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%e have incorporated the projection operators to the canonical transformation to derive an

analytical infinite perturbation-expansion series. This canonical perturbation expansion (CPE) is

valid if the unperturbed Hamiltonian Ho and the perturbation H& can be expressed as

Ha= XjPjHPj and Ht = Xj«PjHPk, where Pj is the projection operator corresponding to a

group of closely spaced effective one-electron orbital energies E&„with p, =1,2, . . . , dj, and if

~Ej„—Ej„[« iiEj„—Eka( with j A k. We have shown that the CPE is equivalent to the time-

dependent perturbation theory. An extremely simple effective Hamiltonian H is obtained when

the CPE is applied to the s-band Hubbard model at the atomic limit. An explicit form of H to the
eighth order is given, apd the magnetic interaction in H is of the form of Heisenberg exchange
S;.Sj, including far neighbors. We then use this form to compute the antiferromagnetic ground-

state energy lo the seventh order. Our result is compared with other works.

I. INTRODUCTION

The Hubbard model' has been extensively used in
theoretical descriptions of the magnetic ordering and
the Mott transition in systems which are characterized
by narrow energy bands. Though the Hubbard Hamil-
tonian is quite simple in form, an accurate solution for
the thermodynamic properties has proved dificult for
the general case. Historically, the model Hamiltonian
was constructed for investigating the effect of strong
intra-atomic electron correlation. Near the atomic
limit U » W (U is the Hubbard parameter and W is
the bare bandwidth), this model has been thoroughly
studied by many authors ' via various approaches.
In addition, the standard perturbation method has
been applied' ' explicitly in terms of the perturba-
tion expansion parameter W/U. Due to the
mathematical complexity in the perturbation series,
most of the concrete results are restricted to the
second order in W/U except for the special case of a

one-dimensional chain. On the other hand, an exact
numerical solution has been derived for a small ring
with a maximum of six atoms for all values of U/ W. ts

It is well known that for sufticiently large U the bare
energy band splits into subbands. The centers of
gravity of two adjacent subbands are separated by U.
To describe the motion of electrons in such a subband
picture, let us first define the projection operators Pl
through the equation

g [(1 —n;ln;i) + n, tn/tx] = XPtx',

where ni is the number operator associated to the lo-
calized state at site i and spin o., and the product over
i runs through all the sites. Pl then projects out from
a many-electron state the particular configurations
each of which contains I doubly occupied sites. In
terms of these projection operators we can rewrite the
s-band Hubbard Hamiltonian as

r

H = g tja, at + U g n; in;i = g Pl X t~~a; aj + U g n; in; t XPt
ijrr i l j/cr i l

= XPtHPt+ XPt+tHPt+ XPt tHPt-
lW - lW I 1
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where

XPIHPI=P0 Xt&(1 n—; )a; a& (1 —nj )Po
i~o ijcr

OO r

+ XPI gtj[(1 —n; )a; a& (1 —
n& ) +n; a; a& n& ]+U gn;ln;i P(

l 1 ijcr I

(3a)

OO OO 't

XP(~)HP(= /PI+) $t/Jn; a; a& (1 —
n& )—P(

0 I 0 Ijcr
I

(3b)

/PI iHPI= /PI )
l~l I 1

1

X rj(1 —n; )a; a& n& P,
ij cr

(3c)

H =H(0)+H(1), (4)

where

H(0) = U Xn;ln;i (4a)

H(1) = Xtca;taj (4b)

Since the eigenenergies of the unperturbed Hamiltoni-
an H(0) are highly degenerate, the perturbation ex-
pansions of Kato and des Cloizeaux ' have often
been used. As both the intersubband and the in-
trasubband hoppings appear in H(1), they are mixed
in every higher-order term of the expansion series.
Nevertheless, the energy corrections due to the in-
trasubband and the intersubband hoppings differ by a
factor of the order 8'/U. Consequently, the resulting
perturbation calculation becomes very tedious in prac-
tice.

For convenience, we will choose a zero reference en-
ergy such that t;; =0. Clearly, PiHPi describes the
dynamical properties of electrons within the l subband.
The center of gravity of this subband locates at lU,
and the subband has a finite width due to the in-
trasubband hoppings which do not alter the number of
doubly occupied sites. PI+&HPI and PI jHPI, on the
other hand, represent the intersubband hoppings from
the l subband to the l +1 subband and the l —1 sub-
band, respectively. Each intersubband hopping will

change the energy of the system by an amount of the
order U. At the strong-correlation limit U » tj, the
electron hopping can be treated as a perturbation.
However, the hopping terms in PiHP~ contribute to
the total energy linear in t&, while the leading term in
the energy correction due to the hopping terms in
PI+~HP~ and PI ~HPI is proportional to ts2/U. Conse-
quently, a proper separation of the Hamiltonian H into
an unperturbed part and a perturbation is rather cru-
cial in the application of perturbation theory to the
Hubbard model at the strong-correlation limit.

Many of the authors' ' ' who apply the perturba-
tion theory to the Hubbard model start from

0=00+0) (s)

where

Ho= x PIHPI
tw

(sa)

Ht = XPI+) HPI + XP( )HP(IW, I 1

(sb)

r

The drawback of this scheme H = H(0) + H(1)
manifests itself when the band is not exactly half-
filled. Then the lowest subband which has no doubly
occupied site contains holes. It has been shown by
Florencio and Chao' that in this case the intrasub-
band hopping can destroy the antiferromagnetic order-
ing in the strong-correlation regime. If we apply
Kato's perturbation expansion to H = H(0) + H(1),
we have to collect all intrasubband hopping from
terms of different orders and regroup them in order to
fully account for the intrasubband hopping effect.
Certainly this is an impossible task.

To further illustrate the different roles of intrasub-
band and intersubband hoppings in the strong-
correlation regime, let us consider the simpler case of
one electron per site. The ground state is an antifer-
romagnetic insulator ' at the atomic limit. It is due
to the virtual hopping of electrons and the coupling
constant is proportional. to t /U, where t is the
nearest-neighbor hopping integral. This mechanism is
just the same as PiHPi+~HPi with l referring to the
lowest-subband. On the other hand, let us create an
electron-hole pair in the ground state, leaving one
hole in the lowest subband and one electron in one of
the higher subbands. Then both the electron and the
hole can conduct electric current via the intrasubband
hopping t. Consequently, the intrasubband hopping
plays the dominating role in the Mott transition while
the intersubband hopping is responsible for the mag-
netic ordering.

Recognizing the essential difference between these
two types of electron hoppings, the starting point of
the perturbation expansion in this paper is
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and H~ is treated as a perturbation. The unperturbed
Hamiltonian Ho at the atomic limit has been solved
exactly by Klein. "Considering only two subbands,
this scheme H = Ho+ H~ has been previously used by
Florencio and Chao' and by Chao et al.

In Sec. II we will use a canonical transformation to
derive a new form of perturbation expansion. The
close relation between this canonical perturbation ex-
pansion and the time-dependent perturbation theory
will be demonstrated. The fact that linked-cluster
theory should be employed in the future perturbation
calculation then becomes obvious. For the Hubbard
model at the strong-correlation regime, the infinite-
expansion series can be expressed in analytical form.
We then obtain an effective Hamiltonian, the explicit
form of which to the eighth order will be given in Sec.
III and in Appendix A. In Sec. IV we calculate the
ground-state energy to the seventh order, of a half-
filled band for the cases of a linear chain, a square lat-
tice, and a simple cubic lattice. Our canonical pertur-
bation expansion also gives the exact solution for a
two-site Hubbard model, as shown in Appendix B. In
Sec. V we compare our result with other works follow-
ing by a concluding remark.

[[&,&)), = [&.[&,[,[&,&1) ))

with n commutators at the right-hand side, then we
can rewrite the effective Hamiltonian as

H(t) = Ho+ e(H~ —i [S,Hp))

+ X ', ([[S,H ]]„+in[[S,H ]]„)nt

(g)

%e will search an operator S such that

H) —i [S,Hp] =0

Substituting [S,Hp] = iH~ int—o (8), we obtain

(9)

H(~)=H, +X " ' ' [[SH]]„, .
8~2 n.

(10)

To derive an expression for S, we can substitute
(6a) and (6b) into (9) and then apply the projection
operators PJ and Pk to (9) from both sides to get

P& HPk (I —Sp) + iP) HPJ (PJSPk) —i (P&SPk) Pk HPk =0

II. CANONICAL TRANSFORMATION

We assume that the eigenenergies E», with.
i =0, 1, 2, . . . , and p, =1,2, . . . , d; of an unper-
turbed Hamiltonian Ho satisfy the condition

{Ei~ Ei { (( {Ei —E»), where i &j. That is, the
eigenenergies of Ho consists of disjointed regions in
each of which the spectrum can be either continuous
or semicontinuous. ' The widths of such regioris are
much smaller than the separations between them. Let
{iIii.) be the eigenstate corresponding to the eigenener-

gy E,„. P; and Q; are, respectively, the projection
operator and the eigenspace belonging to the eigen-
values E;„for all p, . %'e further assume that the per-
turbation H~ has zero matrix elements between the
eigenstates in same Q;, i.e. , (i', {H&{iv) =0. Then we
can express the Hamiltonian H = Ho+ H~ in the gen-
eral form

The operators P&HPy = P~HOPg and PkHPk = PkHOPk at
the left-hand side will be approximated by their proper
expectation values of the energy. From (6b) we see
that the right-hand side of (12), PJHPk = P&H&Pi,
represents the coupling between one state in the k
eigenspace and one in the j eigenspace. P&HP& and
PkHPk then correspond, respectively, to the energies
of the final and the initial states which are coupled by
P)HP„Since {E&~ .Ez„{(( {E&„——E„,{, P&HPJ can be
well approximated by E&, where E& is the mean energy
of E» over all p, . Hence we have

P&SP„=iP,HP„/(E& —Ek) forj A k

Ifj = k, we can use (6a) to rewrite (12) as

(13)

For j ~ k, the above equation reduces to

PJHPJ(PJSPk) —(P&SPk) PkHPk =iPJHPk . (12)

Ho= XPHP; (6a)

H) = $' P;HP~

where the primed sum excludes the terms with i =j.
Consider the canonical transformed effective Hamil-

tonian

[PJHOP~, PJSPJ] =0

The general solution is '

PJSP& = x P;zP;

(14)

(15)

H (~) e i eS(HO + SHE)
—pisS

where ~ is formally treated as small except at the end
of calculation we set e =1. If we expand the exponen-
tial function in power series and use the notation

where z is an arbitrary operator. To illustrate the
effect of PJSP&', let us consider the basis {{P&)} of H.
Using the transformation (7) with e = I, {{Pz)} is

transformed into a basis {{P&)= e '
{P~)} of H. As

P&SP& does not depend on H~, we can now assume
H~ =0 and so P&SPk =0 for j & k. Furthermore, we
have
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S = x PjSPk = xPjSPj x PjZPj
Jk J J

where Z is also an arbitrary operator. Since
[PjZPj, PjHpPj] =0, we have

1

H =exp i X—PjZPj Hpexp i QPjZPj =Hp
J J

Therefore, {{iljj)]= {{jp, )) and
i i

{14j)]=,exp i XPkZPk IJj )

= {exp(-i(j.) Iji )],
where gj„ is the eigenvalue of PjZPj with respect to
the state {jp, ) because PjZPj and PjHpP, commute.
The effect of the PJSPJ terms in the canonical
transformation is thus simply to add a phase factor to
each eigenstate of the basis. Since the basis can be
uniquely defined only within a phase factor, we can
choose a constant phase factor for the entire basis.
Hence we have

PJSPJ = yPJ (16)

S (r) =exp(iHpr) S exp( iHpr)— (17)

Applying the projection operators from both sides, we
obtain

PjS (r)P„=Pj g exp(iP„HP r)

where y is an arbitrary real constant.
The justification of (16) manifests itself in the close

relation between the canonical perturbation expansion
and the time-dependent perturbation theory. Let us
formally define the "interaction representation" for the
operator Sin (7) as

It satisfies the "equation of motion"

PjS(r) Pk = [PjS(r)Pk, Hp] (1 —Sgk)
1 (19)

We can also define the perturbation in the interac-
tion representation as

Hi(r) =exp(iHpr)Hiexp( —iHpr) (20)

d PjS ( r)PQ 'PiHJ (r) Pg (1 —Sjg) r
dv

(21)

which has the solution

and

PjS(r)P„=—
&

PjHi(r)Pkdr for j &k (22a)

PjS (r) Pj = PjS (r =0)Pj = PjSPj = g P;zP;
i

(22b)

If we denote S = Xj„'PjSPk and

S(r) = exp(iHpr)S exp( iHpr), (2—2a) yields the rela-
tion

t 0
S =S(0) =—

Jl Hi(r) dr

It is well known in the time-dependent perturbation
theory that the time-development operator is de6ned
as

f 0
U(0, —co) = T exp i ~ Ht(r) dr—

Then, by applying the projection operators to (9) from
both sides and using (20), we get

PjHt (r) Pk(1 —Sjk) —i [PjS(r) Pk, Hp] =0

Therefore, (19) becomes

i

xS +exp( —iP„HP„r) P„
V

= exp(iPj HP& r) PjSPkexp( iPk HPk r)—
=exp(iHpr) PjSPkexp( —iHpr)

Therefore, we have U(0, —~) = Te's, where Tis the
time-ordering operator. Note that U(0, —~) is a
function of S instead of S. Since S does not contain
PJSPJ, PJSPJ thus plays no role in the perturbation ex-
pansion.

Using (6b), (13), and (16), and XjPj =1, the com-
mutators in (10) can be expressed as

[[S,Hi]]„= XPjSPj,Hi + X'PjSPk, Hi = [[y,H&]]„+ X'PjsPk, Hi
Jk Jk

n

X' P,SP„, i x' (F.. E„)P.SP—„-
Jk

By mathematical induction, we arrive at the general formula
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[[S,H,]]„=i(—I)" ' X " X E„P SP„S SP„~ j I (n + I —j) I J+I 1 2 n+2
1

(24)

where the double-primed summation is restricted to k & k +I for all nI. Substituting (24) into (10), we have the
effective Hamiltonian as

H(e) =Hp —X X" X
' E„P„SP„S SP„

jI (n —j) I «J+1 1 2 "n+1
all k JW

(25)

III. EFFECTIVE HAMILTONIAN FOR THE s-BAND HUBBARD MODEL

In this section we will apply (25) to the s-band Hubbard model. From Eqs. (3a) —(3c) and (Sa) —(5b), we see that
Hp consists of separated subbands and HI couples only the adjacent subbands. Therefore, in (25) we have
k +l = k +1. Let us define u l = k —kl for m «2 and u0=0. Since the centers of gravity of two adjacent sub-
bands are separated by the intraatomic correlation energy U, hence Ek Ek = (u ——u I) U =+ U. Using (13)
and the relation

(—I)Jn!
X

(—1)J(n —I)!
j!(n —j)! J+' (j —I)!(n —j)! J+IEk . . (Ek Ek )

(26)

the eff'ective Hamiltonian H = H(e = I) of (25) can be rewritten

n —1
"

(—1)J(n —I)!H = Hp + x I X X (uJ I
—uJ) g (uJ uJ I)„2n!U" 'ki„i J I

' —I!n —j! J IJ I i

(27)

Note that in the above equation we have uJ —uj l =+1. We will use the notations

(28)

and

(k ul»u2» ' ' ' ~ u. ) = P«HPk+uIHPk+u2H HPk+u

Then the effective Hamiltonian has the final simple form

(29)

H = Hp+ x u "+' g C(uI, u2, . . . , u„) (k, uI, u2, . . . , u„)
n 2 k, fuj}

(30)

Since uJ —uJ I =+I, all allowed channels (k, u1, u2, . . . , u„) for given k and the coefficients C(ut, u2, . . . ~ u„) of
(28) can be generated on computer to as large number n as desired. Using the symmetry properties

C(—u1, —u2, . . . , —u„) =(—1)"+'C(u1,u2, . . . , u„) (31)

the computation effort can be reduced by a factor 2. The explicit expressions for H with n ~8 are given by
1 - (n)

(A3) —(A9) in Appendix A.
Let us consider the case that the bare energy band is no more than half filled. Then for the ground state all sub-

bands except the lowest one (the Pp subband) are empty. If we are interested in the ground-state energy correction,
we need only those channels (k, u1, u2, . . . , u„) with k = u„=0. Starting from the lowest subband, an odd number
of intersubband hoppings PkHPk+„H HPk+„can never generate a final state with only the lowest subband oc-

cupied. Therefore, the terms in (30) with n equal to odd integers do not contribute to the ground-state energy
correction. To the seventh order, the effective Hamiltonian can then be expressed by selecting the proper terms
from (A3), (A5), and (A7) as
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PpHPp=PpHpPp U (0, 1, 0) + —U (2(0, 1, 0, 1, 0) —(0, 1, 2, 1,0)) ——U (16(, 1, 0, 1, 0, 1, 0)

+ (0, 1,0, 1, 2, 1,0) + (0, 1, 2, 1, 0, 1,0) —14(0, 1, 2, 1, 2, 1,0) +6(0, 1, 2, 3, 2, 1, 0)) (32)

We should point out that the above equation contains errors from two sources. First, the approximated solution
(13) generally introduces errors of order (t/U), m ~3, in H. Further, projection to P&HP& introduces errors of
order (t/U), m ~4.

IV. GROUND-STATE ENERGY

From the relation U(0, —oo) = T exp(iS) derived
in Sec. II, one would expect that the linked-cluster
theory should be incorporated to (32) in our energy
calculation. The validity of the linked-cluster expan-
sion in the canonical perturbation theory has been
proved by Klein. ' The proof is for the very general
case, and applies to our problem with PJSP& +PJ.

Using the linked diagrammatic expansion, the
operators (O, u~, u2, . . . , 0) in (32) can be evaluated
without difficulty. For one electron per site, their ex-
plicit expression are given by (A16)—(A23) in Appen-
dix A. These operators can be built up from two fun-
damental elements t&v; v,. and t&S; S, , where

v, = (1 —n„)n; and S, = a~t a; . These two funda-
mental elements correspond to the longitudinal
(electron-virtual-hopping) and the transverse
(double-spin-flip) components of the Heisenberg ex-
change interaction S; S&. If we restrict ourselves to
the nearest-neighbor hopping, it is not difficult to find
out that (0, 1, 0) contains the nearest neighbor S; SJ,
(0, 1, 0, 1, 0) and (0, 1, 2, 1, 0) contain the nearest and
the next-nearest neighbor S; SJ, while

(0, 1, 0, 1, 0, 1,0), (0, 1,0, 1, 2, 1, 0), (0, 1, 2, 1, 0, 1,0),
(0, 1, 2, 1, 2, 1.0), and (0, 1, 2, 3, 2, 1, 0) contain the
nearest, and next-nearest, and the third-nearest neigh-
bor S; S&.

The effective Hamiltonian (32) to the second order
has been investigated in detail, indicating that the
ground state of a strongly correlated half-filled narrow
band is antiferromagnetic. Strictly speaking, the
ground state is certainly not the pure Neel state. To
find the exact ground state is outside the scope of the
present paper. Nevertheless, Oguchi has shown that
the correction due to spin-wave interactions in a
Heisenberg antiferromagnet is negligibly small for
practical purpose. Consequently, we will substitute
(A16)—(A23) into (32) to calculate the energy per
electron E = (PpHPp)/N of the antiferromagnetic
(Neel) ground state to the seventh order.

In the regime of very strong correlation, we can re-
tain only the nearest-neighbor hopping integral t.
Then all the t&'s in (A16)—(A23) are constant t, and
the calculation of E reduces to simple countings of
linked diagrams. We will restrict our calculations to a
linear chain, a square lattice and a simple cubic lattice.
For these cases, the counting of linked diagrams
corresponding to (A16)—(A23) can be readily done

2-

10

5-

2-

10

5-

2-:

10

5
0 0.1 0.2

W/U

0-3

FIG. 1. Ground-state energy per electron F. /U and E/8'
as functions of 8'/U, for a linear chain (Z =2), a sqaure lat-

tice (Z =4), and a simple cubic lattice (Z =6).

without difficulty. Let Z be the coordination number
and 8'-2Zt be the bare bandwidth. If
Nri(o, ut, u2, . . . , 0) represents the number of linked
diagrams associated to the (O, u~, u2, . . . , 0) term in

(32), then we have

&(0, l, o) =z,
&(o, 1, o, 1, o) =4[z+z(z —1)],
rt (0, 1, 2, 1,0) = 2Z (Z —2)

ri(0, 1,0, 1, 0, 1,0) =8[2Z+6Z(Z —1) +3Z(Z —1)2

+ z(z —1)(z —2)],
ri(0, 1, 0, 1, 2, 1, 0)

= 8 [Z (Z —1) +6Z (Z —2) + 2Z (Z —2) ']

= rt (0, 1, 2, 1, 0, 1, 0)

q(0, 1, 2, 1, 2, 1,0) = 8[2Z (Z —1) +4Z (Z —2)

+Z(Z —1)(Z —2)]
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and

VI(0, 1,2, 3, 2, 1,0) =24Z(Z —1)(Z —2)

The ground-state energy per electron is then obtained
from (32) as

U W + U(3Z+2) W
4Z U 16Z3 U

U(23Z~ —34Z +51) W +0 W

288Z5 U U

(33)

In Fig. 1, we present the results of E/U and E/W as
functions of W/U.

For the special case of a half-filled two-site Hubbard
model, the infinite perturbation series in (27) can be
summed up exactly. The basis consists of only six
two-electron states, and we find that the effective
Hamiltonian H of (27) can be diagonalized analytical-

ly. The result, as sho~n in Appendix B, agrees with
the exact solution. %e should remind the reader that
(27) is derived from (25) which is obtained with a
proper choice of g, P, zP& in (15), namely, the choice
of (16). Therefore, the fact that (18) yields the exact
solution is another indirect proof that (16) is a reason-
able choice.

V. DISCUSSION

The s-band Hubbard model at the atomic limit has
been extensively investigated because when U && W,
the perturbation theory is valid. Kato's perturbation
expansion'0 has been applied to (4), (4a), and (4b) in
most of these works. Let us first summarize Kato's
theory. Assume that H(0) has a discrete m-fold de-
generate level E„(0). We designate the associated
projection operators as P„(0}. As the perturbation
H(1) is turned on, E„(0) and P„(0) evolve, respec-
tively, into E„and P„. Kato has derived the perturba-
tion series

HP„=E„(0)P,+ X (-1)"-'
n 1 (k &+k 2+ +kn+1 n —i)

D 'H(l)D 'H(1) H(1)D "+' (34)

where Do=—P„(0) and

D"= [[I—P„(0)]/[E,(0) —H(0)]]"

for k «l.
We note that H(l) consists of both the intrasub-

band and the intersubband hoppings. Since 1 —P~(0)
includes all the subbands except the p, th, a term in

(34) containing a factor D 'H(1) D i with ki, k2 W 0.
has both the intrasubband hopping P„(0)H(l) P„(0)
and the intersubband hopping P„(0)H (1)P„(0), where
v A p„co & p, , and eu A v. On the other hand,
DOH(1) Do represents only the intrasubband hopping.
Two complications are then introduced in the compu-
tation. The intrasubband hopping opens lots of chan-
nels and thus largely increases the number of di-

agrams to be evaluated. One finds such additional
terms in Eq. (2.17) of Klein and Seitz. '4 As far as the
intersubband hopping, P„(0)H(1)P„(0) with cu W it, is
concerned, the corresponding energy denominator ap-
peared in (34) is I/[E~(0) —E„(0}]or
I/[E~(0) —E„(0)] instead of
1/[E„(0)—E„(0)]=+1/U. Consequently, a simple
form as (28)—(30) cannot be derived from (34).
Klein and Seitzis have tried to avoid this complication
by using (5), (Sa), and (5b). However, they only ap-

ply the conventional second-order perturbation theory
to a linear chain. For higher-order corrections or for

higher-dimensional systems the conventional pertur-
,bation series is too complicated to be solved.

In our canonical perturbation expansion we discover
that P&SPJ cannot be determined uniquely, because it
corresponds to adding a phase factor to each unper-
turbed eigenstate of a complete basis of 00.
Nevertheless, we have shown that the choice of these
phase factors has no effect on the final result. For
convenience, we have chosen a constant phase factor
corresponding to the solution (16).

Most of the perturbation calculations on the Hub-
bard model are performed for the special case of one
electron per site, in order to eliminate the complica-
tion caused by the intrasubband hopping as a pertur-
bation. Since we have separated the intrasubband and
the intersubband hoppings, and the intrasubband hop-
ping is part of the unperturbed Hamiltonian, we can
apply our result to any value of electron density.
Some work along this line including higher-order per-
turbation correction will be reported in the future.

Recently, Takahashi" has applied Kato's theory to
the Hubbard model and obtains the ground-state ener-

gy per electron

E= 1313U W +0665(3Z+2)U W 35
4Z U 16Z3 U

for the linear chain,
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1.16U W + 0.62(3Z +2) W
4Z U 16Z, U

for the square lattice, and

1.10U W 0.55(3Z+2) W
4Z U 16Z U

(36)

(37)

for the simple cubic lattice. Takahashi's results are
exact through 4th order. Hence, our expansion (33)
works better for high-dimensional systems than the
lower-dimensional ones.

Finally, we should point out that the usefulness of
(25) is not restricted to the Hubbard model. Any sys-
tem with effective one-electron orbital energies satisfy-
ing the conditions specified at the beginning of Sec.
II can be tackled with this approach. For example,
(25) can be used in the studies of magnetic reso-
nances which have equally spaced energy levels.

APPENDIX A

Let us rewrite the effective Hamiltonian (27) as

H=Ho+ gH
n 2

where

H = U "+' $ C(u), u2, . . . , u„) (k, u&, u2, . . . , u„)
k, (u~}

(A 1)

(A2)

Since u&
—u» =+1, we can easily generate by computer the following results (the dots represent image terms):

H =—U 'X((k 1 0)+ ) (A3}
k

H = —U 2 X((k, 1, 2, 1) —2(k, 1, 0, 1) + (k, 1,0, —1) + )
k

H =—
~

U 3 X ((k, 1, 2, 3, 2) —3 (k, 1, 2, 1, 2) +2(k, 1, 2, 1,0) +3 (k, 1,0, 1, 2)

(A4)

—4(k, 1,0, 1, 0) + (k, 1, 0, —1, —2) + ) (AS)

H =
)

U X((k, 1, 2, 3, 4, 3) —4(k, 1, 2, 3, 2, 3) +3(k, 1, 2, 3, 2, 1) +6(k, 1, 2, 1, 2, 3)
k I

—7(k, 1, 2, 1, 2, 1) —2(k, 1, 2, 1, 0, 1) +3(k, 1, 2, 1,0, —1) —4(k, 1,0, 1, 2, 3)

+3(k, 1,0, 1, 2, 1) +8(k, 1, 0, 1, 0, 1) —7(k, 1, 0, 1, 0, —1) —2(k, 1, 0, —1,0, 1) +3(k, 1, 0, —1,0, —1)

—2(k, 1, 0, —1, —2, —1)+(k, 1,0, —1, —2, —3)+ )

H =——U 5 X ( (k, 1, 2, 3, 4, 5, 4) —5 (k, 1, 2, 3, 4, 3, 4) +4 (k, 1, 2, 3, 4, 3, 2) + 10 (k, 1, 2, 3, 2, 3, 4)
k

—11(k, 1,2, 3, 2, 3, 2) —5(k, 1, 2, 3, 2, 1, 2) +6(k, 1, 2, 3, 2, 1,0) —10(k, 1, 2, 1, 2, 3, 4)

+9(k, 1, 2, 1, 2, 3, 2) +15(k, 1, 2, 1, 2, 1, 2) —14(k, 1, 2, 1, 2, 1, 0) + (k, 1,2, 1, 0, 1,0)
—5(k, 1, 2, 1,0, —1,0) +4(k, 1, 2, 1, 0, —1, —2) +5(k, 1,0, 1, 2, 3, 4) —6(k, 1, 0, 1, 2, 3, 2)

+ (k, 1, 0, 1, 2, .1,0) —15(k, 1, 0, 1, 0, 1, 2) +16(k, 1,0, 1,0, 1,0)

(A6)

+10(k, 1,0, 1,0, —1,0) —11(k, 1, 0, 1,0, —1, —2) +5(k, 1,0, —1, 0, 1,2) —4(k, 1,0, —1,0, 1,0)
—10(k, 1, 0, —1, 0, —1,0) +9(k, 1,0, —1, —1, —2) +S(k, 1,0, —1, —2, —1,0)
—6(k, 1,0, —1, —2, —1, —2) + (k, 1, 0, —1, —2, —3, —4) + )
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H = U X((k, 1, 2, 3, 4, 5, 6, 5) —6(k, 1, 2, 3, 4, 5, 4, 5) +S(k, 1, 2, 3, 4, 5, 4, 3) +15(k, 1, 2, 3, 4, 3, 4, S)
420

—16(k, 1, 2, 3, 4, 3, 4, 3) —9(k, 1, 2, 3, 4, 3, 2, 3) +10(k, 1, 2, 3, 4, 3, 2, 1) —20(k, 1, 2, 3, 2, 3, 4, 5)

+19(k, 1, 2, 3, 2, 3, 4, 3) +26(k, 1, 2, 3, 2, 3, 2, 3) —25(k, 1, 2, 3, 2, 3, 2, 1) +5(k, 1, 2, 3, 2, 1, 2, 3)
—4(k, 1, 2, 3, 2, 1, 2, 1) —11(k, 1, 2, 3, 2, 1,0, 1) +10(k, 1, 2, 3, 2, 1,0, —1) +15(k, 1, 2, 1, 2, 3, 4, 5)

—16 (k, 1, 2, 1, 2, 3, 4, 3) —9 (k, 1, 2, 1, 2, 3, 2, 3) + 10 (k, 1,2, 1, 2, 3, 2, 1) —30 (k, 1, 2, 1, 2, 1, 2, 3)

+31(k, 1, 2, 1, 2, 1, 2, 1) +24(k, 1, 2, 1, 2, 1, 0, 1) —25(k, 1, 2, 1,2, 1,0, —1) +5(k, 1, 2, 1, 0, 1, 2, 3)
—4(k, 1, 2, 1,0, 1, 2, 1) —11(k, 1, 2, 1,0, 1,0, 1) +10(k, 1, 2, 1,0, 1,0, —1) +10(k, 1, 2, 1,0, —1,0, 1)
—11(k, 1, 2, 1, 0, —1,0, —1) —4(k, 1, 2, 1,0, —1, —2, —1) +5(k, 1, 2, 1,0, —1, —2, —3) —6(k, 1,0, 1, 2, 3, 4, 5)

+ 5 (Ic, 1,0, 1, 2, 3, 4, 3) + 12 (Ic, 1,0, 1, 2, 3, 2, 3) —11 (Ic, 1,0, 1, 2, 3, 2, 1) —9 (Ic, 1,0, 1, 2, 1, 2, 3)

+10(k, 1,0, 1, 2, 1, 2, 1) +3(k, 1,0, 1, 2, 1,0, 1) —4(k, 1,0, 1, 2, 1,0, —1) +26(k, 1, 0, 1,0, 1, 2, 3)
—25 (k, 1,0, 1,0, 1, 2, 1) —32 (k, 1,0, 1, 0, 1,0, 1) +31 (k, 1,0, 1,0, 1,0, —1) —11 (k, 1, 0, 1, 0, —1, 0, 1)

+10(k, 1,0, 1,0, —1,0, —1) +17(k, 1,0, 1,0, —1, —2, —1)

—16(k, 1, 0, 1, 0, —1, —2, —3) —9(k, 1,0, —1, 0, 1, 2, 3)

+10(k. 1,0, —1,0, 1, 2, 1) +3(k, 1, 0, —1,0, 1, 0, 1) —4(k, 1,0, —1,0, 1,0, —1)

+24(k 1,0, —1,0, —1, 0, 1) —25(k 1,0, —1,0, —1,0, —1) —16(k 1,0, —1,0, —1, —2, —1)

+19(k, 1,0, —1,0, —1, —2, —3) —11(k, 1,0, —1, —2, —1,0. 1) +10(k, 1,0, —1, —2, —1, 0, —1)

+17 (k, 1,0, —1, —2, —1, —2, —1) —16(k, 1,0, —1, —2, —1, —2, —3)

—4(k1, 0, —1, —2, —3, —2, —1)+5(k1,0, —1, —2, —3, —2, —3)

—2(k 1,0, —1, —2, —3, —4, —3) + (k 1, 0, —1, —2, —3, —4, —S) + )

(A8)

H =—
2~~0

U X((k, 1, 2, 3, 4, 5, 6, 7, 6) —7(k, 1, 2, 3, 4, 5, 6, 5, 6) +6(k, 1, 2, 3, 4, 5, 6, 5, 4) +21(k, 1, 2, 3, 4, 5, 4, 5, 6)
k

—22 (k, 1 ~ 2, 3, 4, 5, 4, 5, 4) —14 (k, 1, 2, 3, 4, 5, 4, 3, 4) + 15 (k, 1, 2, 3, 4, 5, 4, 3, 2) —35 (k, 1, 2, 3, 4, 3, 4, 5, 6)

+34(k, 1, 2, 3, 4, 3, 4, 5, 4) +42(k, 1, 2, 3, 4, 3, 4, 3, 4) —41(k, 1, 2, 3, 4, 3, 4, 3, 2) +14(k, 1, 2, 3, 4, 3, 2, 3, 4)

—13 (k, 1, 2, 3, 4, 3, 2, 3, 2) —21 (k, 1, 2, 3, 4, 3, 2, 1, 2) +20 (k, 1, 2, 3, 4, 3, 2, 1,0) +35 (k, 1, 2, 3, 2, 3, 4, S, 6)

—36(k, 1, 2, 3, 2, 3, 4, 5, 4) —28(k, 1, 2, 3, 2, 3, 4, 3, 4) +29(k, 1, 2, 3, 2, 3, 4, 3, 2) —S6(k, 1, 2, 3, 2, 3, 2, 3, 4)

+57(k, 1, 2, 3, 2, 3, 2, 3, 2) +49(k, 1,2, 3, 2, 3, 2, 1, 2) —50(k, 1, 2, 3, 2, 3, 2, 1,0) + (k, 1, 2, 3, 2, 1, 2, 3, 2)

—7 (k, 1, 2, 3, 2, 1, 2, 1, 2) +6 (k, 1, 2, 3, 2, 1, 2, 1, 0) + 21 (k, 1, 2, 3, 2, 1,0, 1, 2) —22 (k, 1, 2, 3, 2, 1,0, 1,0)
—14 (k, 1, 2, 3, 2, 1, 0, —1,0) + 15 (k, 1, 2, 3, 2, 1,0, —1, —2) —21 (k, 1, 2, 1, 2, 3, 4, 5, 6) +20 (k, 1, 2, 1, 2, 3, 4, 5, 4)

+ 28 (k, 1, 2, 1, 2, 3, 4, 3, 4) —27 (k, 1,2, 1, 2, 3, 4, 3, 2) + (k, 1, 2, 1, 2, 3, 2, 3, 2) —7 (k, 1, 2, 1, 2, 3, 2, 1, 2)

+6(k, 1, 2, 1, 2, 3, 2, 1,0) +56(k, 1, 2, 1, 2, 1, 2, 3, 4) —55(k, 1, 2, 1, 2, 1, 2, 3, 2) —63(k, 1, 2, 1, 2, 1, 2, 1, 2)

+62 (k, 1, 2, 1, 2, 1, 2, 1,0) —35 (k, 1, 2, 1, 2, 1, 0, 1,2) +34 (k, 1, 2, 1, 2, 1, 0, 1, 0) +42 (k, 1, 2, 1, 2, 1,0, —1,0)
—41 (k, 1, 2, 1, 2, 1, 0, —1, —2) —14 (k, 1,0, 1, 0, 1, 2, 3, 4) + 15 (k, 1, 2, 1,0, 1, 2, 3, 2)

+ 7 (k, 1, 2, 1,0, 1, 2, 1, 2) —8 (k, 1, 2, 1,0, 1, 2, 1,0)

+35 (k, 1, 2, 1,0, 1,0, 1,2) —36 (k, 1, 2, 1,0, 1,0, 1,0) —28 (k, 1, 2, 1,0, 1, 0, —1,0)
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+29(k, 1, 2, 1,0, 1, 0, —1, —2) —21(k, 1, 2, 1,0, —1, 0, 1, 2)

+20(k, 1, 2, 1,0, —1,0, 1,0) +28(k, 1, 2, 1, 0, —1,0, —1,0)
—27(k, 1, 2, 1,0, —1, 0, —1, —2) + (k, 1, 2, 1, 0, —1, —2, —1, —2) —7(k, 1, 2, 1,0, —1, —2, —3, —2)

+6(k, 1, 2, 1,0, —1, —2, —3, —4) +7(k, 1, 0, 1, 2, 3, 4, 5, 6) —8(k, 1.0, 1, 2, 3, 4, 5, 4) + (k, 1, 0, 1, 2, 3, 4, 3, 2)

—28 (k, 1,0, 1, 2, 3, 2, 3, 4)

+29 (k, 1, 0, 1, 2, 3, 2, 3, 2) +21 (k, 1, 0, 1, 2, 3, 2, 1, 2) —22 (k, 1, 0, 1, 2, 3, 2, 1, 0) +28 (k, 1,0, 1, 2, 1, 2, 3, 4)

—27 (k, 1,0, 1, 2, 1, 2, 3, 2) —35 (k, I, 0, 1, 2, 1, 2, 1, 2) +34 (k, 1, 0, 1, 2, 1, 2, 1,0) —7 (k, 1, 0, 1, 2, 1,0, 1, 2)

+6(k, 1,0, 1, 2, 1,0, 1,0) +14(k, 1, 0, 1, 2, 1,0, —1, 0) —13(k, 1,0, 1, 2, 1, 0, —1, —2) —42(k, 1,0, 1,0, 1, 2, 3, 4)

+43 (k, 1,0, 1, 0, 1, 2, 3, 2) +35 (k, 1, 0, 1, 0, 1,. 2, 1, 2) —36 (k, 1, 0, 1, 0, 1, 2, 1,0) +63 (k, 1,0, 1;0, 1, 0, 1, 2)

—64(k, 1,0, 1,0, 1,0, 1,0) —56(k, 1,0, 1, 0, 1,0, —1,0) +57(k, 1,0, 1,0, 1, 0, —1 —2) +7(k, 1, 0, 1, 0, —1, 0, 1, 2)

—8(k, 1, 0, 1,0, —1,0, 1,0) + (k, 1,0, 1,0, —1,0, —1, —2) —28(k, 1,0, 1,0, —1, —2, —1,0)

+29(k, 1,0, 1,0, —1, —2, —1, —2)

+21(k, 1,0, 1, 0, —1, —2, —3, —2) —22(k, 1, 0, 1,0, —1, —2, —3, —4) +14(k, 1,0, —1, 0, 1, 2, 3, 4)

—13(k, 1,0, —1,0, 1, 2, 3, 4) —21(k, 1,0, —1,0, 1, 2, 1,2) +20(k, 1,0, —1,0, 1,2, 1,0)

+7(k, 1,0, —1,0, 1,0, 1, 2) —8(k, 1,0, —1,0, 1,0, 1,0)

+ (k, 1,0, —1,0, 1,0, —1, —2) —49(k, 1,0, —1,0, —1,0, 1, 2) +48(k, 1,0, —1,0, —1,0, 1,0)

+56(k, 1,0, —1,0, —1,0, —1,0) —55(k, 1,0, —1, 0, —1,0, —1, —2)+28(k, 1,0, —1,0, —1, —2, —1,0)

—27(k, 1,0, —1,0, —1, —2, —1, —2) —35(k, 1, 0, —1, 0, —1, —2, —3, —2)

+34(k, 1,0, —1,0, —1, —2, —3, —4) +21(k, 1,0, —1, —2, —1,0, 1, 2) —22(k, 1, 0, —1, —2, —1,0, 1,0)

—14(k, 1,0, —1, —2, —1,0, —1,0)+15(k, 1, 0, —1, —2, —1,0, —1, —2) —42(k, 1,0, —I, —2, —1, —2, —1,0)

+43(k 1, 0, —1, —2, —1, —2, —1, —2) +35(k 1,0, —1, —2, —1, —2, —3, —2)

—36(k, 1,0, —1, —2, —1, —2, —3, —4) +14(k, 1,0, —1, —2, —3, —2, —1,0)

—13(k, 1,0, —1, —2, —3. —2, —1, —2) —21(k, 1,0, —1, —2, —3, —2, —3, —2)

+20(k, 1,0, —1, —2, -3, —2, —3, —4) +7(k, 1, 0, —1, —2, —3, -4, —3, —2)

—8(k, 1,0, —1, —2, —3, —4, —3, —4) + (k, 1,0, —1, —2, —3, —4, —5, —6) + ) (A9)

In the above expressions the dots represent the image terms which are generated from the existing terms by apply-
ing the symmetry properties (28).

The operators in (29) can be derived using (3a) —(3c), (5a), (Sb), (26), and the linked-cluster theory. Let us
de6ne

vi = (1 IlJ ) llJ

c~ tSJ QjtyQJ —g p

D ((T;IJ) = vI (pvJ~ SI SJ

D (ij ) = XD (a",i,j )

(A10)

(A11)

(A12)

(A13)

and

R(a",I,J) =vI ~SJ SI vJ —(p p

g (I J;k, I) = X [D (~;I,k) D(~;J, i) +R (~;J,I) R ( ~;i;k)] .

(A14)

(A15)
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Including only the linked diagrams, we obtain for one electron per site,

(0, 1, 0) = Xtjg D(j2,j1)
4, )

(0, 1, 0, 1,0) =2 X[tj J D(j2 j1)'+2tj', tj& D(js,j2)D(j2,j1)]

(A16)

(A17)

(0, 1, 0, 1,0, 1,0) =4 X [tj j D(j2,J1) +6tj j tj j D(J3,J2)D(J2,J1)

+6tj'j tj'J tj& D(j4j 3) D (j3,j2)D(j2,J1) +2tj',J, tj'J tj~ D(j4 J1)D(J3,J1)D(J1,J1)]

(0, 1, 2, 1,0) =—2xtj1J tjp2tj4J tjg Q(j4j2 ,jsj1)'
Iji)

(0, 1, 0, 1, 2, 1,0) =8 Xtj J tj J tj J tjp [tjg D(Jp 2J)1+ tJ J D(J,3J)2

(A18)

(A19)

tj j D (J3Jl) tj J D (Js,J1) + tj J D (Js J2}]Q(J4J2iJ3J1)

+8 Xtj J tj J tjg D(j4 J3)D(js,j2)D(j2,j1}
Ij,.)

(0, 1, 2, 1,0, 1,0) =obtained from(0, 1,0, 1.2, 1,0) by changing the order of

Q and the curly bracket in the first summation

(0, 1, 2, 1, 2, 1, 0) =8 xtj j tj j tj j tjg [tJ J D(j3 j2) +2tj'j D(js,j2)]Q(j4j2,jsj1)

(A20)

(A21}

16 xtj j tj j tjy D(J4 J3)D(J2,J1) +16 g tj J tj j tj j tj j tj j Ij j {R( a;J1J5—)
rj,.)

x [3J &rR (a J2j4} ~j D (aiJ2J4) + D(aiJ2Js) [~j R ( aiJz/4) 3 J nD ( aiJ2j4) ] ]

jsj4 Jlj6 jtjs J3J2 J4J3 J2 1
Iji) ~ ~

x {D(o",j4j 5) [D(o",j4J'1)D(o",j 2j3) +R (a",j 1jq)R (—o",jsj2)]

—R (aj sj 4}[R(—oj,j,)D(o",j2j3) —D(oj,j &)R (—aj,j2)]) (A22)

and

(0, 1, 2, 3, 2, 1,0) =12 X tj J tj J tj J tj J tJ J tj J {D(aj2js)[D(ojtJ'3)D(o",j4J1) +R(ajsjq)R( —a j1j4)]
Ij, ),

—R (a ,j sj2) [R ( a"jsj4)D(a j4j1)——D(a'jsjs)R (—cr',jtj4)]}
'I

(A23)

APPENDIX B

For a two-site Hubbard model, there are only two subbands: the lower subband has no doubly occupied site while
the upper subband contains only one doubly occupied site. Therefore,

1

Ho=t X'(1 —
n& )a& aj (1 —nj )+ t X'n; a& aj nj +u Xn;tn12

ijcr ijo I

(B1)
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PtHP2=t X'(1 —n; )a; a& nj
ija

P2HPt =t $'n; a; aj (1 —
n~ )

ija

Substituting (B2) and (B3) into (24), we obtain the simple form-

H = Hp +u U [(P t HP 2HP t
—P2 HP t HP2) /2 t ] +p U [(P t HP2 —Pp HPt ) / r ]

where

2ll +2

u =—X (—1)"+t (2 n + 1)[(2n +2)!]
4 U

' 2N+3

P = —X (—1)"+'(2n +2) [(2n +3)!1 '—
4„~ U

(B2)

(B3)

(B4)

(Bs)

(B6)

Let the two sites be labeled as 1 and 2. Then the eigenstates of Hp consists of attta jt )0), attta ft (0), attaint ~0),
ttt tttft 10) &tt«t 10) and af~ttft ~0). The Hamiltontan matrix of H with respect to these states can be diagonal-

ized analytically and the eigenenergies are at =0, a2 = U, and a+ = —, U[1 + (1 +16u'+16P' —Su) ' ']. Using the

expressions of u and P from (B5) and (B6), we obtain

OO

4(u'+P') —2u =—+ —X (—1)"x'"~K(n)
4 4„~

where x =4t/Uand
t

2(2n +5) 2rt +3 + X
(2m +2)(2n —2m +2) (2m +1)(2n —2m +3)

(2n +6)! 2(2n +4)! ~ (2m +3)!(2n —2m +3)! (2m +2)!(2n —2m +4)!

(B7)

(BS)

K (n) is too complicated to be evaluated analytically. However, a computer calculation gives K(n) =0 for all values
of n. Therefore, we have

e+= —, U[1+(1 +16 'r/U)'i'] . (B9)

~~ is a triplet but ~2 and e+ are nondegenerate. These are just the exact solutions of a two-site Hubbard model for
all values of t and U.
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