof the central peak, in uQits
of J. Full line —Hef. 20; dashed line —this paper. The
ordinate on the left refers to @=0.9, the one on the
right to @=0.7.
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FIG. 17. Density of states for spin-wave excitation
for several concentrations x. For sc lattice.

10—

(6.2)

(6.3)

&(6,'S ).,&+ &((Sg')„& —&(6'.)„&=xs(S+1).

As was stated earlier, &6'&=xoS. Hence

&(6'Sg„&+&(6')'„& —&Sg =xS(S+ 1).
&S' ) varies between S' and S(S+1)/3 as the tem-

h
0.14 j-')

3 6- 0.12

0.10

3 0.08
Cl

0.1 0.2 0.5
ka / R.w

0.4 , 0.5
0.06

FIG. 16. Dispersion relation ~(4) for different con-
centrations x. The dashed lines are secondary branch
arising from local excitations. This is'done for the
three principal directions (1,0, 0), (1,1,0), and (1,1,1)
for sc lattice.

004

0.02

(6.1)S'S + S —S~= S(S+1).

Applying this identity to I = P S and averaging
both over the thermal ensemble and over random
configurations

O.
0 10 12

FIG. 18. Density of states (full line) compared for
three different concentrations with parallel results of
Ref. 22 (dash-dot) and of Ref. 20 (dashed).
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FIG. 19. The number of atoms n in the Eurgegt mag-
netic cluster plotted vs the concentration x for the re-
gion x&x~. The dashed curve represents values de-
duced from Ref. 10 for the gyenxge number of atoms in
a magnetic cluster. For sc lattice.

perature is raised from zero to T, and may be
calculated from the equation

(S")—(S')'= (g p,,rf)-' e(S')/sK

For an S=2 system, however, (S')= 3S(S+ I) =S'
identically, at al/ temperatures. Hence, we ob-
tain in this case

2o= I. -- ((S.'Sg.,). (6.4)

=2Sgx dQD Q'
~E 2SgxQ (6.5)

This is an implicit equation for o which has to be
solved numerically. Results of g, for several val-

The configurationally averaged spin-spin correla-
tion (S'Sg can be expressed in terms of the den-
sity of states D(A) and the Bose-Einstein distri
bution function fes(E) as

1
((S~S„),„)= ——im & ««(&)f~E(2so&O)

0.2—

I

0.8
I

0.2
0.0'u0 0.4 0.6

Ti T, (x)

FIG. 20. Relative magnetization 0 =M (T)/M(0) for
several concentrations x plotted vs the reduced tem-
perature T/T, (1) and T/T, (x). For sc lattice.

1.0

ues of x, are presented in Fig. 20 as functions of
the temperature T and the reduced temperature
T/T (x).

It can be seen that the values of o (T) for various
values of x do not fall on a single universal curve;
the lower the concentration x, the more rapid is
the decrease in o(T). This behavior was observed
in experiments on nickel alloys, "' amorphous
CoP,"pseudobinary systems like Gd Yy A12,

"
and Fe alloys. "'" It should also be noted that
o (T), in the absence of an external magnetic field,
tends to zero at the critical concentration with an
infinite slope. Similar results for o(T) were ob-
tained by Montgomery et a/. '4 for a pure ferromag-
net with random exchange interactions.

The thermal demagnetization at low temperature
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tain results for the mean excitation energy

tx(x, T) —xx(x, 2') fdDDD(D)f x (22x'xD). , (6.7)

l0

10

1
0 0.5

FIG. 21. p(x) of Fq. (5.6) plotted vs the reduced con-
centration $ = (x-x, )/(1-x~). This is compared with
experimental data: Ni„Cu& „—full circles (Ref. 37),
Fe~sb& „—triangles (Ref. 36), Fe„Au& ~

—squares
(Refs. 35, 36), Ni„Au& —stars (Ref. 29), Gd„Y& „A12-
'crosses, and Tb„Y~.„A12—open circles (Ref. 28).

is found to obey the usual T'~' law, namely,

b, a =a(x)T'~', (6.6)
I

where a(x) = [(x —x,)/(1- x,)] ~' is strongly de-
pendent on x. This is shown in Fig. 21.

When a(x} is plotted versus the reduced concen-
tration $ = (x —x,)/(1 —x,) (Fig. 8), it is found to
be in quite good agreement with experimental re-
sults taken from various binary and pseudobinary
alloys. " The agreement with the experimental re-
sults is somewhat surprising. First, since some
of the data (e.g., Ni-Cu) are taken from systems
which are itjneragt ferromagnets, to which this
model does not actually apply; second, the cal-
culated a(x) refers to an sc lattice, which is not
the case for all the data presented. The agree-
ment, however, may indicate a universal depen-
dence on the reduced concentration $.

The specific heat can be easily derived once the
density of states has been calculated. We first ob-

which for T =T,(x) reduces to u&(x, T,(x))
= &u ..(x) = J,P, (1)/P, (x). Since the number of ex-
citations is normalized to 2Svx [cf. Eq. (5.4)] the
total energy of the magnetic system is given by
E = 2So ~. The specific heat is then obtained by
numerical differentiation. Results of C„(T,x) for
various values of x are shown in Fig. 22.

In specific-heat measurements of some A„B,
alloys"'" (Ni-pt, Ni-Cu) an anomalous peak was
found near x, . Two different schemes of analyzing
this anomaly have been suggested: Robbins et aL."
expressed Cv(T) as a sum of the electronic and
phonon contributions (yT + o.T') and an additional,
almost temperature-independent term which ex-
hibits the x-dependent peak at x-x, . Alternative-
ly," C~ was resolved as being composed of the
phonon contribution nT' and enhanced y(T ) T elec-
tronic contribution. It has also been suggested"'"
that the anomalous contribution to the specific heat
arises from spin excitation in finite magnetic clus-
ters, which are abundant near x,. Recalling our
results of the density of states at x & x„ it can be
seen that low excitation energies become more
dominant as x is decreased towards x,. This has
been interpreted as the contribution of spin-wave
excitation within finite clusters. Following this
reasoning, we have calculated C„(x) at low tem-
peratures for some values of T, using the previ-
ously calculated Cv(T). Results are shown on
Fig. 23. Clearly, as x approaches-x, from above,
Cv(x) rises to a maximum at x, . Although we have
not carried out the calculation below x„ it may
however be assumed that C„(x) would decrease
since the cluster concentration decreases rapidly"
as x is lowered.

ACKNOWLEDGMENT

We wish to thank Dr. D. Cabib for stimulating
dsscusssons.

APPENDIX

A. Calculation of Q(k,Q) and P(k,Q)

The functions of P and Q in Eq. (2.18) are in an
unsuitable form for numerical calculations. In this
appendix, P and Q will be expressed in terms of
a finite sum of products like f&(k)C&(Q). The f, 's
are explicit real functions of k and the Cq(Q}'s are
lattice-structure-dependent, complex functions of
0, which can be calculated numerically.

We start with the function
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0.5

FIG. 22. Specific heat
C„plotted vs the reduced
temperature T/T~ g) for
several concentrations x.
For each concentration we
dashed a vertical line at
the corresponding critical
temperature T~ (x). For
sc lattice.

0 0.5 .

T/TG (i)
1.0

1.5

q(k g) ~- Q ( k-0 q)( k-0 k) (A1)J —J —Q
q

0 q

where J„=Z~J~e'" P, being 'the lattice vectors,
reduces to Z& J) cosk p due to the inversion sym-
metry of the cubic Lattices.

Inserting this into Eq. (A1) one obtains

1.0

x [C;(n) —C;,-, .(n)j (A2)

0.5
where I'~(k)=1 —cosk p, and

c-=x-'
P - JOJq- 0 (A3)

0.30 0.54 0.58

FIG. 23. Specific heat C„vs concentration x for sev-
eral low reduced temperatures T/T, (1). For sc lattice.

Note that C &(0) depends only on the skell in which
the lattice vector p lies. It is thus convenient to
express the sums in Eq. (A2) as sums over shells
and over lattice vectors within the shells, i.e.,
Z~ E, Z~ where p& is a lattice vector in the
ith shell. We thus obtain
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Q (k 0) = g J~Zg ky(k)Z fCf(0) ky(k) g N (0m)Z C (0)+g Nk (m)k (k)[C (0) C~(0)])

(A4)t)(q)c)(Q),

where, C, (Q) =—C;, (Q) = z&'Z, y, (q)/(JQ -J, —Q), z, being the number of sites in the ith shell and y, (q)
= z 'Z; I"~ (q). N, &()kn) is the number of times the mth shell is covered by all possible combinations of two
successive steps, of order i and of order j. Values of N, &(m) for the cubic lattices are given in Table IL

In the simplest cases, where only nn interactions are considered, Q reduces to

Q (k, 0) = Z, (zC, (0) — Q mgzgCg(0)k(k) + Q nC, (0) —C, (0)r(k)) .
Zl

(A5)

Here we have defined n, =N»(i}.
Similarly one obtains for P(k, Q),

P(R, Q) = g J,[c,(Q) —c,(Q)]y, (k™), (As)

I

g J,J) 2 z, z~c, ( Q) —P N, &(m)z„c„(Q) ~

0 0=Q J,z, + J + —C,(Q), (A12)

which, for nn interactions only, yields

P(k, Q) =J,[C,(Q) —C,(Q)]y, (k) . (A7)

which, for nn interactions only, reduces to

—g n, z,C, (Q)+—1+ 2z, C, (Q)
1 0

(~ -~ )

7r (Q - Q') (AS)

The numerical results were checked against "sum
rules" which the C, 's have to satisfy. 'The sum
rules are as follows:

Consider the expression:

C, (Q) at Q+i5 is a complex function of Q, its
imaginary part ImC, (Q) is nonvanishing only in the
interval 0 &Q&(JQ —J'-) „(for nn interactions only
0&Q&2z,J,). We found it more convenient to'cal-
culate ImC, (Q) which involves only a two-dimen-
sional integral over a cross section of the Brillouin
zone} and then ob'tained ReC, (Q) by use of the
Kramers-Kronig relation,

(A12)

Equations (A10) and (A12) produce four sum rules
(both for ReC, arid ImC, ). In all the stages of the
calculation, we ensured that these were satisfied.
'The C, 's were computed for QW 0 with nn interac-
tions only and for 0=0 including second-neighbors
of relative strength g. These were denoted in Sec.
rv by c,(q).

S. Numerical cdculatio~ of Qz and Pz

P» and Q» may be easily shown to satisfy equa-
tions like (A4) and (A6), with y, defined as before.
The C, 's (from now on C", ), however, satisfy the
foll.owing integral equation:

(A9)N 'Q 0 ' = Q J,z)C)(Q).

Subtracting and adding 0 to the numerator, under
the q sum, one obtains

C,»=Q(1 —cosk p, )

1

g J J q CH (A14)

g J,z,C, (Q) QC, (Q) =1, (A10)

which, for nn interactions only, reduced to

J,z,C,(Q) —QC, (Q) = 1. (A11)

Similarly, by direct calculation of the expression
N 'Z (J', —J';)'/(J', —JQ —Q) and then by subtracting
and adding 0' to the numerator under the q sum,
one obtains

where the f&(q) are the same functions defined by
Eq. (A4).

Clearly, the C, are no longer x independent as
was the case with the old C,. It is also obvious
from (A14) that at Q large enough C& -C, . We
therefore solved Eq. (A14), for fixed x, by itera-
tion starting from large 0 and with C&

' ' = C,.
Convergence problems arose only at x close enough
to x,.
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