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A new theoretical treatment of the Anderson model of transition-metal or rare-earth impurities in a simple
metal is presented. This study treats the impurity Coulomb correlation exactly and the host impurity

coupling to lowest order in the sense of a self-consistent degenerate perturbation theory. The central result of
this work is that if an impurity interconfigurational excitation energy (ICEE) is close to the Fermi energy in
the atomic limit, a temperature-dependent shift of the ICEE is found for the interacting system. This
temperature-dependent shift is shown to give a good description of the experimental observations on dilute

magnetic alloys.

I. INTRODUCTION

For many years the problem of transition-metal
or rare-earth impurities in noble metal hosts
has been studied theoretically be examining the
simpler S-shell Anderson model. ' This model
Hamiltonian has g noninteracting part K, repre-
senting the single impurity atom states and the
conduction electrons of the host. In the usual no-
tation' Ko is written as

1
Ho= Q f~ ng + 2 UBg ngg+QCf nf,

Within this Anderson model, the impurity and
host conduction electron systems are coupled to-
gether by a one-electron hopping term V which
represents a conduction electron hopping on and
off the impurity site

&=+V~,(c~~,c~+ cf c„,) .
Rs

In many applications of this model the coupling
matrix elements V are regarded as small. Though
this is not essential to much of what follows, the
major thrust of this work will assume a small
VIe.

The major thrust of this study, besides assuming
a small V~, is to treat the impurity correlation
and many-electron configurations exactly, and to
examine under what circumstances such a system
could reproduce the experimental properties of
dilute magnetic alloy systems. The consequences
of this study form a new theory of the dilute alloy
which is a significant departure from previous
theoretical descriptions. Because the results are
so different it is well to briefly summarize the
main points, even though heuristic and detailed
presentations are also given below.

First, the method used here is rooted in the
ionic picture of Schrieffer' and Hirsi (SH). Pro-
ducts of many-electron impurity states and host

conduction-band states are taken as initial states
for the alloy system. The equations of motion of
the stepping operators4 between many-electron
states which differ by one electron are studied
in a formalism which combines elements of Feen-
berg perturbation theory, ' evaluation of truncated
secular equations as in degenerate perturbation
theory, and a self-consistent determination of
thermodynamic correlation functions. '

Second, the strongest effect of the impurity-host
coupling is found in what the "Kondo" picture'
would describe as a strong-coupling regime, and
which in this picture is best described as the near
degeneracy of the unperturbed states of the alloy
system. To be more explicit the strongest effect
of the V~„coupling is found when the energies of
an n electron impurity configuration and the N elec
tron host Fermi sea are approximately degenerate
with n + 1 electron- impur ity configuration and the
N+ 1 electron-Fermi sea of the host. That a small
matrix element should show its greatest effect when
the unperturbed states are degenerate is well
known. However, in this context the conditions
manifesting a many-electron degeneracy have not
been considered before. As is shown below in an
heuristic discussion the alloy many-electron de-
generacy implies that the impurity configuration
energies E„and E„„arenot degenerate but differ
by an energy equal to the conduction-electron
chemical potential p,, that is,

E„„-E„=p, or E„-E„,= p.

The physical relevance of this condition rests
on two consequences of this study. First, the
unperturbed energy E„„-E„—p. occurs as one
of the atomic limit interconfigurational exci-
tation energies (ICEE's) of impurity Green's
function when the host and impurity are in equil-
ibrium. Second, our calculation for the coupled
system derives a termperative-dependent energy
shift 5E„ for these poles of the impurity Green's
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function in thermodynamic equilibrium. The
temperature dependence of this shift in the inter-
configurational citation energy (ICEE), E„„—E„
—p, —5E„ is shown in this paper to give a fairly
good description of the experimental dilute alloy
effects.

The departure from the traditional perspective
of the Friedel-Anderson' or Kondo' approaches to
this problem is apparent when one identifies the
interconfiguratiogal energies of the Anderson
model a„,—p. or &„,+ U- p, . The considerations
described above lead us to examine the conse-
quences of one of these energy differences being
close to zero. In the traditional approaches to
this problem, both of these energies are con-
sidered as being large in absolute value and of
opposite sign. In this work a "ma.gnetic" response
is obtained for c~, —p. &0 and z„,—p, + U&0 as for
previous studies, but the parameter values for
the model are quite different. The essential dif-
ference between our perspective and previous ap-
plication using the Anderson-model Hamiltonian
is that we regard the model pa, rameters as arising
from an ionic context, while previous treatments
have used Hartree-Fock (HF) calculations to
determine z~, and U. As discussed in Appendix D,
these HF estimates tend to emphasize the one
electron energies far from the Fermi energy. It
is an interesting commentary on the tendency of
HF estimates to be too large that the experimen-
tally estimated lif teime broadening' of the d or-
bitals

6= mN(0)
~ V~ ~

~, (1.3)

where N(0) is the density of conduction-electron
states at the Fermi energy, has been consistently
smaller than the initial HF calculations predicted. "
The most desirable procedure for the present
work mould be to evaluate the model Hamiltonian
parameters using a many-electron calculation
process of the type suggested by Hirst. ".

The a priori evaluation of model parameters
in the ionic context for even a simple Anderson
model or for any more realistic model representing
an iron group or rare-earth impurity is quite beyond
the scope of the present effort. The aim here is
to explore the consequences of this new perspec-
tive, examine what model parameter values are
needed to reproduce experiment, and raise the
observation that a previously unexplored constel-
lation of hypotheses seems to explain many facets
of the dilute alloy problem. The fact that my
method begins by treating the many-electron ef-
fects of the impurity and represents a new and,
possibly, powerful theoretical tool for such prob-
lems lends merit to the possibility that this des-
cription of the dilute alloy problem may be phys-

ically relevant.
The work done in this paper differs from pre-

vious theoretical treatments in that the Anderson"
HF criterion for the presence of a magnetic mo-
ment is definitely not used. While Anderson's
treatment has been criticized by many' on the
grounds that it lacks rotational invariance and
does not hold in the b, -0 limit, it still retains
a strong following, especially in the experimental
literature. The criterion for magnetic behavior
to be developed in this paper is simply a question
of whether the impurity is weakly enough coupled to
the Fermi sea to be able to independently orient its
spin or whether it is strongly correlated with the
rest of the conduction electrons.

The results of this paper also differ markedly
from the large body of literature" which is based
on the "Kondo" themes of the impurity inducing a
many-body correlated state in the host conduction-
electron gas. In particular, the widely held idea
of the Kondo effect being caused by a narrow res-
onance at the Fermi energy which is not an im-
purity interconfigurational excitation energy is
rejected. Bather, the perspective af this work
is that the ICEE peaks are not necesarily wide in
energy, that estimates of the widths of the z~ and

c„+U peaks in the 8-shell model have been derived
througn interpretations of the model in a HF sense
and could be too large. The perspective of this
paper attempts to explore the proposition that the
dilute magnetic alloy behavior is caused by many-
electron effects localized on the impurity site and
not spread out through a cloud of surrounding con-
duction electrons. This picture of the magnetic
behavior of the ion being localized is quite con-
sistent with the experimental results of neutron
sca,ttering and other microscopic probes. "

Because of the recent application of Wilson's"
Kondo calculations to this Hamiltonian, "a brief
comment of comparison is in order. The theo-
retical methods used here are complimentary to
those used by Wilson et al. , though a direct com-
parison may be difficult because of the necessary
approximations required in this work. Where
the Wilson eI, a/. method constructs explicit many-
electron states for truncated many-electron Hamil-
tonians, the method of this paper examines step-
ping operators which step between many-electron
states whose electron counts differ by one. Where
the Wilson method starts with small numbers of
electrons in the truncated system and builds iter-
atively to larger number of electrons, the ap-
proach of this paper attempts to evaluate the
thermodynamic expectation values of stepping
operators in the thermodynamically most probable
many-electron states. Of necessity this evaluation
can only be determined approximately and the ap-
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proximations must be carefully examined. How-
ever, both calculations for the susceptiblity agree
quite closely in the high-T and low-T regimes. In
the intermediate temperature ranges, the two
methods are not in agreement. The root of this
disagreement is examined elsewhere, but one
point bears discussion here. There is only one
part of the Wilson procedure that is not justified
in a rigorous fashion. The process of calculating
with a sequence of truncated Hamiltonians has
been placed on sound footing in another context
by the studies of Masson. " The numerical.
stability of the convergence for many-electron
states with -70 electrons is well demonstrated
by the careful numerical studies of both Wilson
and Krishnamurti. Wilson's a priori anzatz which
replaces the uniformly dense unperturbed con-
duction-electron energies c-„=(lkl —Ikz I)vz with
the discretized c„=+I/A" sequence where & = 1.5,
2, 3 underlies the whole Wilson method and has
not been placed on the same solid foundation as
the other elements of their calculations. The
Wilson discretization anzatz replaces host conduc-
tion-electron energies near the Fermi energy,
which in most models of pure system display an
almost constant density of states near ez, with a
host density of states that is logarithmically sing-
ular at z„. While such a discretization enables
the application of the powerful renormalization
group methods to this problem it must still be
regarded as an hypothesis motivated by the wealth
of perturbative studies on this problem.

A test of the Wilson discretization anzatz is well
beyond the scope of this study. It may well be
that such a test is not possible in the context of
the current approach of this study. However, a
comparison of the two methods will be made else-
where. This discussion has been made only to
indicate that in principle the theoretical approach
of this study is not in contradiction with the gen-
eral schema represented by the Wilson et al. cal-
culations and that at least one element of Wilson's
method is open to question. The differences be-
tween this paper and previous studies lie in ap-
proximations and hypotheses the nature of which
leave open the question of the microscopic des-
cription of the dilute alloy problem. It is in this
context that the following study is presented.
Further analysis and possibly new experimenta-
tion may finally resolve the differences between
this approach and previous studies. In the mean-
time, the consequences of the ionic picture of
Schrieffer and Hirst (SH) and the many-electron
degeneracy of the alloy will be presented below.

To gain a more heuristic understanding for the
physical picture used here, we need to adopt a
general perspective. The problem we examine

involves the coupling of states of a "free" Hamil-
tonian H, by a relatively small perturbation V.
Let Ig„& and Igs& represent two states of H, which
will be specified more precisely below, The gen-
eral consideration of Hamiltonian secular matrices
suggests that a small perturbation can quite signif-
icantly alter the spectrum of H, if the unperturbed
states are close to being degenerate in energy. "
Let us examine under what conditions for this
Anderson model the small coupling V could be
especially important in this sense. In other words,
we seek to examine the states coupled by V to
see under what circumstances they could be close
in energy On. e of the two types of states which are
coupled by the potential V is

I& &= lt.(N )&l&.(N)& (1.4)

where Ig~(N„)& is an N~-electron state of the host
conduction electrons, and

I P~(N)& is an N-electron
impurity state. In a realistic model If'(N)& might
represent a d" of f~ configuration of the d or f
shell of the impurity. The second state is

ly.&=
I 0'(N. I)&l—q.(N+ 1)& . (1.5)

Note first that both of these composite states cor-
respond to having N~+N electrons. The energies
of these two states are

E„=U~(N~)+ E„,
E =U'(N —1)+E „.

%e thus seek to explore the consequences of the
condition that E„=E~, i.e., that

EN,1-EN- ~UF(NE) - UE(NE-I)j=o . (1.7)

There are actually quite a large number of dif-
ferent states

I gz(Nz)& and correspondingly many
different types of composite states lg„& and If'&
for the same impurity configurations. This makes
the evaluation of (1.7) somewhat difficult, unless
we adopt a thermodynamic perspective which
substitutes the thermodynamically most probable
state energies U~(Nz) and U~(N~ —1) into this ex-
pression. In this case, the difference

U~(N~) —U~~(N~ —1)= p, =g~, (1.8)

This result says that the energies of states in
two adjacent configurations of the impurity shell
should have a difference which is on the order of
the chemical potential of the host conduction elec-

where p, is the chemical potential of the host con-
duction electrons. This reduces the condition for
the approximate degeneracy of the composite states
to the statement that the impurity interconfigura-
tional excitation energy (ICEE) should be close to
zero,
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trons. This could mean, for example, that the
two impurity configurations might differ in energy
by something on the order of 5-8 eV. A Priori
verification of whether any atoms satisfy this
condition is difficult because the configuration
energies are those appropriate to the impurity
inside the host metal and not to the free-atom
energy differences. An impurity atom which
could reasonably be a candidate for this pres-
cription is Mn, "based on its d"s'- d" 's' core
to valence transitions.

It is important at this point to emphasize that
even though the preceding paragraphs have been
written in the language of the conduction electrons
interacting with the d or f shell, we would argue
in agreement with Flynn ' that the impurity cell is
almost always netural and that the interconfigura-
tional excitation energies (ICEE) which we dis-
cuss are similar in magnitude to the core-valence
transitions discussed by Flynn and correspond
in the neutral atom to d""'s'-cPs' transitions and
others.

A second important consequence of (1.9) be-
comes immediately clear when it is real. ized that
this small quantity E~„E„—p, -is exactly one of
the ICEE's at which the atomic limit impurity
Green's function has its poles." Thus, the near
degeneracy of composite states in the host+ im-
purity system can give rise to ICEE resonances
in the t matrix which are near the Fermi energy.
It is worth noting that this degeneracy of com-
posite states in the alloy requires the close match-
ing of two physically distinct quantities: the ener-
gy difference between impurity configurations and
the host Fermi energy. The mismatch of these
quantities will be seen below to give a significant
depression of the effects. of the coupling V on the
composite system.

The rest of this paper will pursue the logical
consequences of the heuristic picture presented
above. Our analysis employs impurity parameter
values which in the usual Kondo picture would be
regarded as strong J coupling, i.e., large
~(O) Z.„=(~/v)[~„—(s„,+ U)-'].

There are at least two distinct ways in which
this parameter regime can be realized. The first
of these is by taking the large V-„~ limit, in which
the d-lifetime broadening 6 dominates all other
parameters in the problem. In this case the tem-
perature behavior of thermodynamic quantities
like the susceptibility is determined by comparing
the temperature T with T~ =4/mt', where ks is
the Boltzmann constant. For temperature below
T~ we have a constant Pauli-like susceptibility

This is not the regime that we will study here,
for as is well-known in such a regime it makes
little sense to begin with an ionic or atomic pic-
ture of the impurity.

The other strong J-coupling situation corres-
ponds to the degeneracy of two composite states
of the alloy and in the S-shell model to either
e„or e~, + U being small [cf. Eq. (1.6)]. For this
model z~, is the energy difference between %=1
and N=O configurations, while z„,+ U is the en-
ergy difference between E= 2 and %=1 configura-
tions. Both of these quantities are measured with
respect to the Fermi energy and so do not
explicitly display the chemical potential. 24

The degeneracy of composite states of the sys-
tem and the resulting placement of an ICEE near
the Fermi energy implies that we must encounter
statistical fluctutations in the grand canonical
ensemble between the impurity configurations
connected by the ICEE. The work reported below
displays the connection between the configuration
fluctuation phenomena" and the dilute magnetic
alloy phenomena.

This paper consists of five sections. Section
II will briefly review the ionic approach of Hirst
and Schrieffer (SH). Section III will lay the theo-
retical frame work for doing degenerate pertur-
bation theory in the grand canonical ensemble.
In particular, we examine here the atomic limit,
display the relationship to the Hartree-Fock ap-
proximation (HFA), and examine the effects of
the coupling on the impurity states. In Sec. IV,
we describe the main theoretical calculations un-
derlying this report and display their application
to a few experimental properties. Many of the
theoretical details are relegated to appendices
A. , B, C, and D, hopefully to enhance the read-
ability of our results. Finally, in Sec. V, the
extension of these ideas to realistic many-elec-
tron atoms and to other problems is examined.

II. THE IONIC APPROACH AND THE ICEE'S

Hirst' in his important work outlined a des-
cription of transition. or rare earth ions in metals
which incorporated the earlier ionic-based per-
spective of Schrieffer. " Hirst observed that
when the impurity potential is strong enough to
give a fairly narrow virtual bound state (VBS) at
the impurity site, the traditional one-electron
picture is no longer valid and a correlated many-
electron basis becomes important. This occurs
because the strong impurity potential and the nar-
rowness of the VBS implies that the electrons
spend more time in the impurity, thus enhancing
the importance of the local-local Coulomb inter-
actions and the correlation that they imply. It is
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this sort of argument which led Hirst to begin
the description of the dilute alloy with the impurity
atomic states in the zeroth approximation.

The principle accomplishment of Hirst's ap-
proach was to show that by starting with the es-
sentially atomic point of view it is possible to
derive from first principles a Hamiltonian with
three parts,

where II„,represents in zeroth order the ion
Hamiltonian which contains Coulomb interactions
between the electrons, spin-orbit interactions,
and interactions with the impurity nucleus, the
closed-shell electrons, the lattice ions and the
conduction electrons in their lowest states. This
essentially atomic Hamiltonian has correlated
many-electron states 4","'(n) which contain n elec-
trons in the d (or f) shell and have term energies
E„(n). Here e represents the irreducible repre-
senation to which the many-electron state 4'"'(o.)
belongs. Where necessary, the rows of the irre-
ducible representation will be labeled by the index

In a second quantized notation the creation op-
erators for the correlated many-electron states
will be written as bt(o. ). These operators are nth
order polynomials of the d (or f) shell creation
operators ct,. The form of the polynomials can
be determined by standard methods. "

The conduction-electron states and other closed-
shell electron states are determined by a con-
strained restricted Hartree-Fock (CHHF) pro-
cedure described in detail by Hirst. " Physically,
this CBHF procedure determines one-electron
orbitals for those electrons which are orthogona, l
to the localized shell states and which minimize
the ground- state energy. The conduction-electron
states are thus not only separated from the im-
purity states, but also contribute to the impurity
screening. Far away from the impurity, these
conduction-electron states are little changed from
the host states. Near the impurity the conduction-
electron states are more strongly altered.

In the CRHF calculation the conduction electrons
are treated as independent quasiparticles and the
variational CRHF calculation determines an ef-
fective interaction between the distorted conduction
electrons and the d (orf ) shell impurity electrons.
If we represent the conduction-electron annihiation
operators as c~ and the d-shell orbitals by c„„
then the equation of motion for c-„,which is derived
from the CBHF variation can be written as'

[cf~,$C] =
&I, cf + Q Vfgc~ (2 I)

In this Eq. (2.1) both the z~, and the V~ arise as
variational parameters of the CBHF procedure.
This equation exhibits the conduction-electron

band energies c~ and the effective interaction ma-
trix element V«between the conduction electrons
and the d (or f) shell orbitals. This already spec-
ifies the form of Xl which arises between the d-
shell orbitals and the conduction electrons.

While Hirst did not explicitly emphasize the
magnitude of V«which arises in his CRHF method,
it must be quite small for his analysis to be valid.
In particular, Hirst limited his discussion to first-
order perturbation theory, neglecting the lifetime
broadening- of the atomic states. Hirst argued that
this was permissible if the minimum intercon-
figurational excitation energy E,„„

E,„,= min ~E~(n) —E~,(P) ~,
was relatively large. Hirst estimated that E,„,
should be roughly on the order of the Slater Il

integrals and thus might be expected to be as large
as 25 V. This estimate neglects one of the impor-
tant characteristics of the CRHF calculation,
namely, that it includes the screening of the d
states by the conduction electrons in zeroth order.
While it is impossible to evaluate E,„,unequivocal-
ly, short of doing a CRHF calculation itself, we
can gain insight into the allowed range of values
by reviewing the appropriate estimates by Her-
ring ' for E„,. It may be recalled that Herring
estimated from comparison with atomic spectra
,and other estimates of theories of conduction-;
electron screening that the "effective" Slater in-
tegral for the 3d shell could be in the range 3-6
eV. This range of values was. obtained essentially
by examining energy differences between 3d"4s'
and 3d" '4s' configurations instead of energy. dif-
ferences within a pure d shell alone.

Our interest in this paper is to look at Hirst's
model in the grand canonical ensemble where the
corresponding version of E,„,= min~E„(o. )
—E„„(P)+ p,

~
is small and to do degenerate per-

turbation theory using essentially secular equa-
tions or Feenberg techniques. "

At this stage it is appropriate to make again a
brief comparison between the Schrieffex-Hirst
ionic approach and the traditional Friedel-Ander-
son (FA) perspective. In one sense these two
pictures simply represent alternative bases from
which to expand the states of the impurity and
host. The FA approach tends to emphasize the
itinerant aspect, but typically fails to treat care-
fully the inherent correlation effects because of a
reliance on Hartree-Fock approximations for the
local states. As Wohlleben and Coles" have noted
such an approach has led generally to theoretical
results of questionable applicability to existing
systems. P resumably, this itinerate approach
could be made to properly describe these sys-
tems, but it seems to require very complicated
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linear combinations of states to diagnolize the
Hamiltonian.

The SH approach, on the other hand, begins
in a representation which already recovers the
proper atomic limitas V„~-0. As notedby many re-
searchers the FA approach fails to recover this
limit at all. As will be shown belom the SH ap-
proach must be studied in a fashion that includes
the lifetime broadening of the impurity states,
especially if the impurity ICEE is degenerate with
a quasicontinuum of host conduction-electron
states.

The first task is to consider what kinds of en-
ergies and operators associated with the correlated
states are actually involved in the interaction
(2.1) For an understanding of the resistivity, for
example, it is necessary to determine the t-matrix
for scattering from the impurity. As is well-
known, " this is proportional to the one-electron
impurity Green's function. This means that the
g-matrix energies will be the same as those which
occur as poles in the impurity one-electron
Green's function.

While the exact nature of the EMCEE poles of the
one-electron Qreen's function for many-electron
systems has been known for several years, many
workers continue to compare conduction-electron
single-particle energies with many-electron atom-
ic-configuration energies as mell as with the HF
Koopman's energies. A s emphasized by Hubbard"
the excitation energies of the one-electron Green's
function correspond to the energy at which elec-
trons bearing certain single-particle quantum
numbers can be added to the system. In particu-
lar, then the "one-electron" energies should cor-
respond to all possible ICEE differences

(2.2)

between configurations of the impurity system
which differ by one electron. The irreducible
representations of the many-electron states Fz"'
and I'"""must be related to each other in such
a way that the direct product of the many-electron
representations, 1 z"' x I'" ", must contain the
one-electron representation.

In general, one must expect that for given one-
electron quantum numbers (n, l, m „m,}, there will
be many resonances of differipg weights appearing
in the Qreen's function. A particular one-electron
orbital wave function could be part of several
different many-electron states In what follows,
we examine explicitly those cases in which at
least two impurity configurations will be com-
peting for population in the grand canonical en-
semble.

For purposes of calculation, it will be conveni-
ent to have operators that correspond to the en-

ergy differences (2.2). Physically, we need
pt(n, P) operators which annihilate the (n 1—)-
electron states and replace them with the e-elec-
tron states. If we consider only the impurity
Hamiltonian it is straightforward to show that the
operator corresponding to an interconf igurational
excitation (2.2) is

(2.3)

It is the perspective of our ionic based approach
that if me calculate the properties of the system
using as basis vectors the conduction electrons
c@, and the interconfiguration excitation operators
(2.3), then we have an almost diagonal "Hamil-
tonian" for small coupling. The success in carry-
ing out this program relies on a method which
utilizes the above operators as "states" and re-
duces calculations of thermodynamic Green's
functions to considerations of secular equations,
resolvents, and approximation procedures like
those of Feenberg. " It is to a brief discussion
of this method that the next two sections are
devoted.

III. PROPERTIES OF THE GREEN'S FUNCTION

AND THE ATOMIC LIMIT

In this section, we examine properties of the
one-electron impurity Green's function with
special emphasis on the atomic limit. Also, the
basic properties of the theoretical technique
which we use in this paper will be developed in
this section. The essential criteria for the de-
velopment of the scheme are that it should start
with a proper treatment of atomic correlation,
that exact properties of the Green's function be
reproduced, and that any scheme reproduce the
atomic limit as the coupling V-„~ goes zero.

First, we examine the exact properties of the
one-electron impurity Green's function. We ex-
amine here the retarded Green's function for the
impurity one-electron orbital e„, which may be
written as

(3 1)

Here (~ ~ ~ ) reflects the thermal average. (, J is
an anticommutator, and e(t) is a unit-step func-
tion."

Hubbard" has analyzed this Qreen's function
in the atomic limit and has detailed its exact prop-
erties. The most important of these character-
izes the spectrum of the Fourier transform G„,(&u).

Following Zubarev, 40 If ~p) and
~ q) represent

exact eigenstates of the Hamiltonian H —p,N, which
have different numbers of electrons, then the
Green's function G~, (&o) may be written
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G (&u)=-g ' " ' (e & —e ) (32)
l& Ic l &l'

8 ~, s) —(Ep-E )
frere E~, E, are the eigenvalues of the states

~ p)
and ~q), respectively, P is (SENT)

' and I is the
grand canonical partition function for the system.

Hubbard, Zubarev, and many others have an-
alyzed the calculation of thermodynamic Green's
functions from many points of view. These have
included straightforward evaluation if the eigen-
states are known, truncati:on and approximate
solution of the hierarchy of equations of motion,
and the standard perturbation expansions of quan-
tum field theory.

The theoretical methods of this paper rely on an
extension and generalization~' of the ideas of
I onke~' and Feenberg. 4' This generalization places
the calculation of one-electron Green's functions
into the context of standard matrix theory, but
on a space whose vectors are second-quantized
operators and whose scalar product is the grand
canonical ensemble average of the anticommuta-
tor of second-quantized operators.

The essential ideas are the following: instead
of working with the Hamiltonian H —p.N and directly
seeking its eigenvectors and eigenvalues, it proves
to be slightly more convenient to work with the
I. operator which is defined as the commutator
with H- p.N, ~

La = [n, H pN j, - (3.3)

where n is an operator. The time dependence
of an operator 8 is given by (h = 1)

(3.4)

The Fourier transformed Green's function G~,(~)
may then be written as

G~~(Q)) —(((47+15 —L) Cg8& Cgsj) y (3.5)

where 5 =0' and & is real. This expression may
be written in a more transparent form if it is
recognized that a scalar product between opera-
tors A and 8 can be defined-for a Hilbert space
of second-quantized Fermion operators, 4'

(3.6)

(3.V)

If we were dealing with finite dimensional or
diagonal representations for L, the determina-'
tion of the various Gr'een's functions which are
involved in the theory would require knowledge
of the secular matrix

(3.8)

This scalar product shows the one-electron Green's
function to be a diagonal matrix element of a
resolvent (w —L) ' of a symmetric operator L:

for a convenient orthonormal set of basis vectors.
This sort of calculation is familar from standard
quantum- mechanics calculations and band-struc-
ture studies in solids. The only essential dif-
ference here is that the vectors are certain
second-quantized operators, and the matrix ele-
ments of L wiIl be temperature dependent. This
temperature dependence simply reflects the
thermal equilibrium of our system and will be
the source of an ICEE shift with temperature
which is one of the main results of this paper.
The evaluation of the temperature dependence of
the matrix elements would be trivial if we had
all of the information required to accomplish the
evaluation in representation (3.2). This is of
course not the case, and the evaluation of the
matrix elements will be obtained through the
solution of thermodynamic consistency equations
which express the property of detailed balance
in thermal equilibrium.

In order to clarify these ideas, let us consider
the evaluation of the electron Green's function in
the atomic limit. %'e first consider only the con-
figurations for a shell of equivalent d (orf) elec-
trons. As indicated in Sec. II, the atomic eigen-
operators satisfy

Hb~ (a) =E„(e)b'„(o.) . (3.9)

f, = b„('S)b'„('S), (3.11)
where '$ deriotes the filled shell; also, all the b„
are written with respect to some canonical
ordering of the single-particle orbitals c„,. Judd '
has discussed the utilization of this sort of in-
variant I~ in second-quantized treatments of /"

atomic shells. The ICEE vectors P„(c,P) can he
normalized by using the thermal inner product

ilg„(n, P)ll'=(( P„(n, P), (7j„(n,P))) . (3.12)

We write the normalized ICEE vectors without the
tilde, P„(o., P). These vectors are precisely the
orthonormal eigenvectors of L (in the atomic
limit), and they connect impurity configurations
with a single-electron difference: using (2.2),

(3.13)

This orthonormal set of eigenvectors of L is com-
plete in this case so we can expand the c~,

' s in
the atomic limit impurity Green's function using

By utilizing the properties of the Lie group" as-
sociated with the electron states in an atomic
shell, an orthonormal set of interconfiguration
excitation operators can be constructed by forming

(3.10)

where the operator I~ is the invariant of the filled
shell. ~' For a d shell this may be written as



18 CON FIGURATION F LUCTUAT ION S AND THE. . .

the standard eigenfunction expansion. The result
for this case is

((c~„(u&—L) 'c„))

Q",,'=Q, ('S S) =n„-c„/((n„-&) '~' .
It can be explicity verified that

LQ' = (E,+ U)@~;

(3.18)

(3.1 f)

Ie = c~)cg)cg)c« (3.15)

The operator acting between the one- and two-
electron configurations is

(+)
4s 4 2( St S) —egg(cggcg~cg~cg~) cggc qa

which may be simplified as n„;c„,. A simple cal-
culation shows that the normalized version of this
operator is

~((cg, 4.(o, P)))1'
(3 14)

u —~„(o., P)

For the atomic limit (3.14) is nothing more than
a rewrite of (3.2), since it is possible in this
case to compute directly the grand canonical
partition function as implied in (3.2). The real
utility of (3.14) is that the inner product can be
written out in terms of equal time expectation
values of related matrix elements of the inverse
of (3.8) without the partition function. The evalua-
tion of these equal time expectation values by the
fluctuation dissipation theorem4' yields self-con-
sistency equations which reproduce the partition
function and all the thermal averages. In the
large interacting system, where no other tractable
means exists for calculating the thermal averages,
this formalism is potentially quite useful.

To ground these ideas in specifics, let-us now
specialize to the Anderson model. - We first discuss
the atomic limit (Vg, =0). Because of the simplicity
of this model we can enumerate the quantum states
of &p p¹The impurity states are fou r in total:
a no-electron state with energy zero, two one-
electron states with energy &„„and a single two-
electron state with energy e«+&«+ U. The spec-
trum of the one-electron Qreen's function must
reflect energy differences between those many-
electron states which differ by one electron. The
only such differences are four in number:
&,&, e«+ U, and C«+ U. For a given spin value
s, the one-electron Qreen'8 function will always
exhibit two poles whenever Uc 0. This exact
property is to be contrasted with the characteristics
of the Hartree-Fock treatment which attempts to
replace these two resonances for each spin direc-
tion with a single pole at e~, + U(n~;&, where (n~;&
is the average occupation number. These two reso-
nances at &~, and &„,+ U are infinitely sharp in the
atomic limit (V-„~=0); we should expect their
broadened form to be present in the interacting
case for small V-„„.

Let us write out the operators (3.10) and (3.11)
for this simple model. First,

The operator c„changes the number of electrons
from one to zero and is the only such operator,
but it is not orthogonal to P~', . ',

((c y(+))) (n &1 /2 (3.18)

c =~(Nds ~ ds Cs (3.20)

giving the one-electron Green's function

(3.21)

The thermodynamic self-consistency conditions
whose solutions generate the underlying grand
canonical ensemble partition function are ob-
tained from (3.20) as the two equations (s = + 1)

(n, &
= (1 —(n; & )f ', ' + (n;&f,", (3.22)

where f,'"' = (.P~t,'"'&f,',"'& The f,'"' ar.e calculcated
using the standard Green's function techniques.
For the atomic limit, the f,'"' are simply Fermi
functions

f (r) (egE + 1)-1 (3.23)

and the solution of the linear system of equations
is immediate. It is then a simple matter to de-

The Schmidt orthogonalization procedure will gen-
erate the required vector from a linear combina-
tion of c„, and P„' . The normalized form of this
vector is

(3.19)

which may be verified to have eigenvalue &„,. The
(+) notation is less cumbersome for this model
than (3.10) and is the same as Schrieffer's" where
the vectors d,',"have eigenvalues Z,"'=e„+U/2
a U/2. To simplify further the notation in the
following'we define the operator N',",' to equal n„,
when r =+1 and to give 1 —n„, when ~=-1.

The reader familiar with Hubbard's analysis of
his atomic Hamiltonian in the narrow band-metal
context will recall that the operators N,',"-'c„, arose
naturally in his study. The use of the inner pro-
duct (3.6) and Judd's Lie group analysis suggest
more profound properties of these two operators
than may have been apparent in Hubbard's earlier
work. The operators (t),'", ' are an orthonormal
basis of eigenfunctions of L containing an odd
number of Fermion operators. The collection of
such operators is dense in a Hilbert space" and
the one-electron operator c„, can be expanded
in this orthonormal basis as
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termine all of the thermal properties of the im-
purity from the solutions for (n«) and (n~().

The zero-field susceptibility x~ is obtained by
calculating the magnetic moment to linear order
in the field, in terms of the f,"functions, and it
is given by

2~2 sf (-)) I f (+)
XT ] f~+f (+) sE(-) I (] +f (-) f (+))

( sf (+)i f (-)
+ I&a«.»l(l, f(-) f(~))

(3.24)

8
C„= — (FI - i(N))„eT (3.26)

will exhibit a Schottky anomaly with a heat-capaci-
ty peak occurring at a temperature T~ which is
defined as

a,T,= ,' min((c„(, (v-.„+U~'I. (3.27)

For this simple isolated-atom model, if the im-
purity is magnetic the entropy change from low to
high. temperatures will be k~ ln2, while for the
nonmagnetic impurity the change is k~ ln4. In the
presence of an interaction between impurity and
host the scattering of the conduction electrons is
related to the t matrix which can be written

t"„-„,(()=QdVI~VP~G~, (())) . (3.28)

An approximation for this can be obtained in what

where we assume g=2 and p.~ is the Bohr mag-
neton.

If E,'-' & 0 and E,'+' &0, which corresponds to the
one-electron states being the ground state of the
isolated atom, the impurity is magnetic and shows
a Curie susceptibility

g r p, ))/kgT (3.25)

for any temperature k)) T low compared to ~E,"
~

or ~E,( ) ~. If E,"is negative or if E,' ' is positive,
the susceptibility goes to zero as T-O, in the
first case because the ground state is the two-
electron singlet state, and in the second case,
because the no-electron state is lowest in energy
(U-0) and the impurity is unoccupied at low
temperatures. One of these cases is apparently
realized for dilute ThCe alloys. "

In terms of atomic values of these parameters
&, and U, atomic hydrogen values yield the mag-
netic type of impurity z, &a~+&~+U, while atomic
helium values for a and U yield the nonmagnetic
singlet ground-state atom.

For any of these cases, the heat capacity at con-
stant volume for the impurity in equilibrium with a
particle bath at chemical potential p. ,

might be termed the atomic limit if we put the
atomic limit G~, ((o) into the expression for the f
matrix. For all U4 0, the t matrix will have res-
onances at &=E,"and will never have a single
resonance.

Let us now examine corrections to this atomic
limit t matrix ~n an heuristic fashion with a
simple application of perturbation theory. If there
is no lifetime broadening of the impurity ICEE's,
then the scattering I, matrix has an imaginary part,

lmf(~) = g V-„,V-„.,[(I ( „-))2~5(~ c„)

+ Q„-)27(5(&u —e„—U)1,

(3.28)

consisting of two 6 functions. In this approxima-
tion, unless one of the ICEE's is at the Fermi en-
ergy there would be no resistivity from this im-
purity at low temperatures.

%'e next examine the effect of coupling the im-
purity states to the conduction electrons in two
steps: first, we consider the effect of lifetime
broadening,

d =7(N(0) V.„~, (s.so)

and then we examine in second-order perturbation
theory the change of the term energies of each con-
figuration of the impurity. If the impurity ICEE's
are lifetime broadened, the normalized resistivity

R/RO=7(N(0) Imt(0)

is given by

~ - (I —Q„-))CP Q„-)~'

In the usual choice of impurity parameters,
U& t~„~E("-)~&a, and the 4' in the denominators
can be neglected, and we can write the lowest-
order resistivity in terms of an effective exchange
parameter using (1.6):

2a c +U—[wN(0)Z ) (1+
0

(3.32)

where we have assumed icsT &
~ E~,

"'
~

and thus Q~,)
If one of the ICEE energies is small, say

0&&„,+ U «-a'„„ then the resistivity is dominated
by the (+) resonance which is closest to the Fermi
energy. In this case the resistivity becomes

Q„-)cP
R, (E,'+')'+ cP (s.ss)

If E,"is very small the resistivity would be close
to the unitarity limit for this channel, while if
~E,")

~
is comparable to or larger than 6 the re-

sistivity could be quite small.
One of the major results of this work, which we
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derive below in- second-order perturbation theory
and verify in our many-body approximation scheme
later, is the fact that the coupling of the impurity
configurations to the conduction electrons gives
rise to a temperature dependent ICEE shift 6E,'"'.
In the case we are studying the ICEE becomes

(s.s4)

It will be shownlater that, if a„,+ U&0 and small
and g~, & 0 and large, then 6E,"' is positive and is
logarithmically increasing at T-0. In Sec. IV,
it is demonstrated that this circumstance can re-
cover a Kondo-like resistivity with a quite differ-
ent effective coupling constant than is usually de-
rived.

As will be shown later,

4J

LU

CO

O

N
0
9

O
I

0 KIM AND MAPLE La, „Ce„xs.03

THIS WORK

(~) + 1 s 13 1 'Eg I

8 (s.ss)

in a bertain temperature range where 6E,"is
small. Expanding the resistivity to lowest order
in the shift yields

PRESSURE (kbar)

FIG. 1. This figure shows the pressure dependence of
the resistivity derivative 8 p/8 lnT. The derivative
is normalized to 1 at zero pressure. The open circles
are experimental points and the solid line i.s the
simple theory. See text for full explanation.

Q, -,&A'—= Q (
d'

)2 2 1+%(0)Z'„,

1.13 l a„l
k~T

(3.36)

where

(0), 2 (eds + U)A

(&, +U)'+A' ' (3.37)

Bp cg+U
S lnT [(ed + U)'+ A']' (3.38)

Using the assumed linear pressure variation of
the ICEE we may write this as

This is a Kondo-like result, but with a very dif-
ferent and possibly quite small J ff .

An experimental verification of the functional
form in (3.36) and (3.37) is provided by pressure
studies of the dependence of the derivative of
the resistivity with respect to lnT. Conventional
Kondo explanations". of this effect require ex-
tremely complex variations of T~ with pressure.
This work results in a very simple prediction
which is well reproduced by experiment. If we
assume that pressure changes the ICEE in a
fashion that varies linearly with pressure, then
the theory predicts that

Figure 1 of this paper shows a fit of this result to
experimental data" for A =8.16, X0=1.6, and

P~ = 14.66, and negligible additive constant. Such
a close fit from such a simple assumption con-
cerning the pressure change of the ICEE at the
very least lends credibility to the considerations
of this work.

In Sec. IV and the appendices we will discuss the
temperature range in which this result obtains,
but first it will be demonstrated that such a shift
arises naturally in second-order perturbation
theory of the impurity configuration terms.

We seek to apply the perturbation V (1.3) to
states of H, (1.2). In particular, we seek to deter-
mine the changes in the energies of

ly, &= IIF,&,

ly,.&=c,', Iq,&,

i(s& —
Cd) Cd) I PE& y

where if'& is any conduction-electron state of the
host. One almost immediately observes that
first-order perturbation theory produces no
change, and we must evaluate the second-order
contributions. For the impurity vacuum state
iIItz& there is only one intermediate state cdt, cp if'&
and the change in the energy of impurity vacuum
ls

Bp Ax
slnT (] +X2)2

where

X =Xo -P/Po.

(3.3S)

(3.40)

AE (yJ — g ITdfks (s.41)
~s ks

In arriving at this result we have followed the
standard method of doing the perturbation calcula-
tion for each definite many-electron state in
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which f» =0 or 1 an'd using f„,=f„, A. fter obtaining
the expression for any particular lP~) we can then
take the thermal average of both sides of the equa-
tion and get the temperature-dependent shift.
Upon averaging the fk, becomes the conduction-
electron Fermi function. For the lg~), there are
two types of intermediate states,

curly ) and c;;cu

For the two-particle state, the intermediate state
is cz, ct; lg~) and the energy shift is

(y )
—+Q ku( fks

eus +U —e»

The result for the ICEE is

(3.43)

2 2

&(r) g(r) P kuf ks g kuf ks
~E' —+U —6 — ~E ——E )4S kS k ds ks )

(3.44)

plus terms like the fk, terms but with fk, replaced
by 1. These latter terms we neglect as being in-
corporated into new values of e,",. In Sec. IV, we
shall recover this same result in our degenerate
Feenberg perturbation theory and there will write
the shift as a function A', where

Vku fk
71' & —+U-ih - q—ks

2

ds ks& ——& —-zS ' (3.4S)

and in anticipation of results in Sec. V I have in-
cluded lifetime broadening in the intermediate
states. As will be discussed more fully in that
section, A' displays a log(T) behavior for high
temperature and a 1 —T' behavior at low tempera-
tures.

Before closing this section, let us make some
brief comments about the impurity susceptibility
in the lifetime broadened atomic limit. Inserting
a constant lifetime broadening into each ICEE
resonance in the impurity Green's function changes
the

f(r) —(yt(r)y(r)) (3.46)

from the usual Fermi functions into something
characteristic of a system coupled to a system
with a constant density of states near the Fermi
energy, i.e.,

These give a perturbed energy of
2 2

~ (~ ) P ~kufks— ,gV u(1-fks)

k
gs +U —6'k s ~ Cps ks

k

(3.42)

f ")=———imp —+—(I'+i g(r))1 1 1 P
2 r 2 2r (3.47)

where g is the digamma function. If I' is much
larger than ld")l, a straightforward evaluation of
(3.24) using (3.47) gives exactly the strong coup-
ling result(1. 10). At this point it is worthwhile
observing that in Appendix D we use the thermo-
dynamic Hilbert space formalism introduced else-
where to illustrate why HFA poorly indicates the
presence of an ICEE near the Fermi energy.

&n n &n n &fI + ~n tf (4.1)

as notation for the matrix elements of a Hamilton-
ian II or L operator and examine formulas for
diagonal and off-diagonal matrix elements of the
resolvent, (&u -H)„'„,. For conceptual definiteness
in this application the indices n, n' (and below l, l',
etc.) may be thought of as labeling quantum num-
bers of many-electron correlated states as well
as one-electron states. The essential point of
Feenberg's method of perturbation theory has
become the modus oPexandi of band-structure
calculations. This is the property of truncating
the secular equation in some fashion and solving
the remaining determinant exactly. This means
that the self-energy expressions in the Feenberg
picture always include the summation restrictions
which arise in any determinant expression. In the
discussion that follows, our approximations will
rely on two special properties of this problem.
First we study a weak coupling limit for the V's,
and thus include only Vk~ terms in the self-energy.
Actually, this is not precisely the manner in
which to describe the calculation scheme. Be-
cause of the infinite number of conduction-elec-
tron states our secular equation must be infinite
dimensional. This causes no real difficulty be-
cause the conduction-electron part of the secular
equation is block diagonal with few simple matrix
elements to the impurity operators. The off-
diagonal matrix elements connecting vectors con-
taining conduction electrons and those few vectors
which are wholly impurity states are found only
in a few rows or columns. As we begin with the
diagonal secular equation for the atomic sub-

IV. INTERACTING IMPURITY AND CONDUCTION

ELECTRONS

In order to evaluate the impurity Green's func-
tion when interactions are present, it becomes
necessary to deal with nondiagonal secular ma-
trices of L. The most useful technique for study-
ing this case has been the Feenberg point of view.
To illustrate the approximations to be used below
and review% the essential aspects of the method
let us adopt
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spaces, the resulting matrix is essentially dia-
gonal blocks connected by a few rows and columns,
all other entries being zero. This situation might
be described" as a generalized bordered deter-
minant. When the matrix elements in these bor-
ders are already small, the matrix elements of
the resolvent can be approximated by

tron model using the d or f shell p„(o., p) could
give rise to significant lifetime narrowing for
half -filled shells.

Since L is a symmetric operator we must expect
the pd(",) rows of the secular equations to have sym-
metric matrix elements with each ck, . Operating
with L on P~",) yields

((o -a)„„'=[(0—e„-z(n,m)] ',
where the self-energy Z(n, (d) is written

(4 2) Llg" =E~ yd" + gvkdNds Ck, /&Nd
k

~ ~nS ~'
z(n (o) =Z "' +"~

,(~) (d —eg (n, (o)

and the reduced self-energy is

(4.8)

()Lck. = &k.ck. + Q Vk. &N —.&' '4'"'. (4.6)

As the vectors in this equation are orthonormal
their coefficients represent the matrix elements
of L which will be used in constructing the self-
energy expressions.

Note, in particular, that the matrix element
which will contribute to the lifetime broadening
of the resonance associated with p(ds) is modulated
by a population factor. While in the 8-shell model
being studied here these population factors pro-
duce no significant lifetime narrowing of the re-
sonances, similar factors arising in a many elec-

e, (n, )a)=e, +~ '
1 )

+ . (4.4)
& ~uzi'

z(&nl) + gl sly Go

The further reduced self energies e, (nl, . . .l„„(d)
have similar expressions, but more restrictions.
As we-seek a quasiparticle approximation for each
resonance of the final Green's function, the form
of the higher-order reduced self-energies will
not be important. If the summation restrictions
involve the conduction electrons, they can be ig-
nored, "but the atomic summation restrictions
must be obeyed. Within this approximation scheme
the off-diagonal matrix elements of the resolvent
will be written as

((d-H), ,'=[(d-e, ((d)] 'V„.[(o eg. (l, a))]-'.
(4.8)

To determine the self-energies and the inter-
mediate states which must go into the Feenberg
expressions for the self-energy, it is necessary
to construct the secular equation for L with res-
pect to an orthonormal basis. We adopt as the
initial vectors in this basis the conduction-elec-
tron operators ck, and the impurity eigenvectors

We derive the various rows of the secular
equation for the Anderson model L from the stan-
dard equations of motion. The first set of rows
is given by

r
+ &N(r)u/s ZVkd(cdscks —

ckscds )cds ' (4 7)
da d'

This expression does not manifest the desired
symmetry and, in fact, does not directly involve

ck, alone as a vector on the right-hand side. Ap-
plication of the Schmidt orthogonalization proce-
dure to the second term yields the desired results:

Ly( ) -g ( )y( ) +&N(")&&/s QV„C„
k

(-&)
+&&Nd; & Vkdgdks

k
y'

+
&N( )u/S ~Vkd Cds ks Cds

dSd'
k

Vkd cksc«cds,
us~

where the new vector pd~ is defined as

ydk, = (n„- -&n;,&)ck,/En„-& (1 - &n„-&)]' '.

(4.8)

(4.9)

Now the first three terms of this equation form an
orthonormal basis set, but the last two terms are
not orthogonal to the vector pd(",). This means
that we must first determine the overlap between
p's and the vectors cd;ck cd„and-c„,c„cd„and--J.

then construct appropriate linear combinations of
the vectors to yield an orthonormal basis. The
essential outlines of this procedure are given in
Appendix A. The effect on the above equation is
to add to the diagonal matrix element E," a temp-
erature-dependent energy shift aE,"~ which arises
from the orthogonalization of the different three-
operator vectors.

This temperature-dependent energy shift of the
ICEE can be thought of as arising from the coup-
ling of the conduction electrons to the impurity.
Jf there were no c(mpling of the impurity to the
host in this energy range, the energy of a transi-
tion from ~d" '; n& to (d"; P& would only be e„(o., P).
However, with the conduction electrons mixed into
the impurity states the transition is not possible
without corresponding transitions of conduction-
electron states. The temperature dependence of
the shift merely reflects the thermal distribution
of the intermediate conduction-electron states
which are mixed into the impurity configurations.
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If lifetime broadening of the intermediate states
is neglected the shift at T =0 is just the formal
energy shift from second-order perturbation
theory (3.41).

In Appendix A it is shown that the energy shift
can be written as

(„) n, &nsg (,) (I -&nag) ( )&~

where the parameters A.," are positive definite
quantities defined by

(4.10)

--&X("»")(")=+V„-,&c„=,y,
(")

&.

This latter definition is related to the equal time
expectation value of an off-diagonal matrix ele-
ment of the resolvent,

G„s; ((d) =((c),-, , ((o —L) 'y„-))., (r&

(4.11)

(4.12)

Since this off-diagonal matrix element of the re-
solvent will depend on the same self-energy as the

Gs, (&o), the temperature dependence of the shift
must be determined self-consistently. This is
done in Appendix B. If we define as e(" ((0) the
energy part of the denominator of the impurity
Green's function,

(4.12)

then the off-diagonal Green's function can be writ-
ten in the weak coupling limit as

(4.14
(~ —~)-„)[(d —e(")(a )]

'

In terms of the resonance self-energy Zs(") (ar) and
the shift of the energy, e," is defined as

e(r)(&) g(r) +g~(r)+g(r) (&) (4.i5)

If one were to approximate the impurity reson-
ance self-energy Z„", by neglecting its real part
and giving it a constant imaginary part, then the
impurity response would be characterized by the
presence of two broadened resonances at E," +DE~,"~

whose energies change with temperature. Such a
simple approximation ean already semiquantita-
tively account for some of the features of the di-
lute magnetic alloy problem. As will be discussed
below and in more detail in Appendix B, the temp-
erature dependence of the A~" is of the form —lnT
at high temperatures and 1 —T' at low tempera-
tures. For certain values of the physical para-
meters one of the resonances e" can approach the
Fermi energy as T-0. This can give rise to the
increase and saturation of the resistivity, the
thermopower peaks, and Schottky-like anomalies
in the heat capacity as well as other observed
effects.

Actually there is no justification for neglecting
the real part of the self-energy, even in the weak-
eoupling limit since it gives a contribution which
is of the same size as the shift hE~"~. Accordingly
we must study the real part of the self-energy.
As detailed in Appendix A, the derivation of the
impurity resonance energy e(" yields in the weak
coupling limit

() 1;((o)
)( &x(")& ' '~(") '&x('» '

ds

where y(w) is the usual one-electron self-energy
familiar from previous studies of this model,

2

y( )=Z

(4.i6)

(4.i V)

The coefficient A, is

~(+) 1 &%ts& )„{-)'s s
&~

s
d

(4.i8)

The remaining contribution Y, ((d) is derived in
Appendix A and is

I,((d) =(1-&n,g)f' )y((d)+&n„gf(-;)) ((d-2es —0')

+—[(&n„&—&n„-,&s))((o, n,')

—(1 -&ns, &
—&ns,-&)8D ((u —2es —U, a')] .

(4.19)
Here f," =(est("' ps",)& and the function 8D (E, I') de-
pends explicitly on the cutoff of the conduction-
band density of states,

(4.20)

and f,(e) is here the Fermi function. The prop-
erties of this function 8D are discussed in Appen-
dix C. As noted there, at high temperatures 8~
has a lnT dependence, but in al1. eases depends
logarithmically on the cutoff i.e., 8~- lnD for
large D. For purposes of continuity, let us note
that if we write

(4.2i)

then the shift parameters X~" can also be expressed
in terms of Hn to order 1/D in the weak-V coupling
limit, that is, as shown in Appendix 8,

X',")=8 (e~', e'„') +O(1/D) . (4.22)

We now consider what tractable approximations
can be made on these expressions which will yield
simple behavior. The essential idea that we use
is to seek a Lorentzian approximation for each
interconfigurational energy peak of the one-elec-
tron Green's function. Because the imaginary
parts of the self-energy expressions are only
weakly dependent on + for energies near the cen-
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(4.24)

This is an extremely satisfying result from a
physical point of view because it is independent
of the cutoff D when D is large, and depends on
the impurity para, meters only. Thus, the magnetic
impurity problem is properly an impurity effect
in that the temperature of the shift depends only
on host density of states and impurity energies and
not on the band width D. Writing

y&+) y(-)
a s s (4.25)

one finds that the temperature behavior of the im-
purity resonances is determined by two tempera-
tures T'"' which are defined as

Z'«& [(@«)+ 5E«&)2+ (l «))2]1/&1
s + s + s (4.26)

The weak temperature dependence of the T'"' due
to the 5E,"' is not important for the cases we con-
sider. The analytic behavior of A, is quite simple
in three ranges. First, consider T' '&T"; this
can correspond to a„,«0 and e„,+U& 0. This
means in the S-shell model that the no-electron
configuration is very high in energy, the two one-
electron configurations are lowest in energy, but
that the two-electron configuration is close to the
one-electron states in energy. If the temperature
T is greater than either T" or T' ', Appendix A
shows that A,' is zero to order 1/D and there is
no shift of the ICEE with temperature. If the tem-
perature is lower than T', but still higher than
T", the A.

' ' is almost constant while the X" still
varies logarithmically. For this intermediate
temperature range, T"& T & T' ', the ICEE shift
will be logarithmic in T:

3.56T&-)
(4.27)

At low temperatures, that is, T lower than bothT" and T' ', both A.
'"' are almost constant and a

simple Pauli-Sommerfeld behavior is found for
A '

(4.28)

Consideration of the obverse case T"&T' ' will
yield similar results, but with an overall change

ter of the conduction band, their ~ dependence is
not too important. We simply write as constants

e&r) @(r)+gg.&r) &(r) I (r) (4.23)

and set the frequencies in y, (a&) equal to e(,",~, and
determine the expression for 5E,". After a cer-
tain amount of algebra ver& pleasant cancellations
occur and we find that to lowest order in 6

Qf sign for A'.
At any temperature, the S-shell impurity Green's

function and thus also the t matrix will show two
resonances for each spin direction:

(4.29)

The interplay between the two effects of the coupling
of conduction electrons to the impurity, namely
the lifetime broadening and the temperature-depen-
dent shift of the ICEE's, can reproduce many of
the experimental details associated with the dilute
magnetic alloy problem.

Before we discuss the experimental effects for
this simple S-shell model, it should be pointed
out that for even more complex atoms we will ex-
pect that only two types of ICEE resonances will
have energies near the Fermi energy and that
several features of this simple model will carry
over to more realistic models. The main import
of our results is that the essential physics of the
magnetic impurity is taking place primarily on
the impurity site and that an understanding of the
problem will require a determination of the im-
purity paramete rs: interconf igurational excita-
tion energies (ICEE's) and the coupling parameters
V„-„ for the many-electron states. In this paper,
it can only be suggested a posteriori what values
the parameters might have in order to reproduce
magnetic impurity effects. The calculation of the
parameters must await a procedure like Hirst's
CRHF or something more sophisticated using
many-electron stepping operators and many-elec-
tron state matrix elements.

The parameters which seem to give the best
description of the various magnetic impurity ef-
fects are very simple. We need an effective & to
be rather small, one of e("' (measured relative
to the Fermi energy) also small so that as T- 0
the shift 5E,'" tends to pull that ICEE resonance
almost to the Fermi energy. When this happens
the resistivity almost saturates, the heat capacity
displays a. very low-T Schottky-like peak and the
thermopower will show appropriate behavior.

A natural question which needs answering con-
cerns the proposed pulling toward the Fermi ener-
gy of an ICEE: Why doesn't the: resonance prdceed
on through zero, thus reversing the relative place-
ment of the two relevant configuration energies,
E» Np and E„„—(N-+ 1)p, , measured with respect
to the grand canonical ensemble? The answer
is probably contained in the energetics of pro-
cesses left out of the model. In particular, lattice
energy associated with the different "size" of dif-
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ferent configurations can be of enough importance
to force an impurity to retain the relative energy
ranking of its configurations from high tempera-
tures. This circumstance couM possibly be re-
versed in the discussion of intermetallic com-
pounds, where a change in the energy ordering of
the whole lattice could be energetically favorable.
The extension of this model to the resistivity" of
CeA1, compounds appears to bear out these ideas.
This will be discussed elsewhere.

Let us now proceed to examine the consequences
of having one of the E~"~ close enough to the Fermi
energy that as T 0 the 5E,'"~ shift pulls that ICEE
down almost to the Fermi energy. In most of the
following discussion I will consider E~'~ ~ 0 and
small, while E," «0, and comment only briefly
on the other case.

A. Resistivity

The temperature dependence of the impurity
resistivity in our model reflects the movement
through the Fermi energy of the leading half of an
ICEE Lorentzian. Because the only change from
this model which will transpire as we consider
transition-metal atoms is the number of such re-
sonance peaks at the Fermi energy, a direct com-
parison with the actual temperature dependence
should be possible if the theory is properly scaled.

Let us first demonstrate that at high tempera-
tures the leading temperature dependence of the
resistivity is logarithmic as found by Kondo. "
This is easily done on realizing the dc resistivity
is proportional to

(~(r))1 (r) ~
&N(0) Imt Q ( („) --

~, /- )~
—--(~(—„)),--. (4.30)

sr s e + s

At high temperatures, A', is small and proportion-
al to In(T/~t~ ~). Expanding the I orentzian to
leading order in small As' yields

(¹())I'(r)g — ~ @(r)
ds s S

(&("')' (I'"')' & (@'"')'+(I'"')'

x ln ~ ~," (4.31)
RENT )

for the leading logarithmic dependence of the re-
sistivity. Clearly, as the temperature decreases,
such an expansion fails to hold and the logarithmic
behavior is folded into the shape of the Lorentzian
resonance. These considerations would suggest
that it would be quite rare that an impurity would
exhibit a strictly linear behavior in -lnT for very
many decades of temperature. - This is clearly in
accord with the best experimental observations. '

It is worthwhile noting in passing that (4.31)
recovers the behavior of the resistivity used in
the pressure study of Sec. III.
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FIG. 2. Normalized resistivity of Loram et al. (Ref.
62) shown with the solid curve which is the theory of
this paper.

A numerical solution of the thermodynamic self-
consistency equation for this model is used to
generate the resistivity for parameters scaled to
give a Kondo effect as we have been discussing.
This calculation yields two characteristic tempera-
tures of two types: the high-temperature T~ ~

=
~
e~, ~/& which signals the onset (as T decreases)

of the high-temperature logarithmic behavior,
and the low-temperature T"= I',"/& which gives
the transition from ~' logarithmic to the Sommer-
feld low-T behavior. For most alloys we may ex-
pect that T' ' is large enough to be buried by the
host phonon contributions to the high-temperature
resistivity. Thus for most alloys T~ ~ is basically
unobservable. This leaves one parameter, T",
which plays a role like that of the Kondo tempera-
ture. Low- temperature experiments should then
give a universal curve (when scaled to some tem-
perature T" as a function of T/T". Figure 2

shows the comparison of the theoretical resistivity
with the scaled resistivities of Loram et al."for
CuFe systems. The most important feature of
the agreement is not the high-temperature regime,
but the excellent comparison in the intermediate
range where A' is changing and where the peak of
the Lorentzian is approaching the Fermi energy.
This is the first time a microscopic model which
can be made compatible with the high-temperature
Hund's rule spin values has shown such agreement
with experiment in this range. " Comparison of
T' of Fig. 2 and the Loram definition of T„an~,
suggests that „„~,= 10

A short comment is perhaps appropriate here
on the magnetoresistivity. Examination of (4.31)
shows that the resistivity is caused by both a spin-
up and a spin-down resonance at the Fermi energy.
This may at first seem strange since the atomic
configuration involved is a singlet ('8) state. It
must be remembered that the resonance energies
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which appear in the t matrix are the interconfigura-
tional excitation energies, and the Zeeman energy
of the level e(„' arises from the ('S) energy in the
difference

E'& =E,('S, 0) —E,('S, m, =s—'). (4.32)

The ICEE's can thus be split in a magnetic field
and, as T 0, the resistivity measurements would
observe the lower Zeeman-split energy resonance
to pass through the Fermi energy; the resistivity
then would have a maximum and saturate at a de-
creased value at T =0. This splitting out of the
ICEE resonances at the Fermi surface well ex-
plains the negative magnetoresistivity associated
with these impurities84 and well rationalizes the
large-field behavior of several systems. If the
ICEE is very broad, it maybe difficult to resolve
a peak in the resistivity, but for very narrow re-
sonances (Mn) this effect has been observed. "

Another effect of a magnetic field is to change
the effective Kondo temperatures T ' at which the
~' begins to approach a constant. The major con-
sequence of this would be that the resonance ener-
gy e" does not reach zero because the saturation
value of A' [E(ls. (4.30) and (4.28)] is less than
»(s~, + U)/&. In the situation where the magnetic-
field induced change of the effective temperatureT" dominates the Zeeman splitting of the reson-
ance, a decrease in the resistivity with increasing
field will be observed, and the "Kondo" tempera-
ture will behave like

T = 10T(' = [(i&, H}' (I'(+&)']~'.10

Because this expression reflects quite strongly
the character of the S-shell model, comparison
with experiments will not be made here. We just
note that the temperature dependence is in accord
with experiment for several systems. '

The Daybell and Steyert" data on CuCr showed that
the temperature of the "knee" of the resistivity
shifted up with magnetic field in a fashion con-
sistent with this expression.

In the low-temperature range the resistivity dis-
plays a Sommerfeld T' dependence, which arises
not so much from the movement of the ICEE, but
from the thermal population factors. This reflects
the change in the population of the impurity levels
as the coupled Fermi system approaches complete
degeneracy. The low-temperature expression which
which follows from K(I. (4.30) for this Anderson
model is

B. Thermoelectric power

The impurity thermopower S~„ is most simply
calculated using the simple expression given by
MacDonald"

(4.33)

where p(v) is the resistivity at energy (d from the
Fermi energy. In contrast to the resistivity, the
thermopower is partially dependent on the poles
in the t matrix which are not close to the Fermi
energy; it is proportional to

T (A](r&) g&(r&&(r&

@Jim]&] P [(&(r))&+(e(v&)2]2 ' (4.34}

(4.36)

The impurity parameter values which give rise to
a "Kondo" resistivity can concomitantly show a
peak in the low-temperature thermopower, be-
cause as T-0 the second term in (4.36) goes al-
most to zero and the low-temperature S will then
have a negative linear slope in T. If T & T" so
A' varies like log(T), the temperature of the peak
is given by

(4.37)

where the resonance parameters have been written
in the notation of (4.23). For the low temperatures,
the e',' are approaching zero, in the example being
considered, while the e,', ' have not changed much
from a~. The sign of the low-temperature thermo-
power will depend on the dominant contributions
from the resonances which are near, but not
closest to the Fermi energy.

For the sake of definiteness, let us examine
the situation where E~'~ is positive and small,
but E ' is negative and quite large. Then the S-
shell impurity contribution to the thermopower is

((a,'T (1 —(n„-))A'E,(-&

3lel 1Imtl z ](E,' '&'+6*]' )
(n„-)A'(E( &- AA /(()
[A2+ (E(+& AAt/&)2] 2

where we have neglected AA'/&( compared to E,'-'.
If T"& T & T'-', the shift A' increases logarith-
mically as T decreases and to lowest order in
E,"-&A'/» we may write, assuming ~E,'-'

~

&a,

TS~ — (1 —(n„-)) ( &

S
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Thus, if T"& T„,~, a peak can occur ig. S. On
the other hand if T" is too large the low-tem-
perature thermopower may appear to have no
peak and may just be linear in the temperature.
Because of the fact that the thermopower is
dominated by the strongest scattering mecha-
nism, phonon contributions may preclude ex-
perimentally seeing a peak if T&" is too large.

If we had considered the case E'-' small andE"large, we would have found similar behavior
but with a change of sign. Remember that A' has
an overall sign change in. this case and also, the
thermopower will reflect another change of sign
due to the (+) resonances far from the Fermi
energy contributing a positive term to $. The
sign of the low-temperature dS/dT in this theory
is dependent upon impurity configuration energy
spacing. If E" is small then dS/dT&0 as T-D.
Or if E' ' is small, then dS/dT&0 as T-D.

The sign of 8 at low temperatures is dependent
upon the nature of the interconfigurational ex-
citation energies of the impurity in the host. As
will be discussed briefly below, if this picture is
correct then the predominance of negative S for the
iron-group atoms" suggests the importance of
d"- 's'-d"s' core to valence transitions in these
impurities as opposed to actual ionization of the
impurity site." This line of discussion suggests
that, like many other properties of the magnetic
impurity problem in this theory, many-electron
properties of the impurity dominate the system's
reponse to external probes. (A calculation of S
is shown in Fig. 3.)

C. Zero-field susceptibility

The expression for the zero-field magnetic
susceptibility of the impurity is given even in the
interacting case by the same expression (3.24) as

0.2
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FIG. 3. This figure shows the impurity contribution
to the thermopower for the same theoretical para-
meters which gave a good fit to the resistivity in Fig. 1.

for the free atom, except that the expression for
f&r) (y& &r)y&r)) (4.38)

must reflect the coupled system. By examining
the expressions for these thermal averages we
find from Appendices A and C that

1 1 il'1 Pe "' 'p

2 m
™

&2 2m 2m
(4.39)

where $ is the complex digamma function, P
= I/ksT and e,',"' and e,',"' are the real and imaginary
part of the Green's function pole corresponding to
the rth ICEE.

The temperature dependence of the impurity
susceptibility will then be determined by the be-
havior of the f,'"' For .an impurity coupled to a
conduction-electron gas with a constant density
of states at the Fer.mi surface, the temperature
dependence is determined by the degeneracy tem-
perature T"' associated with the xth ICEE. If
T&T'"', then

sf &"' 0.204 1
() y T ~Tebs a

(4.40)

so at high temperatures the susceptibility can be
Curie-like. However, if T& T'"', the temperature
dependence for the f &"' becomes characteristic of
a degenerate Fermi system. As is shown in Ap-
pendix C for T & T'"',

ey(r) ] e(r)J 2 — 2s O(T 2)sc&r)
&& (e&r))2+(e&r))2

1s Xs 3S
(4.41)

The temperature behavior of the impurity sus-
ceptibility at lower temperatures is dominated by
the smallest T'"'. For temperatures larger than
this T'"' the susceptibility will display a Curie-
Weiss behavior, but at temperatures comparable
to or lower than T'"' the susceptibility will appear
to be more Pauli-like.

The physical basis of this behavior shows some
similarities to the fluctuation picture presented by
Wohlleben and Coles" and others. " In fact, the
average fluctuation frequency given by

SQ)y = kgTf

in this picture plays exactly the role of the
smallest temperature T'"' here: if the tempera-
tures are high compared to the energy k~T'"', the
occupation densities of the magnetic sublevels of
the impurity can be significantly altered by the
external magnetic field. In this temperature range
there is sufficient thermal energy so that the
magnetic degrees of freedom of the impurity are
more or less uncoupled from the conduction-elec-
tron system. Thus the moment fluctuations re-
semble an almost free impurity with its charac-
teristic Curie susceptibility. If the temperature
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is low or comparable to T'"', the degeneracy of
the conduction-electron system begins to dominate
the impurity system's magnetic response. Now
the coupled composite many-particle states com-
prised of both impurity and host electrons become
dominated by the density of states of the coupled
system. Effectively, for T& T'"', the impurity
cannot change its spin independently of the many
conduction electrons to which it is coupled. The
spin fluctuations are dominated by the density of
states of the coupled states and appear to be Pauli-
like in their behavior. Thus, just as in the free-
electron" case, the new ground state in the pres-
ence of a magnetic field, and the states just above
the ground state in energy, all have moments
parallel to the field. The antiparallel moment
states are much higher in energy compared to
AT. Such a distribution of many-electron states
gives rise to a susceptibility that reflects the mo-
ments of the ground state and its nearby states
and is then effectively a Pauli susceptibility.

I et us now examine briefly the analytic sus-
septibility results of the S-shell Anderson model
to see if there are any consequences of general
application The first such result occur's for the
high-temperature susceptibility. It has been ob-
served experimentally" that the high-tempera-
ture Curie-Weiss susceptibility of iron-group
impurities gives a somewhat reduced effective
moment when compared to the atomic moment.
It is of immediate interest to note that precisely
that condition which gives the characteristic re-
sistivity of such magnetic impurities, namely,
that one of the ICEE resonances is close to the
Fermi energy and i.s pulled toward the Fermi
energy by the coupling, contributes to a reduced
moment. In the S-shell model the reduction in the
moment comes about because of the change in the
weighting of the different impurity conf igurations
due to the conduction-electron coupling.

Second, the S-shell model spin susceptibility
at high temperatures is determined from the high
temperature expansion of the digamma function:

O.739, which is very close to the CuMn ratio of
O.V5 +0.05.'4 Further comparisons yield reason-
able agreement with atoms across the iron group.
The "gneiss" temperature 8„ is positive unless
E,"' becomes too large. However, estimates of
the values of E,"which wi11 give a Kondo resis-
tivity and bring the ICEE resonance near the
Fermi energy as T-O, that is

@(+) 1 -(E(-))2+ (T(-))2
ln S

(E (+ ))2i (P (+))2

S

(4.43)

suggests that 0„ is always positive, though pos-
sibly less than characteristic temperatures mea-
sured in other effects.

The low-temperature analysis for the suscep-
tibility, which gives the susceptibility in the de-
generate Pauli region, yields

8 $" )) kT'
@

2 3 P(+) 3 P(+)
s 8

where g" is a thermal weighting factor

(4 44}

(-)
(+) fo

]+4f ( )(1 f ( )) (4.45)

0.8—

0.6—

which approaches 1 as f,' '-1. This form of the
susceptibility is calculated assuming the e")
resonance approaches the Fermi energy and that
ksT &I'('/((. This form is very close to the spin
fluctuation results for low temperatures. "

The susceptibili, ty has also been calculated nu-
merically for the whole temperature range in a
normalized form and Figs 4 and 5 show the results.

At this point a brief comparison of these results
with the standard perturbative result on the sus-
ceptibility by Scalapino" may be employed to
show a possible relationship between this work

where

0.5403 P.' I9

k T T (4.42) 0.5—

0.4—

0.5—

e„=0.6V5r&",

where I',"' is the linewidth of the ICEE and E,"
is the high-temperature energy of the (+}ICEE.
Note first that for this model in the atomic limit
the susceptibility is y/ps2= I/ks T, so that the num-
erator in (4.42) is the effective moment squared
in Bohr magnetons. This yields a ratio for the
effective moment to the Hund's rule moment of
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FIG. 4. This figure shows the normalized impurity
susceptibility plotted against temperature which is
normalized to the ICEE lifetime broadening, for the
same parameters as in Fig. 1.
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and other more traditional approaches. %e will
show that it is possible to reproduce Scalapino's
results in an asymptotic expansion to logarithmic
accuracy, but a more careful examination will
show that this expansion is not physical for
Scalapino's choice of parameter values. Also,
the same 8,'«as was derived for the resistivity
will be recovered.

Scalapino used the standard thermodynamic
perturbation expansion for the partition function,
calculated an expansion for the free energy, and
evaluated the impurity susceptibility exactly to
second order in the coupling V, and to logarithmic
accuracy in fourth order. The result of this eval-
uation was

1+N&0)J 1+N& )J0&n +
IB B

(4.46)

To recover this expansion here it is necessary
to evaluate our expression for X' ~ (3.24) using
an approximation for f,'"'. To do this we seek
an expansion in the lifetime broadening of the
ICEE resonance, keeping the shift of the real part
of the energy in the Fermi function. The appropri-
ate expansion is

(5E(+)) (& ) D

BH '
)&(n~,-) ~' BE s&+& ns&+&

—(1 —{~,.&),g

—2(1 —());,) —{n„))

(4.50)
@( ~) 6g (4') )Is s

For the parameter range under study the last
term vanishes, and

BS,(E, r) E+D E
BE (E+D)+r -E+r '"""'"

Neglecting the 1 compared to the i and z+ D we
find for the susceptibility

limy y T & ~ gE(-)
le

1

D+ cd + U 5E"

I
D+ g, -5E,' '

(4.52)

() i I ar rf r + 8 y 8

s + ~ s s s

4g a T't'r,'"'
E(r) ) E(r)

s s
(4.47) P(0)j= V f&&'(0) (4.53)

The zeroth-order expansion of this second term
is Scalapino's first term

e'"'= c + —U(1+x) —6E&r& (4.48)

it is straightforward to show that, in the same
regime (s~, &0, c~, + U&0, T &T'"') that Scalapino
studied,

&a 8 (+)X),=
~ T 1+

B~ (5E.' )
B

(4.49)

where in deriving (4.49) the fact has been used that,
to lowest order in the magnetic field, 5E,'"'= 5E,' '.
Using the properties of the dD functions and 5E,'"'
from the Appendices, we can show that

where E,'"' includes the shift (4.24) and I","' is the
lifetime broadening of the resonance. This ex-
pression is valid if I","'« ~E&"&

~
and kT «E~("' .

To recover Scalapino's result we must keep only
the Fermi function term and neglect the other
terms. For accurate numerical approximations
this is not a consistent scheme since the second
term in the expansion dominates the first for some
energy and temperature ranges. This is particu-
larly true if T & T'"'. Remembering that

The first-order expansion of the denominators
5E;& yields for the next term a term

&~(0)~)*~~ i,""
)~2e

U
(4.54),

if we insist on writing expressions in terms of the
effective J of (4.53). If one of the resonances dom-
inates the shift as in the resistivity, the same
effective 7 as found in Sec. IG is recovered here.
Now if one seeks to recover only the log(T) part
of A' without regard for the fact that A' depends
on I', and only displays this behavior for T "
& T & T", then one achieves a log(T) term in the
expansion for the susceptibility. However, it is
well known that perturbation expansions are often
asymptotic and, when only a particular functional
form of an expansion [log(T)] is sought, there
is little control of the region of convergence or
applicability. As illustrated above there is a
regime within which an asymptotic expansion of
Scalapino's form can be found for g&~. However,
there are at least two grounds on which it can be
argued that this expansion will not be seen ex-
perimentally. First, the expansion for f&"&is dom-
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D. Heat capacity

The heat capacity of the impurity-host system
which shows the "Kondo" resistivity should also
show what is effectively a Schottky anomaly at
low temperatures. This interpretation cannot be
taken too literally since the energies of the im-
purity resonances are themselves temperature
dependent. However, the heat capacity will show
a peak at low temperatures.

The heat capacity is calculated using

,Catomi c+ C tnt
v v V (4.55)

where Cv atomic can be expressed in terms of
f,"' functions, giving a formula like the atomic
limit, but. calculated with the fully interacting
f~"i. The second term is

inated by the Pauli terms (I'/Z) instead of the
Fermi function first term. Second, the logarith-
mic behavior of A' will not appear in the same
range of temperatures as does the range in which
Scalapino's first term is found. The actual tem-
perature dependence of the susceptibility is con-
trolled rather more strongly by the degeneracy
temperatures T", one of which is dominated by
the ICEE broadening if E," is small. The sus-
ceptibility displays the transition from a Curie
behavior to a degenerate Pauli susceptibility which
depends more on the lifetime broadening than on
the shift of the ICEE. It is possible for impurity
parameters of the sort which give a "Kondo" effect
and ICEE Quctuations that lnT behavior at high
temperatures can be seen. The major point is
that coefficients of the expansion are different
from those which the usual theoretical treatments
would predict.
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FIG. 5. This figure shows the normalized inverse
susceptibility for the same parameters as in Fig. 1.

would correspond to a 0.08-at. /p error in the
experimental concentration of impurities in the
alloy. %hile this possibility has not been explored
in detail for this system, such an error is not
unreasonable for heat capacity measurements on
impur stses.

It is of interest to note that the best theoretical
fit to the low-T data suggests that the second peak
in the heat capaci. ty due to the other ICEE is cloSe
enough to the lowest one that it may have already been
seen experimentally (see Fig. 6). Further study of
this possibility should be made in the future.

At this point we give a brief comparison of the
low-temperature ratio Cv/Txcalculated in this
theory and in Wilson's calculation of the spin-&
Kondo model. Using the expressions (4.56) and
(3.24) for Cv and X, it can be shown that in the
strong coupling limit (b. dominating all other
quantities)

int e x&-'
C~„"=- g (1-(n„-)), ' +(n„-) P gCv 41r

Tx 3 (4.57)

, s(n;, )
S (4.56)

When the interacting system f," are evaluated the
low-temperature behavior of Cv is dominated by
Cv" and shows a peak around the smallest T . If
the T" is small enough to give the "Kondo" re-
sistivity, this same condition gives rise to a low
T peak in the heat capacity. In Fig. 6 is a plot
of the heat capacity calculated for a set of param-
eters which closely approximates the experimental
heat capacity of La, „Ce„alloys as measured by
Bader and Phillips. " For this calculation, the

' theoretical parameters have been fitted to give
the experimental temperature scale, and the
magnitude of the heat capacity was multiplied by
a factor of 0.88 to bring the magnitude of the
theory into accord with experiment. This factor

and

&v 8& 4& y 5m y
ksT 96 9A (1+y')' 276, (1+y )'

4@~ y'
3mb, 1+y') '

(4.58)

(4.59)

where y= 6/e and is very small. Neglecting the
y terms yields the desired result.

in agreement with Wilson. " On the other hand, if
the medel parameters are fixed so that the (+)
resonance approaches the Fermi energy as T -0,
which condition gives the "Kondo" effect in this
paper, the ratio gives exactly the same value
found by Wilson, "

~s for the Kondo Hamiltonian.
This result obtains from the following low-tem-
perature expressions
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In another paper, we examine a comparison of
the calculated values of Tx for the Krishnamurty,
Wilkins, Wilson'0 (KWW) method and the calculations
of this paper. In general the high-temperature
and low-temperature results agree, but a sub-
stantial difference occurs in the temperature range
in which the susceptibility changes from Curie-
Weiss to Pauli-like. The KWW result gives the
chhrige over at consistently lower temperatures
for the same parameters than do the calculations
of this work. While the two methods are not
directly comparable, the major difference seems
to be that the KWW density of states for the con-
duction electrons has a logarithmic peak at the
Fermi energy. The calculations of this work
employ a constant conduction electron density of
states near the Fermi energy. The difference
between these two methods will be discussed in
more detail elsewhere. "

guage this equation is

LCkq 6kqMks+Q Vkmsc~ ~ (5.1)

where m= -l, . . . , +l and s=+& label the orbitals
of the impurity shell. There are two comments
which are relevant here. First, the Vk, arise
as variational parameters in the CRHF-like pro-
cedure. It is especially important not to attempt
to evaluate these coupling parameters using results
of calculations which do not fully consider the
many-electron configurations of the impurity.

Second, it is probably necessary to redo Hirst's
formulation of this problem so that instead of
(5.1) an equation of motion involving the Judd
stepping operators Q„(n, P) is determined by some
variational principle analogous to Hirst's CRHF.
This would probably yield instead of (5.1), an
equation of the form

V. TRANSITION-METAL IMPURITIES IN METALS (5.2)

In this section, the many-electron extension
of the results of the simple 8-shell calculation
and other implications for the impurity with a
partially filled d or f shell will be briefly and
qualitatively discussed. Most of the emphasis will
be placed on the iron group, though the ex-
planations are quite general.

The first element of unfinished business is the
question of the lifetime broadening of the ICEE's.
Perhaps the easiest way to approach this is to
begin with Hirst's equation of motion of the con-
duction electrons. Written in our operator lan-

In the comparisons with experiment the small
size of the ICEE widths found suggests that many-
electron matrix elements like V&k B„should be used
in place of the CRHF one-electron variational
parameters Vi, , The estimation of these many-
electron matrix elements requires a more so-
phisticated reexamination of the (n —1,n, n+ 1)
electron impurity Hamiltonian in a variational
scheme which more carefully treats the many-
electron states.

Short of pursuing such a fundamental approach
at this time, a relatively crude estimate of the
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effective line width variation across a lfamily like
the Sd family will be attempted. The main idea
is that the effective matrix element in the Green. 's

function is

(5 3)

The variation of the linewidth across a group like
the 3d's will reflect the variation of

(5.4)

as n varies from n=1 to n= 10. The simplest
estimate of

(5.5)

can be obtained by assuming that both the n and P
states are single determinants. Then the form

$„,(a, P) would be

(ct, P) c . . .c Igcg . . ~ cgno 1 +0- 1 Bno

where the n, and P, label the m, s, in each deter-
minant. Recalling from Sec. III that Ie is a pro-
duct of all cc~ for all states of the shell, a cal-
culation of la 1' yields, for a d shell, the expec-
tation of n, —1 factors of n„and 9 -n, factors of
1-n . The most naive estimate of this is to re-
place each n„by the fractional occupation 0 &x
& l of each orbital. Then, we estimate lal' to be
proportional to

(~)"p- (l ~) "p

(5.6)

This dependence gives relatively narrower ICEE
linewidths for the resonances near the Fermi sur-
face as one passes through the iron-group family.
Thus, this estimate would make the n, = 1, x = 0.1
and the n, = 5, x=0.5 linewidths compare as the
ratio of about 1:10 3.

The preceeding estimate can be evaluated much
more precisely by using the true correlated com-
binations of products of creation operators which
create the terms of the shell. These linear com-
binations can be obtained from standard tables
such as Slater. " The coefficients a can be ex-
panded in terms of Wigner 3-j symbols, Racah's
coefficients of fractional parentage" and thermal
expectation values of polynomials on one-electron
number operators. These expectation values must
be in principle evaluated in the grand canonical
ensemble or equivalently as solutions of thermo-
dynamic self-consistency equations in a Green's
function calculation.

Even with the exact expressions for the expansion
parameters, it is difficult at this time to improve.
much on the estimates above. The lifetime broad-
ening of an ICEE could be much smaller than any
one electron estimate, and we should expect that
impurities with half-filled or close to half-filled
shells will have much narrower ICEE's than atoms

on either end of the series.
The major implication of our study to this point

is that the presence of impurity ICEE's near the
host Fermi energy is what most strongly in-
fluences the alloy properties. The equation of
motion of each Q„(n, P) may be manipulated exactly
as in the simple S-shell model. There will be
the diagonal terms and the mixing terms. The
thermal shift of the ICEE energies will arise in
the same fashion as before, though now there
will be many more sets of terms. The essential
effects, however, will arise from those ICEE's
which are nearest to the Fermi surface. One
might expect only two types of ICEE's to be im-
portant for a many-electron atom. This suggests
that the major difference between a realistic im-
purity and the S-shell model is a matter of how

many of each type of ICEE there are. Many of the
simplest properties of this model should be
applicable.

Thus, for every alloy there will be some smallest
effective degeneracy temperature

(@2+l 2) I /21
2m

which will determine the changeover from a lo-
garithmic ICEE shift and a Curie-like susceptibility
to a Sommerfeld 1-T' shift and a Pauli-like sus-
ceptibility.

To illustrate one application of these ideas, the
variation of the resistivity through the iron group
will be briefly examined. As is well know. n, "at
low temperatures this quantity exhibits a single
peak at about Cr or Mn, which peak in the tradi-
tional Hartree-Fock" picture is represented by a
sin'( —,', mN) functional form. At an elevated tem-
perature the resistivity of those e'lements in the
center of the family (Cr, Mn, Fe) is less than the
"outer" members of the family. In many early
treatments" of this problem this behavior was
regarded as experimental verification of
Anderson's HF treatment of this model. In what
follows, we will examine the explanation of these
results from the perspective of this study, using
the result that an ICEE is near to and pulled
toward the Fermi energy by the conduction-
electron coupling and that the ICEE linewidth is
smallest at the center of the family.

Let us first examine the low-temperature re-
sistivity. If every impurity at low temperatures
fits into the picture I have been presenting here,
then the resistivity should be simply a measure
of the number of interconfigurational channels
from n electrons to m+1 electrons which are
saturated for that specie of impurity. If one
assumes a Hund's rule ground state for the im-
purities, it is easy to show that N„„„, the num-
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ber of channels between d"-d"", is simply pro-
portional to Schrieffer's result which has the
residual resistivity proportional to 2S„, where
S„ is the Hund's rule spin of the d" ground state.
However, as noted by Schrieffer" and others the
experimental data on residual resistivities is
really not good enough to distinguish between the
Schreiffer result and the HF result. Furthermore,
as will be discussed below some of the im-
purities at the ends of the family may not have
reached the unitarity limit at low T and this could
decrease their residual resistivities below the
straight lines of our Schrieffer-like prediction.
This last effect would appear to be approximated
by the HF sin'(, 0)7n) result and thus lessen the
value of residual resistivities as a distinguishing
exper iment.

Let us now qualitatively examine the finite-tem-
perature behavior of the resistivity. The impurity
resistivity will be given roughly by

2+n.n+ l~n
1'„+(c„-A„)2 ' (5.7)

where N„„„gives the number of channels I „ is
the effective width of the important ICEE, e„ is the
ICEE, and A„ the shift we have been studying.
[We are assuming that at low temperatures the
ICEE value he, given by

(5 8)

is a small quantity. ] The low-temperature re-
sistivity will be

(5.9)

If he, = 0 we achieve the unitarity limit. If .the
temperature increases to T &T(„'~, then we can
write the resistivity as

1+ ——ln (+)

(5.10)

The amount by which the resistivity will have
decreased at this elevated temperature will depend .

on both A~, and T„'. We examine some relevant
values of these quantities. First, if 6~0=0 and
T„' is quite small, the impurity could have both
achieved the unitarity limit at T = 0 and exhibited
a significant decrease for T & T„'). From the per-
spective of this study, this case would seem to
apply to impurities near the center of the iron
group. A case which appears to be more applicable
to impurities away from the center of the group
corresponds to A~, W 0. In this case, two effects
are present which imply that the decrease of the

resistivity at the temperature T will be less than
that in the just preceeding case. First, since
he, w 0 the value of T„' is larger. This means that
1n(T/T„') is smaller than in the preceeding case
at the same T. Second, the Ae, term can decrease
the contribution to the denominator and thus further
suppresses a high-T decrease of L&.

There is yet a, third case which may be applicable
to the atoms on either. end of the family. This is
the case in which b.e, is so large that the cor-
responding T„' is comparable to or larger than
the temperature T at which we are comparing the
resistivities. In this ca,se the shift A will not have
changed much (T & T„' ) and would not vary like
log(T), and the resistivity will have undergone
little or no change.

This qualitative discussion thus indicates that the
behavior of the resistivity across the iron group
at both low and high temperatures can be ration-
ialized by the effects presented in this paper.

Further examina, tion of other consequences of the
theoretical ideas presented here are being pursued
,and wi11 be discussed elsewhere.

VI. SUMMARY

The logical c.onsequences of considering the
ionic approach of Schrieffer and Hirst in a thermo-
dynamic quantum-mechanical formalism which
includes impurity lifetime broadening has been
presented in some detail. Up to a question of
overall temperature scale, or equivalently, the
question of the lifetime broadening of the relevant
many electron ICEE impurity resonances, the
consequences of this ionic perspective seem to
describe impurity systems remarkably like the
physical alloys. The different types of temperature
dependences of bulk properties and related effects
seem very much like the experimental behavior of
many alloy systems. Furthermore, our calcula-
tions show a possible intimate link between Kondo-
like behavior of transport properties, Pauli-like
behavior of the paramagnetic susceptibility, and
valence Quctuations of the transition metal or
actinide series atoms.
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APPENDIX A: DETAILS OF THE SECULAR MATRIX

6E,' =r ~ N(g ((Qd, (cd-, c%; —cX;cd-, )c„)).
ds

(A2)

The evaluation of the commutators in (A2) yields

(N,"-,&~8"' =P V-„, ((N(„;))"(yt(') c-„;&
k

(A3)

or, a.s written in Eq. (4.10} in terms of the d")

parameter,

@„) a (n~& (,) I-&n~& ( I))

v(N"'& ' (ng ') ' (A4)

To carry out the Schmidt orthogonalization we
must add in and subtract out the parts of the vec-
tors cd—,cg, cd, an-d c,tt c dc -dwhich are along (I&d, .()
The resulting row of the secular equation becomes

+r(N &
1/2 V»(r)

k

r
(N(r)&&/2 ~ Vkdllkdkds Il(tdkds

k

-(~) (y)—
&N»&, /. g vkdllykd~llykd~

k

Here the vectors p k
and Qkdd, are the unitrg (r)

vectors for the vectors

fdkds Cds Cks CdKskdsf'ds

(y)

Q k dds
= C ks C ds C ds

—Ek ds 4 ds

(A5)

(A6)

(A7)

As indicated in Eq. (4.7), the first application
of the Gram-Schmidt orthogonalization procedure
yields a symmetrized form of the secular equation,
but one which contains vectors c„-,cz-, c„, and

ck,-cd-, cd, ,which are not orthogonal to (t&d(",&. To carry
out the orthogonalization it is necessary to find the
Overlap between these vectors. This is the sam& as
calculating the matrix element

((@(r) I y(r) )) g(r) + / g(r) (Al)

where

of the corresponding vectors.
At this stage, we start to utilize the assumed

weakness of the coupling between the conduction
electrons and the impurity resonances. In the
evaluation of the self-energy of the impurity re-
sonances, the weak-coupling condition will be
invoked, and the only term for the self-energy
which will be evaluated is (written in notation of
Sec. II}

(A9)

ks& ~dk» ( dkdsl ~kdds

The matrix elements required are

((c I y(r&)) V (N(r)&1/2

((y «(r))) rv (N(-r»&/s

((@d~s «d's'))=rVkdll@d~sll/'&Nd'rs'&"'

((0 kdd „I0d'",)))= ~vkd II @~„ll/&Nd",)&)/'.

(A10)

(A11)

(A12)

(A13)

(A14)

We next evaluate the matrix elements to lowest,
relevant order in V~. For (A13) and (A14) this
means

The argument justifying this expression is that
the third- and higher-order terms will be smaller
and will be neglected. In what follows we make
the further approximation of determining each ma-
trix element V,„ to only second order in V@, or
equivalently to first order in & = vN(0)v~a.

In most circumstances, a determination to low-
est order in 4 would also imply that our determin-
ation of e, (n, (d) should be only to zeroth order in

For a low-density system, this would be cor-
rect, but with a degenerate Fermi system the sum
over intermediate states can lead in the thermo-
dynamic limit to essential singularities of the
self-energy for some values of the coupling con-
stant. This is a general feature of secular equa-
tions where the eigenvalues are not necessarily
entire functions of the matrix elements. As we
proceed the reduced self-energies and all other
energies will be evaluated to whatever lowest or-
der in 4 which is required to yield nonsingulh, r re-
sults.

As a first step toward evaluating the self-ener-
gy, we must list the states "/" which have to be
included. As can be seen in the relevant rom of
the secular equation these vectors include

where

r +) y//p f(+)
k~ -

(N(g&. /s (&N~ &

-&N' '&'™(c-k;(kd-,&) . (A8)

(y) -(r)
The quantities [[Qdkds l[ and llQkdd, l[ are the norms

and

lid„„-,ll = llc,'~f~„li+o(v„-}

II y~d, ll = lick'~d~d, ll+ o(v„-„).
It is straightforward to verify that

llcd~f-, c„ll'= (1-&ndg)f( '+((n„—nds)n~g

(A15)

(A16)

(A17)
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and

)(c~~„;c„,l('=(n~g f,"+(ng-, ( l-ns, -n~-, )),
where, as before,

f(t) ((t t(s)y'(r )) (A18)

SrVQ Vs

(d —
e(vasss (0) ( (0 —f( s

(A21)

Similarly, for those terms which. involve the same
class of integrals, w'e write the same approxima-
tion. This yields for 1', the following result

Now the norms involve a knowledge of expecta-
tions of the sort (nf„n„,g. Such (luantities can be
evaluated from two-particle correlation functions,
but at this point we adopt the form for such coef-
ficients which holds to zeroth order in V~. This
approximation does not represent the neglect of
any singular terms and so should be accurate in
the weak coupling limit. Thus,

(n„,n„-„)=(n...)(n;„)+O(V„-) .
These approximations have the obvious advantage
that our self-consistency equations are closed, in
that all thermal expectations can be computed by
a limited number of correlation functions. The
different contributions to the self-energy can now
be written out:

p2g(y(r). &) (N(r))ds & ds
pT l7s

(„) Vfs 1
+(N@:")

( )+( („&) v ((0),

(A19)

where

&,(~)=Z (V('; [(1 —(n g)f,' '+((n„g
k

-(n„g)(nfl]/[(o —e(y - (o)]].

(n„-g = [exp(Pe„-,-)+ 1]-' . (A28)

Having done this it is now necessary to be careful
about how the denominators e(P;(0) are approxi-
mated. In particular, it is not admissable to ne-
glect the imaginary part of the reduced self-en-
ergy, because one of the contributions to these
integrals is of the form 4ln4, where 4
= w(v@)N(0), and this does not have a small-6
power series expansion about 4= 0. This means
that the lowest-order contribution from these Fer-
mi function integrals must include a lifetime
broadening as well as any shifts. Thus the evalua-
tion of these terms requires a specification of
both the real and imaginary parts, e, and e„of
e. In order to determine these it is straightfor-
ward to observe that

and

~cs~s, gscss 'ej~ss~sÃscss+ 0(vh() (A24}

V,((0)= (1 -(n~g)f, y(-v) +(n„gf~"y((d —2zs —p)
2.(&,g -&n,g}Z ~ —e

VI n"-+(1-(n g -(n Q) Z "' . . (A22}
97 —e h(ss' M

Now for the dilute alloy, it is entirely approp-
riate to approximate the (nfl factor by the Fermi
function

+ g(Va, [(n gf,"+(1-(n g
l7

-& 3)&;3]/[ — (0- .' )]].

I cfmcs~sss = ( ~s+ ~ rs) i™is~ass+ (Vrs() .
(A25)

Note that these energies involve just the energy of
a conduction electron or hole along with the two-
electron or non-electron impurity state.

To proceed in greater detail with the reduced
self-energy of each of these intermediate states
is to introduce quite a bit more detail into this
problem than is useful. Therefore we set

(A20)

To carry out the approximation scheme more
carefully we must now determine good approxima-
tions for the various reduced energy denominat-
ors e(Q; e). These energies will contain a diag-
onal energy and a reduced self-energy arising
from the off-diagorial matrix elements. In all
cases the diagonal energy must be determined,
but one might hope to approximate the reduced
self-energy because of our weak-coupling limita-
tion. Care must be taken in these approximations
to examine the effect 6f sums over intermediate
states. In the case where the matrix elements are
independent of n, we may sum over intermediate
states in a convergent power series in the weak
coupling. 'Thus, for example, we approximate

e (Q u&)
—b, ' —f'6

v~&nr) (, '), (A26)

and can rewrite V,(u)) as follows:

where f' is a dimensionless parameter (for the
most part t'= 1). Using the results of Appendix
C, we have immediately,
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+ —((s g -(s g) (f (&, &')

+ —(1 -(n, g -(n,g)

((y& & ((0 —g) P(r)))= (& —E(r) —5E(r) —I ( )) &

(A29)

It is shown in Appendix B that if Eq. (A29) gives
the form of the resonance, then to order 1/D the
value of X " is given by

f()(e )df
~ ~ (A27 )

)&(r) sz (E(r) + 5Eft& pie &) (A30)

The integral s defining 4~, and in Appendix B
the integral s defining -X,'"', are quite simp le to or-
der 1/D if the impurity resonances can be regard-
ed as Lorene ians with constant lifetime broaden-
ing and ene rgy -independent shift . In the following
we seek two smal 1 parameters 5E,'"' and I","', so
th at

e(r)(E(t&+ SE(t') } E(r) + 5E&r) + iI (r)
S S S S S S

In terms of these parameters each resonance of
the impurity will be a simple Lorentzian

where 4D is the real part of +~ as defined in Ap-
pendix C . Note the peculiarity of the notation that
Xs'" ' depends on the s resonance energies . The
imaginary part of &D is defined in (C13) in terms
of 3(E,1"), and it can be easily shown that

f(x& ~f (E(r&+ 5E(t') I (t))' (A31 )

Al 1 that remains is to derive the functional form
for 5E',"' and I",'"'. The calculation for 6E',"' in-
volves evaluating Y,(E',")+ 6E(")) and substituting
this into (A25). After some algebra the expression
for 6E,"including corrections to order 4 is easily
found:

5E,"= -—(~(' -)&&-&) + —((n, g -(n,g), &.&
(5E,"-5E-,")+, &.&

(~ - r&'&}

Similar equations are found for 5E,' ~ which differ
only in the second and third lines . The correction
coefficients in (A32) vanish exactly in the absence
of a magnetic field and if the impurity is on the
average neutral . In any case, the correction terms
are quite small and can be neglected. This gives
the result in Eq. (4.24):

APPEN MX B: DERIVATI ON OF THE 'A &'~

In this Appendix, the expression for X.,'"' given
by Eq. (4.22} is derived within the resonance ap-
proximation of (A29). We want to evaluate

P V„-&c,'=,y~(, &}=~„PV„-((c„--„(~-L, )-)4~(;)))

5E(t') (y(+& y(-))
S g S S (A33) (Bl)

Similar calculations yield the fol lowing lowest-
order expressions:

where F „[ ] is the Hamann-Bloomfield func-
t iona 1

and

r,(-& = ~(I+f '+f', -)) .

HI

z (+) n 1 g(+) ( &~ g(-& (A34)
Cy„[((A, ((0 -1 ) 'E))]= —,f.( )

a 00

x Im((A, (&o -i6 - I,) '8)) .

(B2)

These last equations have also neglected corre c-
tion terms like those in (A32), which terms are of
order 4' and will not be discussed here .

Using the Lorentizian form for the diagonal ma-
trgr. elements of the secular equation as determin-
ed in Appendix A, we have

715(40 —&gz)((L —E "5Ei&)-(( kg% ( ) Plf8 }) h(( cs ) (~ ~ }2+52 (~ E(F) 5E(t))2~ ('Pit'))2 ((0 E&r& 5E(t))a+ (I'(t'))2



3426 SAMUEL P. BOWEN 18

Evaluating the functional F„we have APPENDIX C: PROPERTIES OF & (E, I')

where

"d&o f,(&d)(&d -e)
7& ((0 —e) + 5

r~&
X

((g E«) 6E«))2/ (1'«))»

(B4)

s.&E, r)= J dc (cl)

where

For the parameter ranges of this work we want

S~ for large D, and we will only list expressions
for that limit. The definition is

f (e)(e E&t') 6E()'))
g(&)

( E()) 6E(|))2i(Z (r))2 '

The evaluation of the sum over k yields

(B6) f,(z) =(e"+1}'

This integral may be written as

(f, (E, r) =f, +f„ (c2)

~ ~- &,'--.&,'!'& = ~~ &N,'"-.'&"' Z [s,(;.).~,(.;.)]
k

where

I =in(D+E -iF) —ln(E-il'}, (C8)

=-&N",'&' '
N(0) m ( .)

1
+

N (0) (i)(mrs)
and

I =— dc 2c
p~'+ 1 z2+y»0

(c4)

y=r+is. (c6)

where N(0) is the density of states at the Fermi
surface. Comparing the defiriitions of sD(E, 1 )
(Appendix C) and )((") we see that

)((r) —)f I (E(r)+ 6E&r) Z'&r))+ 6)((r)
a D 3 3 y s 8 (B8)

In the following we show that 5A.,'"' is of order
1/D and thus can be neglected when the cutoff be-
comes large. In order to estimate this integral
it becomes necessary to use a more realistic den-
sity of states for the conduction electrons, which
still cuts off at energies of the order of D. For
this purpose, we adopt the I orentzian density of
states of Hamann and Bloomfield

(ez'+ ]) = (e(" ]) i 2(em&)' 1) (c6)

Substituting (C6} into (C4} and using the definition
of the digamma function, "

ln —— 2, C7

In the derivation of I, the integration range has
been extended from D to infinity. This will give
errors only of order e ~ . The integral I, may be
written in terms of digamma functions if the
following identity is used:

2N(0)D
w(e'+D') ' (B9)

yields I, in terms of the variable z = py/2z as

f, ( ) =in(4z)+y( ) —2y(2z), (c8)

Actually, all calculations of this model could have
been carried out using the density of states (B9),
but it then would have been somewhat more com-
plicated. The integral to be done is

N(e) "
d&0 f,(&o)((d —e) e,

N(0) „)( (&o —e)'+5' ((u —e,)'+e', '

where g(z) is the digamma function. Using the
duplication formula for the digamma function"
yields another simpler form

f, ( ) =»(z) —0(-'+z) . (c9)

This last form yields for SD(E, 1) the following ex-
pression,

The evaluation of the required contour integra-
tions is straightforward, but lengthy, and will not
be reproduced here. The essential point is that
integrating first over & yields an integral over +
of the form

"
d&0 2D&0 f,(&d)e,„z ((P+D' (&o —e,)'+e,''

which is clearly of order 1/D as D ~ and can be
neglected in comparison with the 4~ term. u r =—[(D+E)2+r2]'i21

(C11)

SD (E, I') = ln (D+E - iI') +ia—z - g (~ +z),
2m

(C10)

which is accurate to order e
The temperature behavior of S~(E, 1"}is deter-

mined by two characteristic temperatures T~ and

Tr ~, where
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ksTr s =-(S'+ V)"'.1

For use in other appendices, define the real and
imaginary part of f~ in the following way:

', (S, r) =~,'(Z, r)+'vf (Z, r).
Then it is easy to show that if T (~7~ » then

s'(E, I') =ln ~ —(ksT) 'v' —' ", (C14)

(C13)

(c13)

';(z, r)-i.(",'""),o(';*),
0.6433PE 0.426PII'Ss, r =-,' +

2m m

(C16)

Analytic expressions for the intermediate range
can also be determined, but it becomes simpler
just to evaluate g(~+@) on a computer and solve
with self-consistency at the same time. An algo-
rithm for g(&+a) can be easily constructed from
a code for the gamma function in the complex
plane. '

I

APPENDIX D: COMPARISON OF THE ATOMIC LIMIT
GREEN'S FUNCTION IN THE EXACT AND HF FORMS

In this appendix, we show the relationship be-
tween the one-electron Green's function in the
atomic limit and the Hartree-Fock approximation
thereto. We wish to show that in the grand canon-
ical ensemble the Hartree-Fock energy is a parti-
cularly poor estimator of the existence of an in-
terconfigurational excitation energy (ICEE) near
the Fermi energy (i.e., near zero).

The demonstration begins by writing the one-
electron quantum numbers as n and expanding c

e &n~~n+i ~" "n "n+i

where 4 is the non-normalized Judd stepping op-
erator [cf. Eqs. (3.10) and (3.11), for example]

e(y„,y„.,) =At I~A„ (o3)

between configurations y„and y„„which are

l

f(EI')= —,—ta"( )~+(I T)', ,), . (C15)

If the temperatures are high (T& Trs) then,

(o4)

where the energies of the n-electron atomic eigen-
states yn have been written as &„.

&n

Now it is a property of the Hartree-Pock approx-
imation that it preserves the first moment of the
one electron Green's function

((c, (&o —L,) c ))=—+—,((c,Lc ))+ ~ ' ~ .=1 1
(o6)

This can be verified by recalling that the substance
of the Hartree-Fock approximation is to find the

~ matrix elements of L completely within the one-
electron subspace, or equivalently to determine
the effect of I only on the c . This yields

L,c =((c,L,c ))c (o6)

where the neglected terms j.nvolve more than one
co ~

To complete the demonstration we examine the
first moment of the exact Green's function,

((c.,«.))= g la,„,,„„~'&,„+&,„.,)
n' "n' "n+1

x(E E —p),
and observe that if there is an ICEE which is very
small, its contribution could easily be dominated
by other transitions from the ground state of the
atom. Therefore, Hartree-Fock calculations
should not always be trusted as an indicator of
many electron ICEE's close to the Fermi energy.

(ov)

created from the vacuum by the operators &~ and
A~, respectively. The a, z coefficients are
closely related in spherical symmetry to the
Clebsch-Gordan coefficients, but their values are
not of importance at this point. By straightforward
calculation it can be shown that

((@(r„,r„„),@(r„,r„„)))=&„„+&„„„, (o3)

where P„ is the probability at temperature T and
&n

chemical potential p, (in the grand cononical en-
semble) that n-electron state y„ is occupied. The
atomic-limit impurity Green's function is then
given by

la~ I' +P )((c ((g7 g) ~c ))= g &II~ ~Ii+1 l'll 1'n+1
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