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The method of two-time temperature-dependent Green’s functions is applied to a quadrupolar-coupled quasi-
Heisenberg system with the motivation to discuss the occurrence of two phase transitions in some rare-earth
compounds. The hierarchy of equations of motion is terminated by means of some suitable decoupling
approximations previously introduced by the author in connection with an isotropic biquadratic coupling
system. Solution of the equation of motion yields the excitation spectrum of the system. The variation of the
excitation spectrum for different values of the anisotropy parameter and the quadrupolar-coupling parameter
is discussed. The possibilities of occurrence of different kinds of ordering are critically studied. It is seen that
a pure dipolar ordering in which the system undergoes a second-order phase transition from a pure dipolar
state to the paramagnetic state at a temperature T, is not physically realizable. There may exist a pure
quadrupolar ordering for which the system undergoes a second-order transition from a pure quadrupolar state
to the paramagnetic state at a temperature T,. It was also found that there exists the possibility of
occurrence of a mixed ordering which leads to two distinct phase transitions occurring at temperatures T,
and T, corresponding to magnetic and crystallographic transitions, respectively. The transition temperatures
in these three cases are derived. It is seen that in the case of pure quadrupolar ordering the transition
temperature is not much sensitive to quadrupolar coupling. Regarding the mixed ordering we find that the
magnetic transition occurs at lower temperature. The theory is then applied to DyVO, and the agreement
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with the observed data is found to be satisfactory.

I. INTRODUCTION

Biquadratic coupling systems are now of current
theoretical interest. They refer to the compounds
which possess large unquenched orbital angular
momentum so that they can be described by a Ham-
iltonian which consists of some high-degree in-
teraction term in addition to the usual Heisenberg
bilinear term.'™® According to the form of this
high-degree interaction term, two general class-
ifications can be made. One of these is the iso-
tropic biquadratic coupling system which cor-

responds to the Hamiltonian”!!

H=oJd, 3 (5,+8)-4, 2. &,°8,)2, (1)
(ij) (i)

where J, is the Heisenberg bilinear exchange cons-
tant and J, is the so-called biquadratic exchange
constant and the summation runs over all nearest-
neighbor pairs < and j.

The other class refers to the anisotropic bi-
quadratic coupling system.!*™** This class includes
all different forms of bilinear term and the bi-
quadratic. term. In this paper we consider the
following typical combination:

H=-J 2, [S%8%+ 50(S}S5 +575%)]
{i1)
_%QJ(Z) (Q:Q,), (2)
if

where Q; =(S;)2~3(S +1)S, a=D/J, D being a
high-degree interaction parameter, J the bilinear
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exchange constant. The symbol 17 stands for the
axial anisotropy. The second term in Eq. (2) is
commonly called the quadrupolar coupling term in
the literature.

The statistical-mechanical properties of the
isotropic biaquadratic coupling system were studied
in great detail by using a molecular-field approxi-
mation® ! and a Green’s-function approxima-
tion!®*2* From these studies two important facts
were obtained. (i) This kind of system does not
favor two second-order phase transitions. In
particular, these sytems do not demonstrate a
ferromagnetic-quadrupolar and quadrupolar-
paramagnetic transition at two different tempera-
tures provided these are both second-order trans-
itions and also if the ground state is ferromag-
netic. (ii) When the value of the parameter J,/J,
exceeds a certain critical value, the system dem-
onstrates a first-order phase transition which pro-
vides a strong basis in understanding the first-
order transition occurring in UQ,.*°

There exists also quite a good number of dis-
cussions in the literature on different aspects of
anisotropic biquadratic coupling systems. Sivar-
diere and Blume 2 using the molecular-field approxi-
mation, studied a quadrupolar-coupledIsing system
in order to have a satisfactory qualitative understand-
of the magnetic and crystallographic transitions in
DyVO,. Sivardiere et al.?®later discussed the general
quadrupolar systems for all spins. Thorpe and
Blume?® and Liu and Joseph®” treated a linear
chain of isotropically coupled classical quad-
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rupoles. Chen and Levy,'® using the molecular-
field approximation, treated the statistical mech-
anics of S =1, 2 ferromagnets considering the
uniaxial symmetry and special cases of cubic and
axial symmetry. Sivardiere!® made an intensive
study on the appearance of elementary excitations
in quadrupolar-coupled systems. Tanaka and
Mannari®® studied the statistical mechanics of
the systems on the basis of the Husimi-Temperely
model. The recent work of Iwashita and Urya?®
should also be mentioned. An elaborate discussion
has been presented onthe appearance of elemen-
tary excitations by Chiu-Tsao et al ™

Most of the methods presented by earlier authors
to discuss the thermodynamic properties of bi-
quadratic coupling systems of anisotropic type
were largely based on the molecular-field ap-
proximation (MFA) which cannot be expected to
provide any satisfactory qualitative understanding
of the experimental situations since MFA does
not take into account the spin correlations in
proper manner. Barma® employed the Green’s-
function method using the quasiboson approxi-
mation and a proper decoupling approximation to
obtain consistent excitation spectra for a typical
anisotropic biquadratic coupling system. His de-
coupling deals with the situation where the dipolar
ordering is absent even at 7=0 K. Recently, at-
tempts have been made todeal with such systems on
the basis of the Green’s-function diagrammatic
technique, but these treatments are not at present
capable of giving complete description of the
statistical mechanics of the systems.

The purpose of the present paper is to develop
a satisfactory Green’s-function method with the
chief motivation to discuss different aspects of
phase transitions and the effect of quadrupole
excitations on the spin-wave spectrum whose ef-
fective spins are coupled by the Hamiltonian (2).
The use of the finite-temperature two-time Green’s
function in the present case leads, however, to the
complicated problem of uncoupling the typical
Green’s function like {((8%S; +S35%);S7,). A
method similar to that utilized by the author!7+2°
in the case of isotropic biquadratic coupling sys-
tem is used here with a new set of ground-state
requirements appropriate for the problem. The
three-spin bilinear Green’s functions like
((S%Sf; S, are decoupled by means of a new
scheme introduced recently by the author'® which
reproduces the Padé-approximant results at the
Curie temperature in a Heisenberg ferromagnet.
The energy spectrum obtained from the linearized
equation of motion is employed to derive the two
transition temperatures 7, and T corresponding
to the magnetic and crystallographic transitions,
respectively. The results are found to be satis-

factory.

The paper is organized as follows. In Sec. II we
present the formal aspects of the Green’s func-
tion technique as applied to a quadrupolar-coupled
system. The decoupling of higher-order Green’s
functions is done by procedure devised by the -
author. Section III gives us the excitation spec-
trum of the system. The excitation spectra for
various combinations of 7 and « are critically
studied. In Sec. IV a thorough discussion is pre-
sented regarding the appearance of several phases
in the system. Section V is devoted to numerical
estimates and the results of their application to
DyVO,. Some critical remarks are made in Sec.
VL

II. GREEN’S-FUNCTION APPROXIMATION

The two-time thermodynamic Green’s function
is defined as

G(t —t") = (A(); B(")))
=-i0(t -1 )([A®®), B(tN]), (3)

where A(f) and B(#’) are two Heisenberg operators,
the angular bracket (X) denotes the canonical
ensemble average of the operator X, and the
square bracket denotes the commutator. ©(¢ —#')
is the heaviside unit-step function having the
property: ©(#)=0 for t<0, and 1 for £>0. The
equation of motion for the Fourier-transformed
Green’s function is given by

E((A; B))z=(1/2m)([A, B+ ([A,H]; BY) , (4

which when solved gives the energy spectrum of the
system.

Before setting up the equation of motion and
other mathematical formalities we derive the ex-
pression for the simple spin-wave energy using a
boson transformation since it will be necessary for
the construction of the ground-state requirements
for the problem. One may utilize the transforma-
tion: S% =S —ala, S} =(25)"2a, , $"=(2S)" 2%},
where a} and a; create and destroy bosons at the
lattice site 7, respectively. The transformed
Hamiltonian becomes

H=2J"S 3 (511 -1 Gj.na) ala; , (5)
24,4 € ‘

where J” =Je, €=1+a5(2S —1)2, A being the
nearest-neighbor vector. It is to be noted that
for the spin-z case, J"=J and €=1, and thus the
system behaves like an anistropic bilinear ferro-
magnet, which may be compared with the situa-
tion occurring for a spin-1 isotropic biquadratic
coupling ferromagnet. Equation (5) gives the
simple spin-wave energy
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E,=2J7Sz[1-(n/€)v,], (6)

where v, =(1/2)20 , exp(ik - A), z being the number
of nearest neighbors. The complete energy spec-
trum corresponding to the Hamiltonian (2) will be
such that it reduces to Eq. (6).

The complete energy spectrum of the system will
be obtained by solving the equation of motion for
the two-spin Green’s function ({(S?;S;)) which is

&Y " m
Bz 5= 3L 6,203 [((S557 4555755
f

+2a{(Qr Ly S5,

M

£ and m being the lattice sites and
Q;=(8%)2-3C,,
C,= % S(S+1),
L;=S%S5;+S,S% .
Utilizing the author’s procedure higher-order
Green’s functions are decoupled with the use of
new set of ground-state requirements appropriate

for the present problem. These requirements are
(i) for a spin-% lattice, one must have

1 +)‘1<S-gsa> +2,((S; 8% ))?=0;

(ii) for all spins, the energy spectrum must re-
duce to Eq. (6) as 7= 0 K. One thus obtains the
solution of Eq. (7),

(5% 1 -~ explik: (R, -R,)]
Gem.(E)— _'1;_ N Zk: E _Ek ’ (8)
where E, stands for the temperature-dependent
renormalized energy spectrum given by

E, =2zJmR(1 —tv,), (9)
with m = (S*) and the symbols R and ¢ are
R=1-a(1+A)(C, - B -m -nf)
+ 3 aB(l+X + W 42, W?)
t=(1/R)[n+a(l+N)(f -nW)],
W=C,-B-m, »

where a=1/2S2; X, A,, A, are the decoupling
parameters; and f is Fourier transform of the
spin correlation (S%S7}).

It is now rather straightforward to obtain the
expressions for the decoupling parameters A,
and A,. As T-0 K one should have A --1. We
utilize this value of A so that the ground-state
requirements when utilized in the energy spec-
trum yield the following expressions for A, and .

A,

A =(25 +5)/(S+1), 2,=6/(S+1).

We, therefore, get X,=Z and A,=3 for spin-1
case which may be compared with the values of
A, and A, for the isotropic biquadratic coupling
system: A;=2andX,= 3. Thus ], is always
greater than A,

III. EXCITATION SPECTRUM

It is indeed possible to obtain some important
information about any magnetic system from the
study of the excitation spectra for various modes.
This section presents a discussion on the possible
influences of the axial anisotropy and the quad-
rupolar coupling on the qualitative and quantitative
nature of the excitation spectra for a quadrupolar-
coupled quasi-Heisenberg system. Barma®
studied a biquadratic coupling system with a gen-
eral Hamiltonian and developed the method of
Green’s functions which are constructed by quasi-
boson operators. His method introduces a de-
coupling which also involves two unknown param-
eters. He assumes one of these parameters to
be zero due to the fact that the system does not
favor dipolar ordering. In this manner the con-
sistent excitation spectra were obtained. How-
ever, in more general cases, dipolar ordering
does not vanish and in that situation it seems
rather difficult to obtain proper values for the two
decoupling parameters occurring Barma’s treat-
ment.

In recent years, attempts have been made to
develop a suitable Green’s function diagrammatic
technique which has the spirit of reproducing ac-
curate excitation spectra for any magnetic system.
In a series of papers, Yang and Wang® developed
such a technique which they applied to several
problems of magnetism. Westwansky®* and West-
wansky and Skrobis® attempted to construct a
proper diagrammatic technique onthe basis of a
Wick-like theorem.?* But it must be admitted that
it has not become possible at this state to obtain
even satisfactory quantitative results from
Green’s-function diagrammatic technique.

On the other hand, the present Green’s-function
method is not only able to provide consistent ex-
citation spectra, but also much qualitative and
quantitative information regarding the phase trans-
itions occurring in the system.

The excitation spectra for a spin-% bee lattice
are shown in Figs. 1 and 2. The figures demon-
strate some interesting results. First, it is
quite readily seen that the effect of quadrupole
coupling is simply to alter the size of the disper-
sion for a particular value of the anisotropy. It
is relevant to mention that this result is also found
to occur in the case of isotropic biquadratic coupl-
ing system; in that case, the dispersion curve
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shifts by the factor 1+25S(S - 1), where b=J,/J,

is called the biquadratic parameter. The magnitude
of the shift in the case of quadrupolar-coupled sys-
tem is not so simply related to the quadrupolar
coupling parameter «. It is nevertheless evident
that the magnitude of the shift decreases with the
increase of @. A trivial fact to be noted is that for
spin-% case the quadrupolar coupling has no effect
on the dispersion curves. Second, it is seen that
there exists a limiting value of @ for which the ex-
citation spectrum shows singularities. As « ap-
proaches this value, the dispersion curve tends to
graze along the Brillouin-zone boundary. For a
spin-% bece lattice this limiting value has been
found to be -1.3 if 7=1. Beyond this value no spin-
wave excitation is possible. Consequently, the
system does not have any magnetic ground state.
The limiting value of 7 is found to depend on the
anisotropy 1: as 7 decreases this value increases.
Third, it is interesting to note that some negative
& may create a probable situation for the existence
of Goldstone modes even in the presence of axial
ansiotropy. This is clearly demonstrated in Fig.

2. This result may have some qualitative cor-
respondence to the experimental situations occur-
ing in several Jahn-Teller systems which, although
prossessing a large anisotropy, are found to have
an accoustical branch of excitation and hence a
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FIG. 1. Excitation spectra for a spin-2 body-centered-
cubic lattice for various modes in the first Brillouin
zone. The solid curves refer to n=1 and the dashed
curves refer to n=0.5. The ¢urves are drawn for five
values of the biquadratic coupling parameter.
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FIG. 2. Excitation spectra for a spin—% body-centered
cubic lattice. Curve I represents the excitation branch
for a typical combination of @ and 5 such that the sys-
tem possesses a Goldstone mode. Curves II and III
refer to the case n=1 showing the occurrence of a
limiting value of o for which the excitation just grazes
the Brillouin-zone boundary.

Goldstone mode.’® It may be noted that in such
cases the role of the quadrupole coupling is sim-
ply to renormalize the bilinear exchange cons-
tant; that is, the system behaves like an isotropic
Heisenberg ferromagnet with the exchange constant
being properly renormalized by the quadrupolar
coupling and the axial anisotropy. Last, we should
mention that the study of the excitation spectra may
also provide the quantitative measures of dif-
ferent physical parameters of the system. We shall
come to this point again in Sec.V D in studying the
excitation spectrum for DyV,,.

IV. PHASE TRANSITIONS

The occurrence of different possible phases in
the present class of compounds becomes compli-
cated in view of the appearance of two different
ordering parameters m and B in the theory. We
have already observed such complications while
dealing with the similar aspects in the case of an
isotropic biquadratic coupling system. In the
present situation one finds likewise three different
possibilities of occurrence of phases in the system.
First one may consider a pure dipolar ordering
which corresponds to the situation m # 0, B=0 so
that no quadrupolar ordering occurs. [It may be
recalled that B is the quadrupolar ordering param-
eter and stands for B=(S%)2-3S(S +1); the ex-
istence of a quadrupolar ordering is specified by
the condition B# 0]. In this situation it is possible
to conceive only one transition-—the system under-
goes a transition from a pure dipolar state to the
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paramagnetic state a temperature 7,. Second, one
may consider a pure quadrupolar ordering corres-
ponding to the situation m =0, B+ 0 so that in this
case no dipolar ordering appears in the system.
The corresponding transition from a quadrupolar
state to the paramagnetic state may either be
second order or first order and the temperature
at which this transition occurs may be identical
with or different from the dipolar transition tem-
perature T,. Third, one may consider a case of
mixed ordering which corresponds to the situation
m#* 0, B+ 0. This type of ordering leads to two
distinct phase transtions under certain circum-
stances. We discuss below the three kinds of
orderings separately.

A. Pure dipolar ordering

Pure dipolar phase and its associated transition
have already been discussed in connection with
the biquadratic-exchange problem and the transi-
tion temperature in the present case can be de-
rived in a similar manner. The result is

T, =kpT,/2d =CR,/F(t,), (10)

where R;, t, are the expressions for R, at m
=0 and T, is the dipolar transition temperature
(or Curie temperature). Ignoring certain smaller
terms one can simplify the above equation to the
following form

S I ECOR o

where x=aC(1+2).

It is necessary to make some critical remarks
about the situation mentioned which leads to a
pure dipolar ordering. Although a transition tem-
perature has been derived above and in a previous
paper while dealing with an isotropic biquadratic
coupling system, one may argue that the situation
whic¢h corresponds to the condition m+ 0, B=0
cannot be possible. Since at T'=0 K one gets m
=8, the equality B=0 cannot be possible. This is
true even if @ goes to zero. Therefore, a nonzero
B must appear at some temperature. The re-
normalization-group calculations of Wegner®
confirm that B is nonzero below the Curie tem-
perature. This result also follows from molecular
field calculations. Hence, one cannot have a phase
in which m # 0, B=0, and the calculation of the
transition temperature presented above is only of
theoretical interest.

B. Pure quadrupolar ordering

We now find the possibility of occurrence of a
pure quadrupolar phase which corresponds to the

situation m =0, B#0. This is, indeed, true that
one finds it possible to arrive at this typical
situation. But in this case the system undergoes

a single transition. The transition occurs from a
pure quadrupolar state to the paramagnetic state.
The temperature at which this transition occurs
may easily be found. One finds that the expression
for B can be written

B=C,- T ; coth(s BE,) . (12)

We utilize the expression for the energy spectrum
and substitute 7 =0. In the resulting equation we
take the limit B—0 which thus gives the following
expression for the transition temperature at which
the system undergoes the phase transition from

a pure quadrupolar state to the paramagnetic state:

Tq=kpTo/2d = CR o/ F(t ), (13)

where Rq and {4 are the expressions for R and ¢
in the limit B-0.

Equation (13) is a complicated one. Ignoring cer-
tain smaller terms as done in the case of 7, one
can easily show that 74 is identical to 7,. It is
thus found that 7, is not very sensitive to the
quadrupolar coupling. It may be argued in this
context that this result is caused by the decoupling
approximations utilized inthe theory. In fact, the
random-phase approximation decoupling for

A Qs (SgS5+5,°57) ;S0 0
= Q) (8% ST +5.5%); S

may be responsible for the occurrence of this re-
sult. It may be anticipated that a small dependence
of 74 on @ may be generated by taking into con-
sideration the interspin correlations in this de-
coupling approximation. But it is undoubtedly an
impossible task to make even a guess about this
correlation term in view of the present status of
our knowledge regarding the Green’s-function
decoupling. In spite of this one may be unambigu-
ous in admitting the fact that this term, even if
found accurately, cannot be very large compared
to the dominant term involving {@,). It may, how-
ever, be felt in general, that the dependence of 7,
on o may be generated from a second-order
Green’s-function calculation which involves further
taking in the equations of motion of the Green’s
functions {(S%S%;S3,)), ((S5S;;S;)), and

{(S;S; +5,5%);S;,)). The calculations have been
carried out in this fashion, but the result showed
that 7, remains almost independent of «.

C. Mixed ordering

The most interesting and physically realizable
situation is created when the system exhibits a
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mixed ordering in which the low-temperature
states of the system are populated both by magnons
and quadrons (quadrupole excitations) with equal
significance so that neither the dipole ordering
parameter nor the quadrupole ordering param-
eter goes to zero. Evidently, in such cases the
ground state happens to be complicated and hence
it becomes a difficult task to made a complete
study of the thermodynamics of such ordering. To
examine the simplest case we assume that the
ground state is still ferromagnetic. To investigate
the simultaneous thermal evolution of 7 and B
from a ferromagnetic ground state one should note,
in the first place, that a situation may, in general,
arise where m and B do not go to zero at the same
temperature, thus giving rise to an intermediate
quadrupolar phase. One finds, therefore, the pos-
sibility of occurrence of three different phases:

a mixed or true ferromagnetic phase F; a gquad-
rupolar phase @, and a paramagnetic phase P.

The phase transitions can be considered in two
different ways: (i) true ferromagnetic -~ pure
quadrupolar - paramagnetic, (ii) true ferromag-
netic - pure dipolar -~ paramagnetic. Evidently,

the second possibility does not arise because it
goes through a pure dipolar phase which is not
physically realizable.

The problem is now reduced to one of calculating
two transition temperatures T, and Tq, where F@
and QP transitions occur, respectively. The ex-
pression for Ty has been derived earlier and that
for 7T, may be obtained in the manner T, was ob-
tained. The result is

e b5 = Sy [1- i ()
(14)

where f(B) is a polynomial in B given by
AAB)=¢€,+€,B -€,B?1+€,B%

€, €4, €5, €3 being given by the expressions
€=1-x, ‘ )
& =a(l+0) +(Pa(1+1,Co+21,C?) ,
©=3a(l+2C,), ¢,=2 an,.

It may be noted that if one takes the limit B~ 0
further, Eq. (14) reduces simply to Eq. (13), thus
representing the transition from a pure quad-
rupolar state to the paramagnetic state. One
should, however, note that for physically real-
izable 7, the necessary condition is R>0 which
also makes Tg - T, positive, the latter condition
being a necessary one for the @P transition to
become an intermediate one. A little inspection
will reveal the fact that under some circumstances

R may be greater than zero. The consideration of
a quadrupolar-coupling term to the usual dipolar
term is thus found to lead to two separate but
closely coupled phase transitions.

V. APPLICATION TO DYSPROSIUM VANADATE

We have seen in Sec. IV that under certain con-
ditions a quadrupolar-coupled system may dem-
onstrate two second-order phase transitions, one
at T, which may be identified as the magnetic
transition and the other at T3 which may be char-
acterized as the crystallographic transition. This
general qualitative result agrees with the ex-
perimentally observed transitions in certain rare-
earth compounds such as DyVO,, TbVO,, TbPOQ,,
TmAsO,, etc.*"*° However, when one compares
the results quantitatively one becomes embarrassed
with the unpleasant feature that except for DyVO,
the chosen Hamiltonian differs considerably.
Furthermore, the requisite observed data for all
such compounds (with the exception of DyVO,) are
not sufficient for the estimation of the important
parameters of the theory such as J, o, B, etc.

We therefore consider the application of our theo-
rectical result to DyVO, of which sufficient data
are available. We must, however, mention that
DyVO, undergoes an antiferromagnetic transition
at 3.07 K and therefore the model Hamiltonian
cannot be applied as such. Fortunately it may be
noted that all Green’s-function calculations (using
the same decoupling) for a ferromagnet* or an
antiferromagnet®? lead to identical expressions for
the transition temperatures.

For the numerical estimates of the quantities
which are our consideration it is first necessary
to find out the experimental values of different
physical parameters appearing in the theory.
These are J, a, B, f(B), and 11 and it is well known
that no accurate theoretical methods exist to cal-
culate these parameters. We make use of the ex-
perimental data for the evaluation of these param-
eters. To begin with, we take into consideration
that for DyVO, the axial anisotropy is very large
so that the anisotropy parameter is almost zero.

A. Ground-state energy

The ground-state energy of the spin system
satisfying our spin-Hamiltonian can be readily
shown to have the form

|E,|=%2|J |[(S2+3 aC?). (15)

The absolute values are taken due to the fact that
we are working with an antiferromagnetic lattice.

Cooke et al.* found that |E, |/kz ~2.518 and
therefore one obtains from Eq. (15),

|7/kp |(1+4.16a)=0.56. (16)
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Below, we shall find another equation involving
a and J/ky from the specific-heat data.

'B. Specific heat near 7,

Specific heat of a spin system is obtained from
the first temperature derivative of the internal
energy and it is very difficult to calculate it over a
large range of temperatures using the first-order
Green’s-function theory. However, one can readily
find the specific heat near 7,,. We calculate it
from the following expression for internal energy

|E | = 22N |7 |(1+20)(S}S7)

+ $2Na |J | B2, (17)

We consider the external magnetic field H; ap-
plied along the +z direction so that the energy
spectrum becomes

E,=h+2zdmR(1 ~tv,), (18)

where % =gUgH, with usual meaning.
One, therefore, finds in the quadrupolar region

2 1
B=C°_I§N—; 1/x+22dR(1 —trp) ’ (19)

sy o 2 L4
(8;83) = BN ; 1/x+2zJR(1 -tv,) ’

(20)

where‘ X=m/h is the reduced susceptibility.
We therefore get, in the vicinity of T,

|E| 1(1+2

Nk, 4\ n

1J 1
kg

)[F(n)_1]T+~2—coaz

~$aC,TFm)+ta Tt A (R,
(21)

Considering the fact that for linear, square, and
cubic lattices

1 1 1 3(z -1)
N g JovAT T et

one finds for small 7,
F(n)=1+1*/z2+3n%z -1)/28.

Since for DyVO,, =0, one has F(n)=1 and [F(n)
-1]/1=0. Therefore, the specific heat near T,
is

|Cy|/NEg~1.1470/ | I /Ry | —3.T5a. (22)
Cooke et al. found
|Cy | NPy =0.24+0.072(T/T,) (to order T).(23)

Near T, this is equal to 0.312 and thus Eq. (22)
yields the relation

|7 |/%5(1+12.02a)=3.67c. (24)

C. Numerical estimates

It is now straightforward to obtain the values of
@ and |J |/k5. Solving Eqgs. (16) and (24) one gets

a=~_0.116, |J|/kz~1.08 K.

Using these values of @ and |J |/k; we shall now
calculate the values of two other important param-
eters, B and f(B). For this we utilize the equations
for B and f(B) whence we get '

B=~0.115, f(B)=0.4.

We thus see that B is not zero at T,, which is the
expected result. This result also shows that beyond
T,, a pure quadrupolar phase can exist.

Utilizing the values of all the required param-
eters mentioned above we obtain the following esti-
mates for the transition temperatures:

T,~4.2K, To~11.2K,

which agree satisfactorily with the experimental
values of T, and Ty obtained by Cooke et al.:
T,=3.0TK, To=14 K.

In addition to the numerical estimates of the pa-
rameters stated above one can calculate another
physical quantity —the internal energy at T,,. The
result is E(T,) ~-1.983 K which may be compared
with the observed value E(T,) ~-1.922 K. The
result is thus quite satisfactory.

D. Excitation spectrum for DyVO,

We now examine the excitation spectrum for
DyVO, in light of the discussions presented earlier
for a general quadrupolar system. The compound
has the effective spin S = 3 and the interaction pa-
rameters a=-0.116, |J |/k;=1.08 K as estimated
above along with the fact that it possesses a square
lattice. We have drawn several branches for a
spin-% square lattice for different values of the
anisotropy parameter 7. The general features
which are evident from Fig. 3 are: (i) the ex-
citation spectrum is very sensitive to the axial
anisotropy and (ii) as 7 decreases from unity the
excitation spectrum shifts upward. To find the
particular branch which may correspond to DyVO,,
we choose that value of 7 which reproduces the
ground -state energy. We find that the branch of
excitation which corresponds to 7 =0.051 repro-
duces approximately the ground-state energy as
obtained by Cooke ef al. Consequently, this branch
may be regarded as that for DyVO,. It is never-
theless important to note that this branch does not
indicate the existence of a Goldstone mode. It is,
in fact, true that a highly anisotropic crystal like
DyVO, does not have Goldstone modes. How-
ever, Fig. 3 shows that in'a quadrupolar-coupled
quasi-Heisenberg system of the present type the
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FIG. 3. Excitation spectra for a spin—% square lattice
considering a=-0.116, |J/kg| =1.08 K which corres-
pond to DyVo, as obtained from the present approach.
Various curves are drawn for different values of the
anisotropy parameter 7. The dashed curve refers to
n=0.051 which may correspond to the excitation spectra
for DyVo,. I is seen that a Goldstone mode appears
for n=0.25.

Goldstone modes may occur for some particular
value of the anisotropy parameter. This value is
found to be 7=0.25.

It may be remarked that the value of 7 obtained
above for DyVO, may change our numerical esti-
mates for the transition temperatures and the
physical parameters like B, f(B), etc. But the
calculations show that this change is not percept-
ible mainly due to the fact that the Watson sum

F(0.051) is not much different from unity, which
was our approximation.

VI. CONCLUDING REMARKS

A simple Green’s-function theory has been de-
veloped in the preceding sections to discuss the
thermodynamic properties of rare-earth com-
pounds which show two different phase transitions.
The theory can be extended to more-complex
systems showing multiple phase transitions for
which more than two order parameters are to
be employed, but this extension evidently involves
many mathematical complications. It is, however,
important to point out the fundamental necessity in
framing up a satisfactory theory for the present
class of compounds is the basic Hamiltonian which
should have a form properly corresponding to the
real crystallographic configuration. Consequently,
one must feel it indispensable to utilize the well-
known Pytte-Stenvens model*® along with suitably
extended form of Sivardiere® in order to develop
an accurate spin Hamiltonina for any particular
compound.

In addition to this, we mention the recent work
of Tanaka and Mannari®® who studied a quadru-
polar-coupled Ising system on the basis of Husimi-
Temperely model.?® These two authors observed
that a ferromagnetic transition is first order
for 1> @ > 0.5 and is second order for @ >1. They
also noted that if 7, is the transition temperature
corresponding to a ferromagnetic -paramagnetic
transition and Tq be the transition temperature
corresponding to a quadrupolar-paramagnetic
transition, then the paramagnetic susceptibility
above 7T, for a> 0.5 and above T for < 0.5
obeys the Curie-Weiss form. Thepresent Green’s-
function approach does not, however, reproduce
the results. Investigations in this regard are
necessary.
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