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We show that a Peierls insulator under strong dynamic excitation of electron-hole pairs exhi-

bits an instability into a mixed metal-insulator phase. This problem is analogous to the inhomo-

geneous nonequilibrium BCS state discussed by Scalapino and Huberman. We calculate the

threshold parameters for typical Peierls insulators and discuss some organic systems that might

be likely candidates for experimental verification. In contrast to the nonequilibrium supercon-

ductor, the mixed state in Peierls systems can be easily detected by light scattering techniques.

I. INTRODUCTION

Condensed-matter systems far from equilibrium
are of interest because they can undergo transitions,
into states which are not usually attainable in their
equilibrium state. As the examples of Rayleigh-
Benard instabilities in fluids, spinodal decomposition
in alloys, and nonequilibrium superconductors show,
new qualitative features can appear as a system is
driven far from equilibrium. Thus, it is possible to
obtain dissipative structures characterized by a high
degree of regularity in which the properties of the
system are modulated spatially and/or temporally.

Recently, considerable attention has been devoted
to the properties of BCS superconductors far from
equilibrium. The experimental impetus was provid-
ed by Testardi's observation2 of a nonthermal
suppression of T, by laser irradiation in thin super-
conducting films, which he attributed to a dynamic
modification of the electronic density of states by the
incoming photons. Soon afterwards, Owen and Scala-
pino3 proposed a simple model in which the photo-
generated quasiparticles are in equilibrium with
respect to the lattice but not with respect to the
Cooper pairs. This possibility leads to a new
"quasiequilibrium" distribution for the quasiparticles
characterized by an effective chemical potential p, '.
For a system constrained to have a uniform quasipar-
ticle density such a model leads to a suppression of
T, and a first-order supernormal phase transition into
the normal state. Furthermore, the possibility exists
that at lower laser intensities than those needed to
produce the supernormal phase transition the super-
conducting film might be driven into some. kind of
mixed state. Two forms for this mixed state have

been proposed: a stationary inhomogeneous state
consisting of separate superconducting and normal
regions, and a temporary varying one which oscillates-
between the superconducting and normal phases.
Most recently, Scalapino and Huberman have dis-
cussed a phenomenological model for a nonequilibri-
um superconducting film which exhibits an instability
towards a stationary inhomogeneous state with
periodic spatial variations in the excess quasiparticle
density and the order parameter.

The model of Owen and Scalapino makes use of
the BCS theory with its characteristic pairing of elec-
tron states into bound Cooper pairs. A key quantity
in the model is thus the gap equation, which arises
out of this pairing. It is well known that pairing is
not a unique feature to superconductivity. Systems
as varied as, for example, spin-density waves, 5 fer-
roelectric semiconductors, charge-density waves,
and Peierls states can be described in a form similar
to that of the BCS superconductor. With this analogy
in mind it is tempting to speculate about the none-
quilibrium properties of these other systems along
the lines we have discussed above.

We have chosen to investigate the fate of a Peierls
insulator driven far from equilibrium by dynamic
photoproduction of electron-hole pairs. As we will

show, it is possible for such a system to undergo a
transition into a mixed metal-insulator structure
characterized by the presence of coexisting regions of
both phases. In this paper the general conditions for
attaining such an instability are discussed and some
possible experime'ntal candidates are suggested. The
choice of a Peierls insulator was dictated by several
reasons: (i) current interest in these solids has led to
a thorough understanding of the basic mechanisms
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that are operational in many of the organic conduc-
tors known to exhibit a Peierls insulating phase; (ii)
there exist systems where a mean-field description
seems to be appropriate in spite of their quasi-one-
dimensional character; and (iii) we believe that the
existence of a mixed metal-insulator state in such
solids can be detected quite simply by light scattering
techniques.

Throughout this paper we will restrict ourselves to
a simple mean-field treatment of the gap equations.
Although it is known that the effect of fluctuations is
important for quasi-one-dimensional systems, we be-
lieve that a mean-field model may be sufficient to
speculate on some of their nonequilibrium properties.
In addition, the nonequilibrium Peierls state might be
a potentially useful system for probing such fluctu-
ation.

In Sec. II the homogeneous case of a quasiequilib-
rium Peierls insulator is described and the phase di-
agram as a function of excitation number is obtained.
Section III deals with the onset of spatial inhomo-
geneities and the characteristic length scales to be ex-
pected. Possible experimental tests of these ideas are
discussed and some likely candidates proposed.

II. HOMOGENEOUS PEIERLS INSULATOR

+ X Xg (g)ak'+, (b, +b', )
N

(2.1)

in which ak and b,~ denote annihilation operators for
the electron Bloch states, of energies ek, and unper-
turbed longitudinal phonons, of frequencies ~„
respectively. N is the number of ions in the chain of
lattice constant a, and g (q) is the e-p coupling con-
stant. For the unperturbed one-electron dispersion
relation we choose for simplicity the tight-binding ex-
pression ek = escos(ak) with ~k~ ~ qr/a. For the
summations over crystal momenta in Eq. (2.1) elec-
tron spin is to be included.

As discussed by Peierls, ' Frolich, " and Kuper, "
for T ( T, the wave numbers +qQ 2kF which con-
nect the two points of the Fermi surface become ma-
croscopically occupied. For the special case of a
half-filled band, a case that we will restrict ourselves
to in the following, the lattice undergoes a distortion
in which the period of the lattice doubles. As shown
by Rice and Strassler'2 the Hamiltonian of Eq. (2.1)
may then be approximated by the simplified, static
form

In this section we study a homogeneous Peierls in-
sulator within the mean-field approximation ignoring
the spatial variations of the order parameter. For this
purpose we make use of a Frolich electron-phonon
(e-p) Hamiltonian for a linear chain, q

H = X ek ak ak + X fmq bq bq
k

+akak+, 0)l + N fa)u (2.3)

is then easily diagonalized by means of the canonical
transformation

k k k k~k+
Q

Pk &kak + Vkak+qo

where uk + vk =1. One thus obtains

(2.4)

N SouH = X (Ek akak Eppkpk) + " . (2.5)
km(in —BZ)

For a symmetric band, ek = ~k+, , the. quasiparticle

energies for the two bands, a and p, are

Ea, P +(e2+ g2)1l2 (2.6)

where 5 = ug. The gap 5 is determined by a minimi-
zation of the electronic free energy, which gives rise
to the gap equation'

[n (k) —na(k))

ka(in —BZ) (&k + ~ ) g
(2.7)

In the case of thermal equilibrium the occupation
numbers are n, & =1/[exp(pEk p) + I] where

p = I/ks T is the inverse temperature. Because the
band is symmetric around E =0 the equilibrium
chemical potential p, equals zero at all temperatures.
In the weak coupling limit it follows" from Eq. (7)
that dQ=46ge at T =0, where
b = itnq/2g2N(0) & 1. [N(0) is the density of states
per atom including spin. j Above the critical tempera-
ture k~T, =2.27~&e there is only one trivial solu-
tion 5 =0. One thus has the following well known
picture of the Peierls distortion. Above T, the regu-
lar lattice structure of the one-dimensional conductor,
and hence its metallic state, is stable. At T, a lattice
distortion occurs giving way to an insulating state.
With further decrease of T the gap at the Fermi sur-
face increases in a BCS fashion. With these prelim-
inaries wc may now consider the quasiequilibrium
state.

2

N %ou2 + x [ kak ak + ag (ak+qoak + ak qaa—k) i
t t

2

(2.2)

where co=co, and u is a dimensionless parameter re-

lated to the phonon amplitude through

(b, ) = (bqt) = —,JN gqq This approximation

amounts to including only the electron entropy in the
free energy. It is convenient to define an "inner"
Brillouin zone (in-BZ) by ~k ~

~ kF with kz = qr/2a
The Hamiltonian

x [ekak ak + ek+qoak+q ak+qo + 2g22 (ak+q ak
t t

km(in —BZ)
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As described in Sec. I we shall assume that the sys-
tem is prepared in such a way that there is an excess
number of particles in the upper band. This excess
number of electrons can be in principle produced by
laser pumping across the gap h. %e shall also as-
sume that the time scale is such that a quasiequilibri-
um situation will have time to develop, i.e., the elec-
trons in the upper band thermalize down to the bot-
tom of the band in times that are short when com-
pared to recombination times. In the formalism
above, we shall therefore have to add the subsidiary
condition that the number of excess particles remains
fixed." This will result in an additional chemical
potential p, 'such that the occupation numbers in Eq.
(7) now become

n &(k, p, ') = I/Iexp[P(Ek s+ p, ")]+II
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with

hn = (N&(p, ",T) Ns(o, T) i/—N

Ns(p, ",T) = X ns(k, p, ')
k c(in-Bz)

(2.8)

(2.9)

As in the case of the quasiequilibrium BCS state"
we note that the gap is double valued. Comparing
free energies it turns out, however, that the "small"

gap solution is unfavorable (as it is in the BCS case).
Hence, we may disregard it in the following. Figure
2 shows the chemical potential p, 'as a function of

In order to show the behavior of the Peierls gap as
a function of excess electron-hole pairs we have
solved the gap equation with p,

' included by numeri-
cal methods for a set of temperatures less than T,.
Selected results are displayed in Fig. 1, ~here the
number of excess particles in the upper band of the
insulating state is defined as

FIG. 2. Effective chemical potential p, 'as a function of
number of excess carriers at different temperatures.

hn, results which should also be compared with the
quasiequilibrium BCS state. Since conditions for
thermodynamic stability require that
(ep, "/8LLn) r )0, "there is a critical value of b n

beyond which the system becomes unstable. This
instability is used to define the approximate phase
boundary between regions (a) and (b) in the "phase
diagram" of Fig. 3. (A more accurate determination
of the phase boundary requires a tangential construc-
tion as discussed in Ref. 7.) The phase diagram is
completed-by considering the difference in electronic
free energies between the condensed and normal,
metallic phases, LF = F, —F~ & 0 as shown in Fig. 4.
Since it is assumed that the thermal relaxation time is

I.O
I =7/Tc
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FIG. 1. Gap 4(p, ",T) as a function of number of excess carriers, h, n, at different temperatures t = T/T, and with b -1.
/
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FIG. 3. "Phase diagram" for a nonequilibrium Peierls

system: (a) denotes a homogeneous region in which

4(p, ', T) AO and (8p, '/8&n) ~=0; (b) defines a region of
quasiparticle density instabilities with (Bp, /84n) ~ (0; and

(c) is a region in which the normal, metallic state is stable,
i.e., AF ~0. At the dashed curve the gap equation ceases
to have nontrivial solutions.

short, F~ is not affected by the laser field. In conclu-
sion, we obtain for the quasiequilibrium Peierls insu-
lator a behavior, which is quite similar to its BCS
analog. In region (a) of Fig. 3 the system remains
homogeneous and insulating. As An increases at
constant T, however, region (b) of Fig. 3 is reached
which implies that the system becomes unstable
against large fluctuations in 4n. The system will then
gain free energy by forming some kind of mixed state
consisting of separate regions with different quasipar-
ticle concentrations. It is, ho~ever, hard to predict
the detailed nature of this mixed phase, but in the
simplest case, it wi11 consist of a mixture of insulating
and normal regions, which may change in space as
well as in time, as mentioned in Sec. I. With further
increase df hn at constant T the normal phase is
reached [region (c) in Fig. 3).

(3.1)

with J the electron current, which in terms of the
effective chemical is given by

J = N(0)DVp, "— (3.2)

with D the diffusion coefficient of the electrons. In
order to obtain an expression for the dependence of
p,
' on the excess quasiequilibrium electron density we

expand the chemical potential around hn„as sug-

III. MIXED STATE

As we showed in Sec. II (Fig. 3), for T ( T, there
exists a critical concentration of excited electrons,
4n„ for which the Peierls insulator becomes thermo-
dynamically unstable. In other words, as the excess
electron density increases, the system exhibits a bi-
furcation into a mixed state characterized by the
coexistence of small regions with different gaps.
Since so far in our treatment we have only looked at
homogeneous fluctuations, it is impossible within that
context to study the spatial characteristics of the bi-
furcating state. In what follows, we will consider the
contribution to the free energy and rate equations of
a nonlocal chemical potential. As we will show, it
then becomes possible to study the onset of a spatial-
ly periodic structure characterized by the coexistence
of droplets of different gaps. This situation, under
stong pumping conditions (or far enough from equili-
brium) will ultimately lead to a mixed metallic-
insulating phase in a nonequilibrium Peierls insulator.

Consider the rate equations for electron-hole pho-
toproduction. If E is the rate at which electrons are
pumped across the gap and r their recombination
time we can write

0.0 I—

0.0
08 hn

—0.0 I

—0.02

—0.03

—0.04

FIG. 4. Difference in electronic free energies, LLF =Fc —FN, between the condensed and the normal, metallic phases
(in units of Ez).



18 PEIERLS STATE FAR FROM EQUILIBRIUM

gp -71;(3)g V /16m EsT (3.4)

with VF the Fermi velocity of the electrons. Assum-
ing that the gap is renormalized by the excess elec-
trons as I= hp(I —

2
b n) and since

1

tt, '(r) = SFn/Sn (r) we obtain, together with Eq.
(3.3)

A (An, —In)2
tt, '(An, r) -tj, '(hn, )—

p

8o V (hn) (3.5)

so that Eq. (3.1) becomes

Blkn I hn + 2DA (~„~ )~2(~ )
Qt V hp

—
2

D(p2V (An) (3.6)

For hn, ) hn and when properly linearized, Eq. (3.6)
reduces to a we11-known diffusion equation with
sources, in which a gradient in the quasiparticle con-
centration generates a corresponding current that
flows from high- to low-concentration regions. How-
ever, for hn, & hn an instability can take place in
which an effective reversal of the diffusion coeScient
leads to the growth of certain Fourier components of
the fluctuations which, at later times, tend to be sta-
bilized by the last term of Eq. (3.6).

In order to study the bifurcations of Eq. (3.6) into
a mixed state, it is most convenient to perform a
linear-stability analysis around the homogeneous
steady-state solution, which we will call 4np. We
write hn(r, t) in the form

hn(r, t) -hnp+hnt(r, t) (3.7)

with hn~(r, t) (( hnp for small t.
Replacing Eq. (3.7) into Eq. (3.6) and keeping only

the linear terms in tent(r, t) we obtain

8hn~(r, t) (hnp+ tin~) 2DA+ ttn, —dnp
Bt hp

(3.8)x '7 (Lint) — DgpV (hnt)—

Fourier analyzing, we obtain the following solution
for Eq. (3.8)

gested by Fig. 2. We then obtain

tt, "(b,n) =tt, "(hn, ) —A (tt, n, —An)2/N(0) 5, (3.3)

with A a constant of order unity.
The nonlocal contribution to p, "(An) arises from

considering the contribution from spatial fluctuations
in the gap order parameter to the free energy. If the
latter possesses a Ginzburg-Landau form the correla-

tion energy can be written J N(0)gp~V6~2dr with (p
the zero-temperature coherence length, which is
given by'3

Ant(r, t) =B Xe 'cosq r
q

with q the wave vector, B a constant, and a(q) the
amplification factor, which is given by

(3.9)

n(q) =——+ 2DA, D6q'
(An, —An p) q'+

d,pN (0) '
2

(3.10)

For hnp ( hn„u(q) is negative for all values of q
and fluctuations in An will decay exponentially in
time. However, if at sufticiently high excitation lev-
els the condition hnp ) 4n, is fulfilled, the
amplification factor can become positive for a range
of wave vectors. This nonequilibrium condition will
then lead to the growth of an inhomogeneous but
regular structure characterized by a length A. . From
the point of view of Eqs. (3.7) and (3.9) as a(q)
crosses the origin the system exhibits a bifurcation
into a new state characterized by a nonzero value of
An(Z )."

For small values of t, where linear-stability theory
is applicable, it is possible to determine the threshold
conditions and the length scale of the mixed state.
Since a(q) appears in an exponential the particular
wave-vector value for which n is a maximum will
effectively set the length scale. From Eq. (3.10) and
for tInp ) iIn, the condition Bn(q)/Bq =0 gives

q2 =2A (5np —6n, )/N(0) Apgp (3.11)

On the other hand, since the bifurcation occurs at
a(q ) =0, we can determine the threshold value for
the excess electron density as

(An p
—b n, ),h =N (0) An p/gpA (2D r) ' . (3.12)

Replacing this expression in Eq. (3.11) we obtain for
the characteristic length A. the following expression
(with A =1)

= J2n(2TD$$)' (3.13)

which coincides with that of a nonequilibrium super-
conductor when in the latter the pair breaking life-
time of the phonons is the same as their escape
time. "

For an organic conductor where band theory is ap-
plicable D = V~A with A the electron mean free path.
Using Eq. (3.4) we can then write

= J2n [14m Vr At ((3)/16m (ks T,)'] ' (3.14)

If eF =0.5 eV, A=10 A, and T, =100'K an
electron-hole recombination time of 10 "—10 "sec
will give A. =1000 A for the characteristic length of
the mixed state.

The. existence of the mixed gap state can be detect-
ed by light scattering techniques. For a system of
small droplets with dielectric constant
p (tp) = pn(tp) +i e' (tp) dispersed in a medium with
dielectric constant pr(cu), the absorptive cross section
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for electromagnetic waves is given by Mie theory as"

1 27K Qlf 6pfg (CO)/tp(N)

[a (cd)/a (et)) +2]'+ [e'(~)/a,'(«))]'

(3.15)

IV. CONCLUSIONS

As we have shown, a Peierls insulator driven far
from equilibrium by copious photoproduction of
electron-hole pairs can undergo a transition into a

with r the radius of the droplets, which in our case is
of order h. , and with the constraint r ) c/ Je c,
which can be easily satisfied.

Equation (3.2) shows that as the ratio of the real
dielectric constants in the two phases approaches the
value —2, a strong absorption peak appears, from
which in principle it is possible to obtain a value of
X . The considerable amount of uncertainty that
surrounds the values of many of the parameters that
enter Eqs. (3.2) and (3.3) does not allow us to make
more concrete quantitative predictions at this stage.
We do have several systems in mind ho~ever, that
might qualify for a test of our predictions. As report-
ed by Etemad, et al. , ' the organic compound
(tetraselenafulvalenium-tetracyanoquinodimethanide)
(TSeF-TCNQ) exhibits a semiconducting gap which
seems similar to that predicted by the mean-field
treatment of the Peierls transition and with a
T, =29'K, which makes it suitable for optical pump-
ing experiments. Also, it has recently been shown by
Abrahams, Gorkov, and Kharadze' that the series of
organic compounds bis(tetrathiatetracene)-triiodide
[(TTT)2I3] can be made to exhibit a cross over from
one-dimensional behavior to three-dimensional
behavior by varying the iodine concer tration. These
facts, coupled to the behavior of the Peierls gap with
temperature make the possible detection of the inho-
mogeneous states quite feasible.

new mixed. state characterized by the coexistence of a
lattice of quasimetallic droplets and insulating ones.
The parameter values we have used indicate a typical
length of several thousand angstroms for the new
structure, a range that can easily be probed with light
scattering techniques or other means.

Our analysis is based on a bifurcation analysis of
the inhomogeneous rate equations that result when
the nonlocal fluctuations of the Peierls gap are taken
irito account. This analysis is only valid for short
times and small fluctuations and does not provide
quantitative information on the last stages of evolu-
tion of the instability. Ho~ever, the fact that the bi-
furcation appears for a range of length sca)es that is
bounded both from above and below points to a
stable and sharply defined mixed state at all times.
Moreover, a recent nonlinear analysis of the none-
quilibrium superconductor by Hida indicates that
for moderate pumping strengths the mixed state is
indeed the stable one.

As we pointed out in Sec. I, this type of phenome-
na can in principle be found in many other con-
densed matter systems that possess a gap parameter
similar to the BCS one. We chose the Peierls insula-
tor because we believe it may become a more suitable
probe of these instabilities than superconductors or
charge-density-wave systems. Moreover, the possi-
bility of probing the nonequilibrium fluctuations in
quasi-one-dimensional solids might become a reality
in those solids that display the crossover characteris-
tics found in potassium cyanoplatinide) (KCP) and
(TTT)2I3.
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