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Magnetic spins in crystals of mixed valence can simultaneously experience two kinds of cou-

pling: the superexchange and the double exchange. The latter coupling, first invoked by Zener
and further worked out by Anderson and Hasegawa, is mediated by additional electrons or holes
introduced into the system. In the present paper an effective site-spins interaction Hamiltonian for
double exchange is formulated. This Hamiltonian involves ascending powers of the bilinear in-

1
teraction S; SJ. The highest power is determined by the value of the site spin. Thus, for spin-—

the double exchange interactio'n looks like the ordinary Heisenberg-type coupling, Spin-1 Hamil-

tonian contains also a biquadratic coupling. Spin-
2

includes a bicubic interaction, spin-2 a biquar-

tic one, etc. It is argued that a localized description of systems with the double exchange is usually

sufficient. The phase diagrams are entirely different from the one predicted by the semiclassical

(large-spin) band theory proposed by de Gennes. The critical concentrations of the carriers are
evaluated at T =0 K in the mean-field-theory approximation. An applied magnetic field is shown

to have little influence on the strength of the double-exchange coupling. Spin configurations in

the presence of the field are also discussed. Finally, a spin-wave theory for such systems is con-

structed.

I. INTRODUCTION

Twenty six years ago Jonker and Van Santen'
discovered some intriguing magnetic and conductivity
properties in the compounds (La~ „M„)Mn03, where
M denotes the atoms of Ca, Sr, or Ba. For finite
values of x, those exceeding, say 9%, a significant in-

crease in the conductivity and a nonvanishing spon-
taneous magnetization were observed. The oc-
currence of a net magnetization was confirmed by the
neutron diffraction experiments of %ollan and
Koehler, 2 who detected a simultaneous presence of
antiferromagnetic and ferromagnetic lines at several
concentrations of calcium atoms.

These unusual properties certainly stem from the
fact that the compounds are in the state of mixed
valence. Consider, for instance, La'+Mn +03, i.e., the
compound with x =0. Now, if some three-valent La
ions are replaced by two-valent Ca oges, then some
of the Mn'+ ions, of configuration (3d)' have to be
transformed into Mn"+. As a result holes, which can
carry the electric current, appear in the system. On
the other hand the replacement of Ca by La, in the
compound with x =1, leads to introduction of mobile
electrons.

The puzzling existence of the ferromagnetic mo-
ment in crystals of mixed valence has been explained
by Zener who has shown that the hopping carriers
supply an effective coupling mechanism for the man-

ganese spins. This coupling favors an essentially fer-
romagnetic spin configuration, as explained in Sec. II,
and has been named "double exchange. "

A thorough analysis of the double-exchange interac-
tion between two spins has been worked out by
Anderson and Hasegawa. 4 This analysis is outlined in
Sec. III. Their theory is formulated in terms of two
parameters b and Jt, the first of which characterizes
the hopping rate of the carrier between the sites, and
the second describes the exchange coupling of the car-
rier to the site spins. Since the compounds in ques-
tion are only weakly conductive, the carriers move
through the crystal very slowly, so the condition
Jt )& b has to be satisfied. The authors have pointed
out that the coupling is entirely different from the
usual exchange interaction, but they have not suc-
ceeded in deriving an effective Hamiltonian.

The third and apparently the last, up to now, paper
on the subject is 'due to de Gennes. ' He has realized
that the constant b is in addition bigger than the su-
perexchange coupling constant between the site spins,
which simplifies the form of the effective interaction.
de Gennes constructs a semiclassical large site-spin
theory for a crystal with exchange and double-
exchange couplings. In the semiclassical limit the en-
ergy of the carrier migrating between two sites is pro-
portional to the cosine of half of the angle between
the spins. This is very unlike the angular dependence
found for the direct or superexchange. Since the cou-
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pling energy in a crystal is shared between the carriers,
de Gennes is of the opinion that this energy cannot be
written as a sum of terms relating the ionic spins by

pairs. As a consequence he formulates his theory in

terms of a band picture and he adopts a tight-binding
approximation for the carrier's wave function. This
theory leads to the conclusion that at T =0 K the sys-
tem will be either in a canted or a ferromagnetic
phase, depending on the concentration of the carriers.

The above band model for double exchange is cer-
tainly satisfying from the solid-state-physics-concepts
point of view. However it seems to be dificult to
work with in the manifestly quantum-mechanical case
of a finite spin. Our contention is that in the highly
localized limit J~ )& b, when the band of the allowed
energies of the carrier is very narrow, the band model
is not necessary, as long as we are interested in the
effective spin coupling. In this very limit the Hamil-
tonian should be a sum of pair interactions. This is
because for J& && b the carriers move through the cry-
stal sporadically and the coupling extends only small
distances. In one respect the situation is like that in
the Ruderman-Kittel-Kasuya- Yosida interaction in
rare-earth metals; namely, the conduction-band elec-
trons supply there an effective pairwise coupling of the
site spins.

In the present paper we derive a quantum Hamil-
tonian for double exchange between two magnetic
sites, This is done in Sec. IV. It turns out that the
coupling has the form of a polynomial which contains
consecutive powers of the scalar product of the two
site-spins operators. The order of this polynomial
depends on the value of the spin. The coupling,
though primarily ferromagneticlike, contains therefore
in general also biquadratic, bicubic, biquartic, etc. , in-

teractions. In the limit of large spin the semiclassical
results are obtained.

In Sec. V the influence of a magnetic field on the
double-exchange coupling is discussed and it is shown
not to be essential. In Sec. VI the Hamiltonian for a
layer-type 1-spin system is formulated as a sum of
pair Hamiltonians. The random nature of the
carriers-supplied couplings is treated within a frame-
work of the mean-field theory. The limit of small car-
rier concentrations is assumed. When no carriers are
present the system is an antiferromagnet. The system
is taken to possess some uniaxial anisotropy.

In Sec. VII a mean-field analysis is performed on
the ground-state of spin- —, through 2 antiferromagnets

with double exchange. The results are entirely
different from those predicted for the large-spin cry-
stals. In particular the spin- —, system is never in a

canted phase; it is either antiferromagnetic or fer-
romagnetic. In general, and the spin-1 system seems
to be the most regular one, at T =0 K the system can
be in any of the four following phases: For
su%ciently small concentrations the antiferromagnetic

phase is stable. For somewhat bigger concentrations a
canted phase appears. The system is still very much
like gn antiferromagnet except that the sublattices cant
off the anisotropy axis. For even bigger concentra-
tions a second canted phase, as we call it, is stable. In
this phase the sublattice configuration looks like in the
spin-flop phase of an antiferromagnet. A further in-
crease in concentration produces a ferromagnetic
phase. However in the case of a spin-2 system this
phase is never reached in the absence of a magnetic
field. The stability regions in the presence of the mag-
netic field are also discussed in this section.

In Sec. VIII the problem of a ferromagnet with dou-
ble exchange is investigated. It turns out that for
spins smaller than 2 the ferromagnetic phase is always
stable. However in the case of spin 2 a canted phase
appears for concentrations above some critical value.
In Sec. IX the layer-type antiferromagnet of S ~2
with double exchange is analyzed and an estimate of
the constant b is given. A spin-wave theory for such
systems is constructed in Sec. X.

Finally, in the Appendix some of the results for
5 7

spin- —,, -3, - —,, and -4 systems are presented. Even

for such large spins the phase diagrams do not qualita-
tively turn into the one predicted by de Gennes. The
reason for this is that de Gennes does not treat the
exchange and double exchange contributions to the
Hamiltonian on an equal footing; namely, the large-
spin limit is performed on the double-exchange part
only.

II. MECHANISM OF DOUBLE EXCHANGE

To be specific consider, after Anderson and
Hasegawa, two magnetic sites of Ca +Mn +03. As-
sume that the three d„„d„,d„, electrons are strongly
coupled and give a net spin vector of

2
. The .two

3

magnetic sites are separated by an oxygen atom with
two p valence electrons. The p electrons can leave the
ground-state configuration and move onto the
manganese sites which give rise to the superexchange
Heisenberg-type interactions between the magnetic
spins. "

Now, if one of the Mn"+ atoms is replaced by Mn'+
the cluster will acquire one additional electron d 2.

z

This electron will be coupled ferromagnetically or anti-
ferromagnetically to the core spin by means of the
direct exchange of strength J~. The coupling tends to
confine the electron on the magnetic site. However,
since J~ is not infinite, the electr6n can leave the site
and the cluster starts to resonate between the two
configurations: with the additional electron to the left
or to the right of the oxygen atom. As a result the
extra electron will hop between the sites with some
frequency b (at least when the site spins are forced to
be aligned parallel, as explained later). The hopping is
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not a direct one, since it is carried through the oxygen
electrons.

There are several mechanisms by means of which
the transfer of the electron takes place:

(a) The first-order process, invoked by Zener, ' is an
exchange-type interaction, which can be schematically
written

Mn4+ 0 Mn+ Mn3+ 0 Mn+,
21.3 l &1 21

where 1,2,3 label the additional electron and the oxy-
gen valence electrons. This process consists of two
simultaneous motions (hence the name "double ex-
change"): the transfer of the electron from the right
Mn atom to the central 0 and the transfer of an elec-
tron from the central 0 to the left Mn. The energy
required for the process is proportional to the overlap
between the p and d wave functions4 and the effective
contribution to the transfer constant b has a form of
the exchange integral.

(b) The second-order process, introduced by Ander-
son and Hasegawa4, in which there is one electron on
the oxygen in the intermediate state

Mn 0 Mn+ Mn+0 Mn+ ~Mn+ 0 Mn+ .
21, 3l 11 21 3l 11 21 11,3j

(c) Another second-order process (but of less im-

portance) which can enhance b will follow the pattern
with no electrons on the oxygen in the intermediate
state

Mn+ 0 Mg'+~Mn'+0 Mn'+~Mn + 0 Mn + .
21.3l &1 21 &1 3l 21 &1 3l

(d) The last mechanism is higher-order processes
which involve the core electrons.

All of these processes have the effect of moving the
extra electron from one magnetic site to the other
without changing the spin orientation of the hopping
electron. This property of the transfer has been
proved by Anderson and Hasagawa in the case of
processes (a) and '(b) by means of the Serber
method. 9 However, for all of these processes, this can
be readily established on the basis of the spin conser-
vation and the Pauli principle: the initial and final

states of the oxygen have to be singlets.
Since the electron is polarized by the direct ex-

change with one of the site spins and the polarization
is not changed on hopping, the new mechanism tends
to align the site spins ferromagnetically. However, we
will see that the interaction carried through the hop-

ping electron, though primarily of ferromagnetic
features, is in reality more complex.

The above picture of the double-exchange mechan-
ism is insensitive to the fact whether the hopping car-
rier is an electron or perhaps a hole. The latter situa-
tion occurs when in the crystal of LaMn +03 some
Mn'+ ions are replaced by Mn +.

III. ENERGY OF THE HOPPING EI KCTRON

(di a I
X'I di a) = —J(S

(dipl3"Idip) =J((s+I) .

(d2a'13" I
d2a') = &es ~—

«,p'Isc Id,p') = J,(s+i),

(3.ia)

(3.ib)

(3.1c)

(3.id)

the other one-site matrix elements vanish, and the
transfer matrix elements are

«&aIsc'Id2a) =b,
(d)aI3."Id2p) =0, etc. ,

(3.2a)

(3.2b)

where d2a (d2p) is a sum of projections of the states
a' and P' on the state a(P) on the second site. In
order to explain this more precisely, note that we have
here a problem of addition of three spins Si, S2, and s.
The addition can be performed in three ways:

(a) First one combines the first site spin and the
electronic spin and subsequently couples this net spin
with the second site spin

Si + s =Si', S&' +S2 =Sp (3.3a)

where Sp denotes the net spin for the cluster.
(b) First one combines the spins of the second site

and of the electron and then adds the first site spin

S2+s =S2', S2'+Si =Sp (3.3b)

(c) First one couples the site spins and then com-
bines this with the electronic spin

Si+S2=S„S,+s =Sp (3.3c)

Note that a and p are eigenstates of S~', and a' and p'

are eigenstates of S2'. These two sets of states are not
independent since in any of the eigenstates of Sp the
scalar products (aIa'), (pIa'), etc. , are proportional
to an appropriate signer function. In particular in the
semiclassical limit of large S, the scalar products
reduce to trigonometric functions

Let the spin of the hopping electron be denoted by s
and the site spins by Si and S2, respectively. Let the
site-spin quantum numbers be the same and equal to
S.

Now, when the electron is on a site, the site can be
either in the state with total spin S+—or S ——.If

2 2'
this is the first site the corresponding wave functions
will be denoted, after Anderson and Hasegawa, by dio.
and d~p, respectively. If this is the second site: by
d2a' and d2p'.

The Hamiltonian for the cluster of two sites and of
the electron can be divided into the superexchange
part and 3.", which consists of the direct exchange en-
ergy of the site electron plus, qualitatively, the energy
of hopping. The diagonal matrix elements of H' are
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) o.
&

= [u'& cos —,
' 8+ [P') sin

2
8,

( p) -—
]
a') sin —,8+ ] p') cos —,8,

(3.4a)

(3.4b)

~here 8 is the angle between the site spins, so Eqs.
(3.2) express the fact that the transfer mechanisms
corinect parallel states. This can be graphically sum-
marized as in Fig. 1.

Now one can write the matrix elements of 3."in the
basis of the states d~a, d~p, d2a', and d2p'. Anderson
and Hasegawa prove that in the limit of ) JI) &) (b [

the lowest two energies are

~ = -IJils + Ib I [(SO+ —,')/(2S +1)], (3.5)

where So denotes possible eigenvalues of So. These
can take only half-integer value from —, to 2S+ —,. In1

the semiclassical picture the coeScient multiplying
~ b)

turns into cos
2

8. The signs of JI and b are immateri-

al, so from now on these two quantities will be taken
as positive.

In the limit of JI )) b, a crystal composed of %
spins should be describable in terms of localized in-

teractions. In the opposite limit, which was also
worked out by the two authors, itinerant models
would describe the crystal. Here we will deal with the
former case as it is the situation encountered in Jonk-
er and Van Santen experiments.

Unlike the usual exchange problem the energies
(3.5) do not depend on the eigenvalues of S,; instead
they are labeled by quantum numbers So. In addition
So determines two values for the energies. The
second difference especially leads Anderson and
Hasegawa to believe that such coupling energy cannot
be expressed as an effective site-site interaction and
no quantum Hamiltonian for double exchange was

formulated.
de Gennes, 5 however, points out that in the com-

pounds under study b is much larger than the su-
perexchange coupling, of strength J, between the site
spins. On the basis of Wollan-Koehler experiments
on La~ „Ca„Mn03, with x between 0.09 and 0.22, he
estimates b to be equal to 64J (spin 2). We will see
that b should be probably bigger by at least a factor of
2. Therefore in the limit JI &) b )&J only the minus

states of (3.5) are appreciably occupied and the plus
sign energies can be neglected. This is true in the
range of temperatures which do not much exceed the
critical temperature. If b were comparable to J, the
omission of the plus-sign states would be justified for
temperatures much smaller than the critical one (Neel
or Curie temperature).

A heuristic argument why b should be usually
bigger than J seems to us to be as follows. The su-
perexchange coupling is a result of transitions to the
excited states of the ionic configuration while the hop-
pings described by b express the ground-state wave-
function oscillations "from left to right, " and therefore
should be dominant.

IV. DOUBLE-EXCHANGE HAMILTONIAN

The energies (3.5) can be actually written in terms
of the net site-spins eigenvalues S,. To see this note
that So can take either S, + —, or S, —2

values so1 1

E = —JIS —b(S, +1)/(2S +1), So = S, +— (4.1a)

or

F. = —J(S —bS,/(2S+1), SO= S, —2, S, &0

(4.lb)

S, = —
2

+ —,[1+8S(S+1) +8Si S2]'i2 (4.2)

which can be readily established by calculating ( S,)' .
Hence the effective site-site double-exchange (de)
Hamiltonian is

For S, %0 the energies (4.1b) dier from (4.1a)
merely by a constant. When formulating the Hamil-
tonian we could take into account this ambivalency in
the energy eigenvalues by introducing a fictituous spin
of —, which would discern the two series of levels.

However, as long gs we are interested in the effective
coupling of the site spins, we do not need the Acti-

tious spin to consider, since it does not interact with
the site spins. For any S, the effective site-spin cou-
pling energy is therefore given by (4.1a).

Now, the eigenvalues S, are uniquely determined by
the eigenvalues of S~ S2'.

e
~ 2

sc" = —[b/2(2S +1)]
x [1+SS(S+1)+8S, S,]'/2 (4.3)

FKJ. 1. Model for double exchange.

where the constant terms have been omitted. In the
semiclassical limit (4;3) becomes simply bcos —8. —

Hamiltonian (4.3) holds for any value of spin, but .

for a given S it can be simplified in the following way.
The square root in (4.3) can be expanded into an
infinite series of consecutive powers of S~ S2. Howev-
er, not all of these powers are independent. In partic-

1
ular in the case of spin- 2,
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3(S( Si) = —,
——S) Si (4.4a)

in the case of spin 1,

( S) S2) = 2 +Si S2 —2( Si S2) (4.4b)

etc. This allows one to replace (4.3) by a finite order
1

polynomial in Si S2. In the case of spin- —, the polyno-

mial will contain a constant and a bilinear term S1 S2.
For spin 1 the polynomial will be of the second order,
for spin-

2
—of the third order, for spin 2 —of the

fourth order, etc. Hence the double-exchange Hamil-
tonian takes the form [equivalent to (4.3) within a

constant]

X(2 = be)2 =— b[J—O +J) S) S2

J(s) (S .S )2 J(s) (S .S )3

(4.5)

0= J()2 —6J)2 —6 J22 +6 Jp —6 Jp . (4.6)

In the similar way the remaining four equations for
J„are obtained. The results of such calculations are
as follows:

—J4" (Si S2)'—

The coeScients J„( are established by matching the
eigenvalues of (4.5) to the possible eigenvalues of
S,/(2S+1). For example, if S =2 then S,/(2S+1)

1 2 3 4
may be equal to 0, —,, 5, —, , and —, . In the state with

S, =0, S1.S2 becomes —6, so we receive the equation

is actually more complex. Except for the spin- —case,

it produces also biquadratic interactions of various
signs. If S ~ —, the bicubic coupling appears, etc.

Although the coefficients of the terms (S) S2)" essen-
tially decrease with n, the larger powers are by no
means negligible since they are accompanied by S ".
In Sec. VI we shall see that the biquadratic, bicubic,
etc. , couplings may lead to canted sublattice
configurations.

Finally note that the possibility of expressing S, by
the square root, as in Eq. (4.2) may be another source
of biquadratic exchange interactions which have been
detected in some magnetic systems without mixed-
valence chemical structure.

V. EFFECT OF THE MAGNETIC FIELD

An applied field Hp primarily aligns the site spins,
but it also polarizes the hopping electron or the hop-
ping hole. The energies (3.5) are thus modified. e
can take into account this polarization only in the
framework of the semiclassical picture and when the
field points in the z direction, as depicted in Fig. l.
We will show that these are not serious limitations.

If the electron is in the state dna' (diP'), it means
(semiclassically) that it is parallel (antiparallel) to the
second site spin and therefore the electronic spin
makes the angle of —,8 with the z axis. As a result

Eqs. (3.1a) and (3.1c) acquire the additional term

1S=—:2'

J (1/2) 3 J (1/2)

J (1/2) J (1/2) . . . 0
(4.7)

1
paHpcos 2

8

while Eqs. (3.1b) and (3.1c) increase by

+p, ~H0 cos
2

8
1

(5.1a)

(5.1b)

S=1:
J (1) — 0 J (1) J (1)

18 ' 1 6 ' 2 18 '

J (1) j(1)

3S=—:2'

J (3/2) 141 J (3/2) 61 J (3/2)
256 ' 960 ' 720 '

J (3/2) J (3/2) . . . 0 .
180 4

(4.8)

(4.9)
b = b +paHp (5.2)

where p, a denotes the Bohr magneton, and 5=1. If
the hole is the double-exchange carrier, the signs of
(5.1) are reversed. These equations are written in the
usually adopted convention that spins of negatively
charged particles tend to follow the field direction.

The semiclassical solution of the eigenvalue prob-
lem as in Sec. III leads to the replacement of b by an
eA'ective transfer constant b, where

S=2:

J (2)
2100 ' 2 1800 '

(4.10)
J (2) 1 J (2) 1 J (2) . . . 0900 ' 4 2520 '

The coefficients J„' ' for S= —,, 3, 2, and 4 are

presented in the Appendix.
Note that the bilinear term is invariably ferromag-

neticlike, in agreement with the physical picture at-
tached to the double exchange; However the coupling

,The upper sign holds for electron and the minus sign
~lfor the hole. The presence of the electronic carrier
enhances the ferromagnetic properties of the double-
exchange coupling when the field is applied.

The polarization correction is substantial only if
p, aH0 becomes comparable to b. Since b is assumed
to be much larger than the superexchange coupling
constant J, the correction is meaningful at large values
of Hp, when the site spins are certainly pointing paral-
lel to the field, and therefore, when the semiclassical
picture should be adequate.
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Next consider a situation with the spins in a canted
configuration (more precisely we should speak of a
canted sublattice-magnetization configuration which
can be achieved in a crystal composed of W spins) but
with the field pointing in the y direction. Now the
semiclassical analysis introduces +p, aHp sin —,8 to (3.5)
for either sign of the carrier. This correction does not
have the form of the effective double-exchange cou-
pling and it is difficult to handle. However the
configuration as described above is stable (see Sec.
VII) for fields very much smaller than b, when the
correction of this kind can be completely neglected.

VI. N-SPIN HAMILTONIAN

Let us again confine our attention to
La~ „Ca„Mn03. This compound crystallizes in a
perovskite-type structure. The magnetic lattice struc-
ture has been determined by Wollan and Koehler' in
neutron diffraction experiments for selected values of
x. In particular when x =0 or 1 the magnetic unit cell
is shown in Fig. 2. The orientations of spins with
respect to the lattice, displayed in this figure, are to be
taken qualitatively since they are not entirely clear.

CaMn03 is a spin-
2

cubic antiferromagnet with

a =7.465 A at 80 K. On the other hand LaMn03,
with S =2, has a slightly monoclinic antiferro-
magnetic-layer-type structure. This means that each
site spin is coupled ferromagnetically to z' neighboring
spins in the same layer and antiferromagnetically to z
spins in the adjacent layers. The ferromagnetic ex-
change integral is called J' and the antiferromagnetic
one J. The magnetic lattice parameters at 80 K
(T.=141 K) are ai =a3 ——7.973 A, a2=7.693 A, and

P =92'7'. Since a2 is shorter than ai and a3 it seems
likely that there exists some uniaxial anisotropy field
in the a2 direction. This system can also distinguish
the cubic components of the crystalline field, but we
will neglect this effect.

%'hen the concentration x ranges between 0 and 1,
double-exchange coupling mediated either by holes or
by electrons appears in the system. This is however
accompanied by several side effects. One of these is

I

I

o
r

(b)
FIG. 2. Magnetic structure of (a) LaMn03, (b) CaMn03.

cos
2

I'= bx/4JS' (6 I)

If the concentration exceeds 4JS'/b the spins are
aligned ferromagnetically. de Gennes points out that
condition (6.1) is also obeyed by other than two-
sublattice arrangements. However, the presence of
anisotropy is expected to stabilize the two-sublattice
configuration. de Gennes presents also an involved
mean-field theory for the system at finite temperature.
The exchange and double-exchange energies appear to
decrease with temperature at different rates. The
resulting phase diagram (in the absence of an aniso-
tropy) is shown in Fig. 3, but we shall see in the Ap-
pendix that even for large spins this diagram is in-
correct.

that the average magnetic lattice parameters change
their values. Especially dramatic changes occur in the
ai and a3 directions where the lengths (in the unit
magnetic cell) differ by 0.5 A between the x =0 and
x =1 situations. As a result the coupling constants
J,J' and the corresponding transfer constants b, b' (the
hopping rate in a layer may be in general different
than between layers) are themselves functions of con-
centration. One has therefore to deal with average
Hamiltonian parameters. In particular, at some con-
centration which is probably close to x =0.5, an ex-
change inversion transition apparently takes place: the
ferromagnetic J'(x) turns into the antiferromagnetic
J(x).

A phenomenological model for exchange inversion
transition for systems without double-exchange cou-
pling has been worked out by Kittel' and further ela-
borated by Jarrett. " In such a transition interactions
with phonons are of fundamental importance. They
turn out also to be responsible for a temperature hys-
teresis at the transition. A microscopic analysis of the
whole transformation path between LaMn03 and
CaMn03 seems therefore to be a complicated task.
The theory presented in this paper will apply only to
systems with small concentrations of holes or elec-
trons, when the site spins can be considered as fixed
rigidly in a lattice.

In the small-concentration limit the interactions
between the carriers can also be neglected.

A theory of magnetic order in a layer-type antifer-
romagnet with double exchange has been constructed
by de Gennes. ' He considers the limit of large S
when the double exchange coupling is proportional to
b cos —,8. de Gennes treats the carrier wave function

in a tight-binding approximation. Subsequently he as-
sumes that in the small-concentration region the car-
riers occupy merely the bottom of the band, which
corresponds to their uniform distribution in the lattice.
The ground state of the system is found by minimiz-
ing the total energy. It turns out that at T =0 K, and
for sufficiently small concentrations, the sublattices are
in a canted configuration with a canting angle
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0 2.51J I s
b

4I Jl S
b

FIG. 3. Phase diagram for a spin layer antiferromagnet in

the de Gennes (Ref, 5) theory.

In the framework of his semiclassical theory, de
Gennes discusses two additional side eA'ects of the in-
troduction of carriers: creation of bound-states carrier
impurity, and self-trapping of the carriers. %e shall

t

l

accept his conclusion that these localized distortions
do not alter the average spin configurations
significantly (as, for example, both bound and un-
bound carriers participate in the double-exchange
mechanism) .

As explained in Sec. I, the above band model is not
necessary in the highly localized limit JI &&.b, when
we are interested in the effective spin coupling. In
Sec. IV we have found a Harniltonian for two sites.
Since the carriers move very slowly through the crys-
tal, the double-exchange part of the Hamiltonian for
the ¹pin system should be a sum of pair interac-
tions. Our argument recalls therefore the standard
direct-exchange N-spin Hamiltonian derivation in
which one first (i) compares the energies of a direct-
exchange electron in its singlet and triplet states, then
(ii) one constructs an elfective Hamiltonian for a pair
of site spins, and finally (iii) one composes the total
Hamiltonian from the pair contributions.

In order to simplify the problem we make an addi-
tional assumption, equivalent to the one employed by
de Gennes, that the carriers are distributed uniformly
in the crystal. In this way we obtain a mean-field-type
Hamiltonian which serves as a first-approximation
description. This fails, however, to be a good approxi-
mation in experiments which involve times compar-
able with fb '.

With the pair double-exchange Hamiltonian (4.5)
the total Hamiltonian for the two sublattice layer-type

system becomes

X =2J X S( S —2J' $S(.S( —2J' X S S —2xb X X( —2xb' X H((
(lm) (II') (mm') (Im) (II')

X ~„', —D X (S(')2 —D X (S*) 2 —$H S( —XH S
(mm') m I m

(6.2)

where D denotes the uniaxial anisotropy constant, H
is g p, ~HO, with g being the appropriate Lande factor.
If H points in the direction which bisects the angle
between two sublattices, then b is given by Eq. (5.2),
otherwise (and if 0 =0) b is understood to coincide
with b. In Eq. (6.2), x denotes the concentration of
carriers which mediate the double-exchange coupling.
The factor of 2 in the double-exchange terms follows
from the fact that the summations in (6.2) are per-
formed over —% sites: if we were summing over N

ions each of them would carry a weight x; in the sum-
mation over

2
N sites the weight 2x has to be attribut-

ed to each ion.
Hamiltonian (6.2) describes a simple antiferrornag-

net if J' = b' =0. On the other hand it applies to a
ferromagnet with double exchange if J = b =0.

%e shall see in Sec. IX that in some instances the
layer-type structure has to be actually analyzed in
terms of a four-sublattice model.

VII. MKAN-FIELD GROUND STATE OF AN

ANTIFKRROMAGNKT KITH DOUBLE EXCHANGE

A. Stability conditions

Consider the two-sublattice Hamiltonian (6.2) and
set J'= b'=0. Assume the system is at T =0 K and
the concentration x is sufficiently small so J and b are
roughly constant. Let the two sublattices make the
angles (t and il(, and the magnetic field the angle ((:,

with the anisotropy (z) axis respectively, as shown in

Fig. 4. The plane in which this figure is drawn is
determined by the direction of the magnetic field'. If
the magnetic field vanishes the plane of the sublattices
orientation is understood as stabilized by an infini-
tesimal transverse field.

If the spin does not exceed 2, the mean-field ex-
pression for the energy of the antiferromagnet with
double exchange reads (the constant JD(s' —term is
omitted)
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B. Antiferromagnetic phase

FIG. 4. Two-sublattice configuration.

e = 2F. (P,—$)/N =2z(J xbj)—' ')S' cos( I((—P)

+ 2xbjq")zS4 cos'(p —$)

+2xbJ3 zS cos ((li —@)

+ 2xbJ4 zs cos4((I( —$)
—DSi cos $ —DS2cos~g

—HS cos(@—g) —HS cos(g —((:)

(7.I)

%e shall assume that the anisotropy constant D is
small in comparison with J. For the spin-

2

systems D is effectively zero since the lowest spin
that can distinguish uniaxial anisotropy is 1.

The equilibrium conditions are

This phase is stable for sufficiently low concentra-
tions. The existence of the antiferromagnetic
configuration was ruled out in the de Gennes theory.
However, if we consider a two-site problem, then if
the contribution from the double exchange is very
small, the two sites will be in a configuration with

S, = Q, which constitutes a nucleus for the antifer-
romagnetic arrangement.

The antiferromagnetic phase becomes unstable at
some concentration xi which satisfies the condition

2x) bz = (2zj + D) (A ( ) '

where

(7.6a)

C. First canted phase

g (s) J(s) +2J(s)S2 3J(s)S4+4J(s)S6 (7 6b)
6

The constant A i' ' is equal to —,, —„, ,4~, and, ipp for

spins —,, 1, —,, and 2, respectively. In the case of the
1 3

four values of spin, the larger the spin the longer this
phase is stable, as the double-exchange contribution to
the effective bilinear exchange diminishes with spin.

0

Qe

The stability conditions are

Qe
8 2

and

(7.2)

(7.3)

(7.4)

This phase is not allowed for spin —, due to the lack

of the biquadratic, etc. , interactions. For the higher
three values of spin the canting angle is determined by
the equation

2zJ+D —2bxz(J +2J( S cos2@

—3J( S cos 2/+4 J S cos 2@) =0

(7.7)

$2e 82e

(I@' ()$8$
$2e $2e

()@()$ '()il('

$2e $2e —2D2cos2$
8$ 8$

—HS cos(d —g) ) 0
)

(7.5)

Consider now the H =0 situation in detail. If the
equilibrium conditions (7.2) and (7.3) are added side
by side, we obtain the equation sin2$ = —sin2$. It
means that for H =Q four possible sublattice
configurations are allowed: (i) @=0, P = n, which
corresponds to the antiferrbmagnetic phase; (ii)
(l(=n —@: the. first canted phase; (iii) (I(= —@: the
second canted phase; and (iv) $ =0, P =0: the fer-
romagnetic phase. The stability of the above phases
depends on concentration and is determined by Eqs.
(7.4) and (7.5). Note that in the absence of anisotro-

py the differentiation between the two canted phases is
meaningless.

x(J —3S J cos2@+6S J cos 2@) ) (j

(7.8)

is satisfied as long as $ does not exceed 45'. The first
canted phase ends therefore at the concentration x2.

2xzbz = (2zj D+)(J )(', S = I, z
(7.9)

In the case of S =2, J2~ is negative and J3~ is posi-

The larger the angle, the larger the transverse spon-
taneous moment in the system.

On lowering the concentration @ vanishes at x = x).
Thus the transition from the first canted phase to the
antiferromagnetic one is of the second order.

Consider now the upper boundary of the first canted
phase. In the case of spins 1 and —, the biquadratic

constant J2~ is positive and J3 is nonpositive, so the
stability condition (7.4), which reads

Q2 e

8 2
= DS' cos2 $ + 4xbzS' sin'2(b
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2xzbz =(2zJ +D)A2 ', S =2

where

A 2
= J, + 2Jp S cos24)2 —3J3' S cos 2/2

+4J4' S cos 2@2=0.061

(7.11a)

(7.11b)

The conceritration x2, as given by (7.11a) is 1.56
times as large as xi for spin 2.

At the transition point the effective bilinear coupling
becomes ferromagnetic and a further iricrease in con-
centration produces a configuration with an acute an-

gle between sublattices and therefore with the spon-
taneous moment along the z axis.

D. Second canted phase

Again, at H =0, this phase is not allowed for S = —.
For higher spins the canting angle is specified now by
the equation

—2zJ + D +2xbz(JP —2J2s S2cos2@

—3J S cos 2@—4J S6cos 2$) =0

(7.12)

and the second derivative can be expressed in a form
similar to (7.8) except for the change in sign of the bi-

cubic contribution.
Consider first the lower boundary of this phase. In

the case of spins 1 and
2

the instability takes place at

45', i.e., at a concentration x2 .

2x, bz = (2zJ D) (J' ') ', S—= 1, —, (7.13)

tive. As a result the second derivative, (7.8) becomes
negative at an angle which is smaller than 45'. In the
limit of negligible anisotropy the critical angle is

J (2) + ((J (2) ) 2 8 J (2)J (2) ) )/2

cos2@2=,(7.10)
4J4( )S

which corresponds to P =28.69'. The critical concen-
tration is then

and it is three times as large as x2.
In the case of spin —, the ferromagnetic

configuration is not achieved from the second canted
phase in a continuous fashion. This is because J3
is negative and larger in magnitude than J2 ' which
leads to the negativeness of the second derivative for

$ smaller than some angle $3. Note that for S = —,
3

the lower energy solution of the Eq. (7.12) is

J (3/2) J (3/2)
' 2

cos2$=
(3/2) 2

+( S ) (3/2)3J, S

3(.D +2xbzJ) 3 —2zJ)
2xbzJ

(7.16)

This solution becomes complex at concentrations
exceeding that x =x3 for which the square root in
(7.16) vanishes. The critical angle is then equal to
43.94 and it differs from 45 merely by 1.06'. Thus
the concentration x3 only slightly exceeds x2 and is
given by

2x3bz = (2zJ —D) A 3 ', S =
2

=3

where

(J (3/2) ) 2 + 3J (3/2) J (3/2)
137

3J / 2160

(7.17a)

(7.17b)

S =2, but if S =1 or
2

the two critical concentrations

differ by the anisotropy term only. We conclude that
the transition between the first and the second canted
phases involves a hysteresis so it is of the first order.

Consider next the upper boundary for the second
canted phase. If such a boundary exists, it marks a
transition to the ferromagnetic phase.

In the case of spin 1, the angle @ smoothly dimin-
ishes to zero on increasing the concentration. The
ferromagnetic phase is reached at a concentration x3,
which is defined by

2x3bz =(2zJ —D)(J))) —2J2(' ) ', S=1, (7.15)

2x2bz =(2zJ —D)S2 ', S =2

where

(7.14a)

A2 =J("' —2J2"S'cos2$2 —3JP'S'cos'2@2

—4J42 S6 cos32$2 =0.081 (7.14b)

The concentration x2 is smaller than x2 by 0.76 if

In the case of spin 2 this angle is not reached. Instead
the maximal angle allowed @2 is determined by Eq.
(7.10) in which the sign of the Jp' term is reversed.
This result holds for very small anisotropy and yields

$2 =39.54'. The corresponding critical concentration
is

At x =x3 the stability condition (7.5) is broken and
the system undergoes a first order transition to the
ferromagnetic phase. The second canted phase is yet,
for S = 2, highly unlikely to be observed, as is ex-

plained in Sec. VII F.
In the case of S =2 there is no upper boundary for

i*'

the second canted phase as a function of concentra-
tion. The ferromagnetic phase turns out to be un-
stable and it is never reached. On increasing the con-
centration, however, the canting angle does not dimin-
ish indefinitely. To see. this note that in the limit of
xb && Jz, .the —2zJ + D term in the equilibrium condi-
tion (7.12) can be neglected. The asymptotically
reached angle @3 is therefore equal to 13.47'
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(cos2@i =0.89145). The allowed angles in the second
canted phase range thus between 13.47'and 39.54'.

TABLE I. Summary of our results on phase boundaries.

E. Ferromagnetic phase

iS=
2

S 1
3S=—
2

S=2

2xi bz = (2zJ —D) (A i ) (7.18)

The analysis of the condition (7.5) leads to the con-
clusion that the ferromagnetic phase is stable for con-
centrations larger than x3 with

2xibz
2x2bz

2x2 bz

2x3bz

2x3 bz

4zJ
~ ~ ~

4zJ

3.6(2zJ +D)
6(2zJ+D)
6(2zJ -D)
18(2zJ —D)
1S(2zJ —D)

6.49(2zJ +D) 10.55(2zJ +D)
15,74(2zJ +D) 16.39(2zJ +D)
15.74(2zJ —D) 12.35(2zJ —D)
15.77(2zJ —D)
7.06(2zJ —D)

provided

92e = —2zJ +2xgzg ~s~ +20 )0'8—
where

(7.19)

A ($) J($) 2J($)S2 3Ji(3)S4 4J($)S6 (7 20)

(a) I

XI

(b)
Xl X~~X~

L

The constant A3 is equal to —,—,,20, and 2,00 for

S = —,, 1, —,, and 2, respectively. Since for S =2 A3~
1 3

is negative, the condition (7.19) is never fulfilled and,
as already mentioned, the ferromagnetic phase is not
achieved.

For S = —,, x3 lies in the stability region for the first

canted phase and it is in fact very close to the upper
boundary for the antiferromagnetic phase, xi.

If S =1 the transition between the second canted
phase and the ferromagnetic one is continuous.

Finally, if S = —, the transition between the antifer-

romagnetic and ferromagnetic phases is continuous as
a function of x. This is due to the absence of any
single-ion anisotropy in that case.

F. Summary, H =0.

The results of our discussion on phase boundaries
are summarized in Table I. The phase diagrams are
schematically shown in Fig. 5.

The variety of the phase diagrams is a result of the
diversity in signs and magnitudes of the double ex-
change concentration-dependent bilinear, biquadratic,
bicubic, and biquartic interactions.

As explained in Sec. VI the Hamiltonian we have
been analyzing is meaningful for small concentrations.
If the transfer constant b is sufficiently larger than J,
then the systems can follow all of the stages of the ap-
propriate phase diagrams in the small x region. Other-
wise the theory is reliable in the first one, or perhaps
two, phases.

The second canted phase, in the case of spin 2, is

nevertheless very improbable to be observed. It has
rather to be thought of as a virtual configuration (or a
metastabie one). The reason for this is that xi is well

in the stability region of the ferromagnetic phase. In
addition x3 almost coincides with the upper boundary
x2 for the first canted phase. For not too small aniso-
tropy constant 0, x3 is actually lower than x2.

G. Configurations in the presence of a

parallel magnetic field

(a) If at H =0 the system is in the antiferromagnet-
ic phase, then at

(c) I
I I
I I

Xl Xgl

Xl

X2
a I ~

~ I ~

X~I X3

Xp

H~F sF = 2SD' (2zJ + D —2xbzA i ) '~, (7.21)

the antiferromagnetic phase ceases to be stable-and a
first-order transition to the spin-flop phase (which is
the field-induced second canted phase) takes place.
At so small values of H the carriers polarization have
no influence on the double-exchange coupling.

The spin-flop phase becomes unstable, on decreas-
ing H, at

HsF AF =2SD' (2zj —D —2xbzA i )

FIG. 5. Phase diagrams at T=O K for (a) S= 2, (b)
1

S = 1, (c) S = 2, and (d) S = 2.

x (2ZJ + D —2xbzA ' ) '

(7.22)



3480 M. CIKPLAK

+3J' 'S'cos'2@

+4J' 'S'cos'2$)] (7.23)

The above result has been derived under the assump-
tion that (i) the concentration is small in comparison
with xi, and (ii) D/Jz (& 1. These assumptions
make the canting angle to be close to 90 in the vicini-

ty of the antiferromagnetic phase. Indeed, when
x =0, the cosine of this angle is proportional to
(D/2ZJ)'

In the spin-flop region the canting angle is deter-
mined by the equation

H =2Scosg[2zi —D+2xbz( Jit i —+2J2s S2cos2@

similar to (7.24) except for the change in sign in the
anisotropy term.

VIII. MEAN-FIELD GROUND STATE OF A

FERROMAGNKT WITH DOUBLE EXCHANGE

In this section we set J = b =0 in Hamiltonian
(6.2). The mean-field expression for the energy is
now like (7.1) with Jand breplaced by —J'and b',
respectively. On inspection of the correspondingly ad-

justed equation (7.19) we conclude that if S is equal to
—,, 1, or —,, the ferromagnetic phase is stable at any
1 3

concentration. However, if S =2, the ferromagnetic
phase is stable for x not exceeding x4'.

When this angle vanishes the spin-flop phase under-

goes a second-order transformation into the paramag-
netic phase (or the field-induced ferromagnetic phase).
This happens at

2x4b'z = —(2zJ'+D) (AP )

=21.65(2zJ'+D) (8.1)

HsF p=2S(2zJ —D —2xbzA3 )

x(1+g '4xzSA&si) ' (7.24)

H. Configurations in the presence of a

perpendicular magnetic field

If at H =0 the system is either in the ferromagnetic
or the second canted phase, then a field which is,
roughly speaking, smaller than the anisotropy field will

rotate the sublattices towards the field. For bigger
fields the system will be in the spin-flop phase (or a
field-induced first canted phase).

The antiferromagnetic system (x ~xi) will be in

the spin-flop phase even at arbitrarily small values of
H.

The spin-flop phase transforms into the paramagnet-
ic one at H =Hsp p, which is given by an expression

where g is the Lande factor for the site spins, A 3 is

defined by (7.20), and the upper (lower) sign holds
for electronic (hole) carriers. The term including the
Lande factor takes into account the polarization
correction. In comparison with a purely antiferromag-
netic system, the double exchange diminishes HsF p

except for the spin-2 case, when the critical field is

enhanced.
(b) If at H=0 the system is in the first canted

phase, then under the influence of the field the sublat-
tices will start to rotate towards the z axis, until they
reach the spin-flop phase. The critical field required to
cause such a transition is of the order of the anisotro-

py field. When H achieves another critical value,
given by (7.24), the system will be found in the
paramagnetic phase.

(c) If at H=0 the, system is in the second canted
phase, then with the applied field it will undergo a sin-

gle second order transition to the paramagnetic phase,
This happens at H also equal to (7.24).

On increasing the concentration beyond x4 the sub-
lattices open up. The transition to the second canted
phase is a continuous one. To see this note that the
concentration x4 coincides with the /=0 solution of
the modified equation (7.12). This equation possesses
solutions in the domain of small angles only, when
the expression in the brackets is negative. In this
domain the maximal canting angle of 13.47' is
reached ($3 of Sec. VIID) for: xb'» J'. There is
no subsequent transition to the first canted or antifer-
romagnetic phases, for the primary effect of the dou-
ble exchange is to strengthen the ferromagneticlike
bilinear coupling.

In the large-S de Gennes theory the canted phase is
not allowed. When a parallel field is applied to the
spin-2 system at x & x4, it wi11 force the sublattices to
point in the z direction if it exceeds

H4=2S( —2zJ' —D —2xb'zAP )

&&(I) +g '4xzSA tzi)-' .

Again the upper sign holds for electronic carriers.
The critical field H4 vanishes when x =x4.

(8.2)

IX. LAYER-TYPE ANTIFKRROMAGNET
WITH DOUBLE EXCHANGE

Now the system is described by the complete Hamil-
tonian (6.2). In the spin-2 crystal (Lai „Ca„)
(Mni3+"Mn~+) 03, J' is probably much smaller than J
(for suKcientiy small x) since J' is about to invert its
sign. On the other hand it seems likely that b' is of
the same order of magnitude as b. The critical con-
centration x4 is therefore probably smaller than x~.

Beyond x4 the system has to be then described in
terms of a four-sublattice model since the sublattices
coupled by J' open up. If x & xi canting in two mutu-
ally perpendicular planes should take place. However,
the canting angle of the ferromagnetically coupled
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sublattices is small, as it reaches 13.47' only asymptot-
ically. A two-sublattice model should be therefore
sufficient at not too big concentrations.

The experimental evidence on
(Lai „Ca„)(Mni'+„Mn„"+)03 (Ref. 2) seems to suggest
that at x =9% and probably also at somewhat smaller
concentrations, a canted configuration is present; The
occurrence of the ferromagnetic lines in the neutron
diffraction pattern should be due to the canting of the
antiferromagnetically coupled sublattices. de Gennes,
on the basis of the large-spin theory, estimates
b =64J. If we take this value of b (and neglect aniso-
tropy) we get x~ =16%. We conclude that de Gennes
underestimates b by at least a factor of 2. However,
further experimental evidence is certainly necessary to
check our model.

A mean-field analysis for systems with double ex-
change at finite temperatures seems to be involved.
This analysis should be formulated in terms of in-
teracting multipoles, as is done for spin-1 systems
with biquadratic exchange. ' In these systems
effective dipolar a'nd quadrupolar couplings enter the
expression for the free energy.

In any of these configurations (in particular: P = m,

@=0; i[i=a —Q; P= —$; &=/=0) the spins in the
rotated reference system x', y', z' are related to the
fixed reference system x,y, z in the following way: for
the first sublattice,

Sx Sz

Sf = Sl* sing+St' cos@,

SI'=Sf cos$ —St' sing

and for the second one,

Sx Sz

S =S' sinp+S cosp

S„*=S'cosP —S-" sing .

(10,1a)

(10.lb)

(10.1c)

(10.2a)

(10.2a)

(10.2c)

SI' =S —a,ta (10.3a)

The z' directions are parallel to the respective sub-
lattice magnetizations so they are the proper quantiza-
tion axes. The x', y', z' spin components can be ex-
pressed in terms of the Holstein-Primakoff" bosons as
follows:

X. SPIN WAVES IN SYSTEMS WITH
DOUBLE EXCHANGE

S(' = i ( ,
' S) ' '(—a,t —aI) + i [4(2S)' '] '

&& (a, afaI —a, a, ai) +t (10.3b)

A semiclassical spin-wave theory for small wave
vectors has been worked out be de Gennes. 5 In this
section we shall derive spin-wave energies for the
spin- —through -2 systems for any wave vector.
These results may be of importance in an analysis of
magnetic-resonance experiments.

Sl"'=(—,
' S)'i'(a +a() —[4(2S)' '] '

x (a,ta~al + a,ta,tai + (10.3c)

and similarly for S', S~, and S" except that the aI
bosons are replaced by b bosons. The scalar product
SI S therefore becomes

A. Spin-wave Hamiltonian
SI S =S' cos(Q —$) + &I (Q —4) (10.4)

Consider the layer-type system described by the
Hamiltonian (6.2) with the magnetic field applied
along the z axis. Assume the concentration x is
sufticiently small so that the canting of the ferromag-
netically coupled spins, if any in the spin-2 system, is
negligible. In other words, we are discussing the two-
sublattices configurations.

where

with

(10.5a)

b I (p —P) = iS ( 2
S) ' 2

sin�

(p —g) (a t —aI + b —b t) —S cos (g —@)(a t a, + bJ b )

+
2

S[cos(p —qh) + l](atb +bta~) +
2

S[1—cos(p —

Q)](arbor

+aIb ) (10.5b)

hl"'(P —@)= i(2S)'i2sin(P —@—)[bra, ai —a, a,b —a, btb +btb aI+ ~ (a, alai —a, a, aI —btb b +btbtb )]

(10.5c)
and

61'"(P—$) =cos(Q —P)altaib~tb~ —
s [1 cos(Q —$)—](bra, aitai+aita, aib~+aitbtbtb +btb b ai)

—
s [I+cos(f —@)](btaPalai+aitaltaib +aPbtb b„+btbtb ai) (10.5d)
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The operator AI (P —P) describes deviations from the
mean-field ground state. These deviations are small in

the low-temperature region.
The double-exchange coupling involves the subse-

quent powers of S( S and therefore subsequent
powers of 61 (i[1 —$). It seems very difficult to calcu-
late the exact form of 51" (ib —P) since all of the
terms (up to infinite order) of the Holstein-Primakoff
expansion for S~ and S" contribute to the linear, qua-
dratic, cubic, quartic, etc. , terms of A~" (P —$). How-

ever, it is well known' ' that the rigorous Dyson'
results on the excitation spectrum in a ferromagnet at
low temperatures are reproduced by the Holstein-
Primakoff representation if expressions (10.3b) and
(10.3c) are thought of as formal expansions in S ' so
that only the leading-powers-of-S coefficients are
meaningful in each order term in the Hamiltonian.
We assume that this is the case also in systems with
the double exchange. Otherwise, if we included in
h~" (f —@) [calculated on the basis of operators expli-
citly shown in (10.3)] the terms arising from commu-
tators, when the normal ordering is introduced, the
results, especially in the spin-1 system, would be
dramatically divergent from those predicted by the
mean-field theory. In other words the Holstein-
PrimakoA' representation cannot be taken literally and
the rule of the thumb is that all the commutator terms
are meaningless. The same line of reasoning was im-

plicitly adopted in the Iwashita and Uryu' ' spin-
wave theory for systems with a biquadratic exchange.

We conclude that the relevant terms in 6 i2 (Q —@)
are

(10.6a)

where

[hi (iII —@)]"=S [1 —cos'(i[I —P)]

& [a, ai+btb +a,tbt

+a(b —a(.b —b a( —
2

1

x (a, ait+aIai+btbt+b b )]

(10.6b)

and [d, i2(i[i —@)]"'denotes the cubic terms, while
[512(i[1—@)]' denotes the quartic ones. All of the
linear terms in b, i (P —$) are irrelevant as they arise
from commutators and therefore they are by one
order in S smaller than the linear terms in
S'cos(ib —P)Ai~(ib —y) [note (S, S )'
= S cos'(Q —P) +2S'cos(Q —$)6, + hi2 ] . Note
also that for parallel or antiparallel configurations of
sublattices [hi2 (i[I —P)]" vanishes.

Similarly the only meaningful terms in hi3 (Q —@)
are cubic, quartic, etc. , and in h(~ quartic and of
higher orders.

In the harmonic approximation the resulting spin-
wave Hamiltonian has the form

DC Ep + 11(l/I @) X 5/~ (Q $) + l2(i[1 4I) $ [b (~ (f —@)]"—2(J' +xb'A 3~ ) X b ii'(0) + $ d „~ (0)
&rm & (lm) (((') (mm')

+2iDS( S)' ' sing—cos@ g(a, —ai) +sinibcosP X(bt —b ) +DS (3cos2$ —1) Xatai+(3cos'P —1) $btb
i

r 1

+
2

DS sin'$ X(a, a,
' +alai) +sin'i[1 X(btbt+b b ) +i(2S)'i2H sin@ $(ai —a) +sining g(bt —b )

( m I m

+ll cos$ Xaitai+cositI Ibtb
( m

(10.7)

where E! II (0) (5 „(0))has the structure of d, i (0)
with b 's (ai's) replaced by ai's (b 's) since the exci-
tations within the same sublattice are suSciently
described by one set of bosons. The constant Eo coin-
cides with the mean-field expression for the energy
and the coefficients li(iII —$) and 12(ib —g) are
defined as

li($ —P) =2J —2xb[li's —2S'cos(P —P)Jt
—3S cos (iII —$)J
—4S cos'(Q —$)J ]

(10.8)

and

12(P —@) =2xb [J2s' +3S'cos(P —$)J3is'

+6S cos (i[I —$)J '] (109)

In antiferromagnetic and ferromagnetic (or
paramagnetic) phases, [hi2 (i[I —$)]"does not contri-
bute to the Hamiltonian. On the other hand, when
D = H =0, in the canted phases the hi (P —$) terms
do not appear and [Ai (P —P)]u is entirely responsible
for the intersublattice exchange and double-exchange
dynamics. The reason for this is as follows. The
canting angle is determined from the condition of van-
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+ Czy(k) (ak b k + akb k)] (10.10)

where

g~(k) = —1,(Q —$)sz cos(ill —@)

+ I z(ill —@)s'z [1 co—(sf —$)]

+2S(J'+xb'A (s))(z y(k

+ DS (3 cosz$ —1) + H cos$, (10.11a)

did = sD sin'lb —12(ill —p) s'z [1 —cos'(i]l —$) l

(10.11b)

8, , , = —,
' l, (ill —$)S [1 + cos (ill —$)]

+ l2(ill —$)S [1 —cos (Q —@)], (10.11c)

and 8&($&) is equal to C~($&) with @ and ill inter-
changed. The coefficient y(k) is defined as

(k) X&lk6 (10.11d)

where y's are positions of the intralayer nearest neigh-
bors. Analogously y'(k) involves summations over
the nearest neighbors within the same layer.

B. Syin-wave energies

(a) First consider the antiferromagnetic phase.
Here & =& = t'.

~
=0, The energies of the two

branches of spin-wave excitations are

s)i z(k) =2S ([z(J xbAP )—
+ (J'+xb'A, &'&) (z' —y'(k)) + D]'
—y (k)(J xbA ) ]' +H —(1012)

ishing of the linear terms, which corresponds to a no-
torque situation. The resulting equations for the angle
coincide with the mean-field expressions like (7.7),
(7.2), and (7.23). Now, in the absence of D and H,
this condition makes the entire coefficient I~ equal to
zero, so [b, iz (Q —Q)]" becomes important.

Let us introduce the Fourier-transformed (magnon)
operators

ak=( ,
'

N) —''Xale ', etc.
I

%ith the linear terms vanishing the magnon Hamil-
tonian becomes

sc = /[ a g(k) a„a„+e 6(k) bk bk

+—did, (ak a k + aka —k)
t

+ —,did(bk b-'k + bk b i)-
+ r- i y (k) (ak bk + bk ak)

These energies are minimal at k =0 and the magnons
of the lower branch go soft at H = HAF sF given by
Eq. (7.21). In particular, if H = 0, this happens at
x =xi [Eq. (7.6a)].

(b) Next consider the first canted phase at H =0.
In this phase 6& =8&, & =&, and all of the
coefficients have to be evaluated at ill- m —@. The
two branches of energies are

(10.13)

and the phase boundaries coincide with those obtained
in Sec. VIIC. In particular, if S =1 or 2, the so~ mag-

nons soften at 45 . For the thermodynamical proper-
ties of systems with biquadratic exchange (which is
formally equivalent to the S =1 double-exchange sys-
tems) in the second canted phase we refer the reader
to the article by Iwashita and Uryu. '

(c) In the second canted phase (or in the spin-flop
phase) the energies have the form similar to (10.13)
except that the coefficients 8&=8@,&=~, 8~2
have to be evaluated at ill = —$.

(d) Finally, in the ferromagnetic (or paramagnetic)
phase & =& = 82 =0. The two branches of energies
merge into one (the distinction between the two sub-
lattices becomes irrelevant):

66(k) = —2S(J xbAPi) [—z —y(k)]

+2S(J'+xbA3s ) [z' —y'(k)] +2DS + H

(10.14)

If the concentration x is outside the ferromagnetic re-
gion, then the minimum of energy occurs at
y(k) -—z, y'(k) =+z. An instability develops at H
given by (7.24), which marks a transition from the
paramagnetic phase to the spin-flop phase. At H =0
the mode is stable for x ~x3.

In all this section it has been assumed that in the
spin-2 system the canting of spins coupled by J', if
any, is insignificant so J'+xb'A3 is taken to be posi-
tive. However, if such a canting does occur, the mag-
non energies would split slightly. In particular at
sufficiently strong fields that make the sublattices cou-
pled by J to be aligned parallel but the sublattices cou-
pled by J' still cant (if the values of JJ', b, b' allow for
this) the energy (10.14) would take the form (10.13)
with y(k) replaced by y'(k). The extra term
82y'(k) —tg6, is negligible for small canting angles.
However, in general, the spin-2 system energies actu-
ally split further into four branches whenever x
exceeds x6, as given by Eq. (7.25).

The cubic terms in the spin-wave Hamiltonian are
responsible for the temperature renormalization of the
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canting angle, whereas the quartic ones give rise to
the renormalization of energies. For instance the
paramagnetic phase boundary should have a T
dependence. ' Moreover, in the presence of an
orthorhombic anisotropy or (and) in systems with a
transversally anisotropic exchange coupling the T' law

is likely to be observed.
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APPENDIX

he coelficients J(s) in the double-exchange Hamiltonian (4.5) are for S = —,, 3, z, and 4 (in 3d materials

S ~ —) as follows:

sS=—:2'

J(s/2) 0 6366 J(»» =p 3453 x10-~, J(»» =p.7928 x10-'

J(s/2) p 6ppp x10-3 J(s/'» = —p. 1579 x]p, J(/ ' = —0.2057 x10

S=3:
J(3) 0 6p63 J,(» p 1798 x ]0-~ J2() =Q.2493 x 10 ' J" = —0.1213 X10 '

J4(3) = —p 3237 x 1Q 4, Js(» =p.1287 x 10, J6' =0.8463 x 10

S=—:=7.2'

J(7n~ =0 6396 J(»» =p.1884 x1p ~ J"/'» =07557 x10 ', J('" =01339x10 ',

J(7j2) p 2105 x 1p- Js(7/'» = p 23p4 x 1p
—7 J( /' =0.1272 x 1p J =0.4312 x 10

S=4:
Jo(4) =Q 6653, J)(4) =p.6254 x 10 J =0.4921 x 10

J3(4) =0.1358 x10-3, J4(4) =-0.7604 x10 4, Js(4) =-0.6507 x lo-s

J6(4) =p 7956 x 1p J7( ) ——Q, 2255 x 1Q, J8 =0.5771 x 10

The antiferromagnetic phase is stable [Eq. (7.6) j
provided

2S

g (S) J(S) + g ( I)n&J(S)S2(n —)) + 0
fl =2

(Al)

2s
g (s) J(s) X ~J(s)S2(n —)) )0

ll =2
(A2)

The coefficients 33& ' are equal to 0.1762, —0.272,
—0.094, and —1.270 for the four spins in question. It
means that a S = —, system with the antiferromagnetic

exchange coupling will reach the ferromagnetic phase.

The constant 3 ~' ' is equal to 0.066, 0.0503, 0.0536,
and 0.0441 for S = —,, 3, —, , and 4, respectively. The

corresponding critical concentrations are therefore
2x(bz/(2zJ+D) =15.15, 19.90, 18.64, and 22.66.

On the other hand the ferromagnetic phase is stable
[Eqs. (7.18) and (7.10)] if

The lower boundary of this phase is 2x3 bz/
(2zJ —D) =5.67. However, the higher sPin systems
will never close down. %e expect that for spins even
higher than 4 this will also be the case for the follow-

ing reason. Inspection of Table I and of the results
presented in this Appendix leads to the conclusion
that the higher the spin then, essentially, the more the
phase boundaries are shifted towards the bigger con-
centrations (at fixed J and b). This is not at all

surprising. The larger the spin the less is the system
influenced by the hopping carriers and then the anti-
ferromagnetic exchange dominates the properties of
the system. Thus when S ~3 (and also if S =2) the
ferromagnetic arrangement disappears from the phase
diagram.

In ferromagnets with the double exchange (Sec.
VIII) the two sublattice configurations will be present
at concentrations exceeding x4 of Eq. (8.1). The nu-
merical coeiticient in (8.1) is replaced by 3.68, 10.64,
and 0.79 for S =3, —,and 4, respectively.

7
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Note addedin proof A.ccording to G. Matsumoto [J.
Phys. Soc. Jpn. 29, 606 (1970)] the magnetic proper-
ties of LaMn03 are more complex. In this compound
the Dzialoshinski-Moriya spin coupling has been
found. In addition, the single-ion anisotropy turns out
to be composed of the uniaxial, cubic, and orthorhom-
bic parts. The overall easy direction is, however, as
taken in our paper. The NMR and magnetization
measurements on the polycrystalline La~ „Ca„Mn03
samples, with x ranging from 0.005 to 0.3, have also
been reported by Matsumoto [J. Phys. Soc. Jpn. 29,
615 (1970)]. A substantial spontaneous magnetization
appears for x & 7% at the liquid-nitrogen temperature.

Some small moment is also observed below 7%. This
should be due to the presence of the Dzialoshinski-
Moriya interaction. The magnetization data, taken in

the vicinity of
2

of the Neel temperature, are not

conclusive on which of the two theories, de Gennes's
and ours, is correct.

K. Kubo and N. Ohata [J. Phys. Soc. Jpn. 33, 21
(1972)] have proposed another theory of double ex-
change. Their theory is based on a canonical transfor-
mation of the s-d model Harniltonian, and it is more
concerned with the electronic properties (like resis-
tance) of the system.

Part of a thesis submitted to the University of Pittsburgh in

partial fulfillment of the requirements for the degree of
Doctor of Philosophy.
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