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Trotter's formula is used to construct two-dimensional classical systems equivalent to some

one-dimensional quantum-mechanical systems of interest. The finite-temperature properties of the

completely anisotropic Heisenberg chain are expressed in terms of an eight-vertex model in which

the vertex weights depend on the size of the lattice. Knowledge of only the largest eigenvalue of
the transfer matrix of the eight-vertex model is not sufhcient to find the free energy of the chain

except in the limit of zero temperature, when Baxter's result for the ground-state energy is

recovered. We also examine two models with two species of variables each, and point out that by

constructing the equivalent classical problem the trace over one set of variables can be performed.

I. INTRODUCTION based on the use of the Trotter formula '
Studies of magnetic systems in one-dimension (1D)

are of great interest from both theoretical and experi-
mental points of view. Theoretically, the interest
stems from their tractability relative to their two-
dimensional (2D) and three-dimensional (3D) coun-
terparts. Experimental interest has increased in recent
years, with the recognition that 1D systems can be
realized experimentally, ' and experiments done to
check theoretical predictions. One system which has
received quite some attention is the spin- —, fully an-

isotropic Heisenberg chain [the XYZ model, see Eq.
(2)] and its many special cases such as the Ising, XY,
XXZ, and XXX (isotropic) models. The ground-state
energy EG and the free energy of both the Ising' and
XY (Ref. 4) models. are known. FG is known for the
XXXand XXZ models, ' and Baxter recently found E~
for the XYZ model. 6 However, the calculation of the
free energy of these models (XXX, XXZ, and XYZ)
remains an unsolved problem. In this paper we refor-
mulate this problem as a classical 2D problem.

The existence of a connection between 2D classical
problems and ground-state properties of 1D
quantum-mechanical systems is known. For instance,
Baxter found E~ for the XYZ model by first finding
the partition function of the eight-vertex model, '
which is a 2D classical problem. Here we show that
the finite-temperature properties of the XYZ model
also map onto an eight-vertex model, but one in
which coupling constants (i.e., vertex weights) depend
on the length of the 2D system. The mapping is

n n

exp X&,= lim ge '
r-1 m r-1

The application of this formula to the conversion of
d-dimensional quantum-mechanical problems to
(d +1)-dimensional classical ones was pioneered by
Suzuki, " and has been applied to both spin and fer-
mion systems. " ' The method used in this paper is

similar, but we have examined the equivalent classical
problem somewhat more carefully, though we have
not aimed at mathematical rigor. The approach runs
in a direction which is opposite to the transfer matrix
method, which reduces the effective dimensionaltiy of
a classical problem by one at the expense of introduc-
ing off-diagonal matrix elements.

The plan of the paper is as follows. In Sec. II we
consider the XYZ model and reformulate it as a classi-
cal problem. This problem is then interpreted as an
arrow-vertex model by prescribing rules for drawing
arrows. It is shown that the free energy of the XYZ
model can be obtained from that of the eight-vertex
model with certain weights. In Sec. III we consider
the zero-temperature limit, and recover Baxter's result
for Eq. In Sec. IV we examine two other 1D systems,
viz. , (i) a coupled electronic-spin —nuclear-spin model
and (ii) the Falicov-Kimball model, and obtain their
classical equivalents. The motivation for doing this is
that one can do the trace over half the degrees of
freedom in the equivalent classical problems. We con-
clude with a discussion of our results in Sec. V.
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XYZMODKL AS THE EIGHT-VERTEX MODEL of V~ and V~ is the sum of commuting terms in this
decomposition. We can write Eq. (2) as

A. Applicatiog of Trotter's formula

The Hamiltonian of the spin-
2

XYZ linear chain is

%=K +Vg+Vg

The partition function is

(6)

N

X = —$(J„S;"S,".+i + JrSrSr+i +J,S Sf+i) (2)
-p(3 +vz+v&)

Z

where N is the number of spins. Various special cases
of interestare (i) Ising (J„=J»=0); (ii) XY(J, =0);
(iii) isotropic Heisenberg, XXX (J„=J, =J,); and (iv)
XXZ(J„=J,). Letusdefine

N

Xo= XJ—,Sf S;*~i

vi = —(J„S,"S~~i + JrSrSf+i)

v„=Xv,, v, =$v, ,
iEB

where A (8) is the set of odd (even) integers. Each

where P is the inverse temperature. On applying
Trotter's fo™ula[Eq. (I)] to Eq. (7) we get

Z = lim Z( )
m~~

where

Z(m) tr(e px/2me

—pX/2m p 8 )mxe -e (9)

%e have interchanged the limit m ~ and the trace.
%e now introduce 2m complete sets of eigenstates of
K0 (the Ising part) in Eq. (9) and get

el&2' '
Q2

2m

exp X~,' (a, (e " (a,& (a, (e
p' (a,) (a, (e2', (10)

where the states la, &
are obtained by prescribing the eigenvalues of S for all i Thus.

S (a„) =Si„(a,&

3"(a,&
=Seo(a,

&
.

r is a dummy integer which keeps track of which'term one is considering in Eq. (10), and each a, runs over 2
states. We can now use Eq. (5) to rewrite Eq. (10) in the form

(12)

2m 2m

a]a2 ~2m

exp gK„' —P X gh(i, r) —P X Xh(i, r)
r=l i EA r=1 i 68r-1

(13)

where

pi (. )
—PV./m" = (SI.S+i.le ' IS +iSI+i.+i) (14)

The matrix element of Eq. (14) can be found using the identity

V./m0 —= e ' =(2 +2SfS+i) coshK +(2 —2S Sf+i)coshK++(S+SI+i +S++iS; )sinhK+

+(S;+S;++i +S; S;+i)sinhK (15)

where

(16)

&ItlO(tI) = &ll(O(ll& =coshK

&tllolrl& = &lrlollr& =«»K, ,

&TllollT) = &lTIo(tl& =»nhK+ .

&rrlo Ill& = &lllo(IT) =»nhK

K+ = (P/4m) (J„+Jr)

%e see that only 8 of the 16 matrix elements in Eq.
(14) are nonzero, and these are, in self-evident nota-
tion,

Essentially the same matrix element as in Eq. (14)
was also calculated by Suzuki. " %e now interpret Eq.
(13) as the partition function of a 2D classical model.
Imagine a 2D square lattice (Fig. I) in which rows are
labeled by r (I «r «2m) and columns by
i '(1 «i «iV). To each site, assign an Ising spin

S;, = +—,. Z ' is now equivalent to a 20 Ising model

with four-spin interactions. The eA'ective Hamiltonian
can be written explicitly, from Eqs. (13)—(17). Since
8 of the 16 matrix elements vanish, the four-spin in-
teractions corresponding to them must have zero
Boltzmann weights, or equivalently, infinite energies.
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These constraints can be incorporated in a compact
fashion in an arrow-vertex description'p " (below), so
we will not explicitly write the classical Hamiltonian
here, and only note that it has (a) two-spin interac-
tions, contained in X, in Eq. (13). This contribution
to the energy is

N 2m

X XS,„S,+„,
2m I.-l r-1

and corresponds to an interaction energy +J,/8m for
every horizontal bond in Fig. 1. (b) Four-spin in-
teractions corresponding to the terms h (i,r) in Eq.
(13). These interactions. couple spins on the edges of
every square whose diagonals have been drawn in Fig.
1.

B. Arrow-vertex representation

In Fig. 1 consider the superlattice formed by the
double lines which are the diagonals of every alternate
square on the original lattice. This superlattice con-
tains Nm points, which is half the number on the ori-
ginal lattice, Each superlattice point is connected to
four spins through bonds. %e now place arrows on
these bonds, and prescribe the rules which determine
their directions in terms of the spin configuration.
The rules are if the spin at a corner is pointing up
(down), the arrow on the bond through that corner
runs north (south) -east or north (south) -west.

These rules lead to continuous arrows on superlat-
tice bonds. The specification of a particular spin
configuration on the original lattice uniquely deter-

ao1=~2=a =e coshK0

CI03 0)4 —b = e sinhK+0

co5 = ~6=—c = e coshK+,0

K0
co7 = cog

=—d = e sinhK

(18)

where

Kp=PJ, /4m (19)

and E+ and E were defined in Eq. (16). Vertices
not shown in Fig. 3 have zero weight. The partition
function is

Z (m)

arrow vertices
configurations v

(20)

This is the partition function of the eight-vertex
model defined on the superlattice (Fig. 1), with

weights given by Eo. (18).

mines the arrow configuration on the superlattice, and
vice versa. %e illustrate the application of the rules in
Fig. 2, where a typical spin configuration and the
corresponding arrow configuration are shown.

As only 8 of the 16 matrix elements in Eq. (14) are
nonzero, only 8 of the 16 possible configurations of
arrows are allowed at a given superlattice vertex.
These allowed configurations are shown in Fig. 3. The
Boltzmann weight associated with a given lattice
configuration is the product of weights associated with
each vertex. The allowed vertices (Fig. 3) have
weights

2 3 4 5 6 7

FIG. 1. 2D lattice on which the equivalent classical prob-

lem is defined is sho~n. I' labels sites on the original 1D lat-

tice and. r is a label along the Trotter direction. Arrows are
drawn on the diagonals.

FIG. 2. Typical spin configuration and the corresponding

arrow configuration are shown.
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FIG. 3. The eight allowed vertices are shown with their

weights.

EG =
4 J, lim lim lim lim (Int/s)e~ u ~N oom

where

e=u/m

(26)

(27)

Denoting the free energy per spin of the XYZ sys-
tem by f, we have

As discussed in Appendix B, we must take the limit
m ~ before u ~, thereby implying ~ 0. Other-
wise, we get a lower bound on EG rather than Eg. In
the limit e 0, t behaves like 1+0(e), and so Eq.
(26) can be rewritten as

f = —P ' lim (I/N) lnz
m ~oo
N ~oo EG = —J, lim lim lnt

d
4 'u- d& m-

(28)

The free energy per vertex of the eight-vertex model
1S

and so

= —P '(I/Nm) InZ&~~ (22)

f = lim mf tw, m~ (23)

This establishes the equivalence between the finite
temperature properties of the XYZ system and the
properties of an eight-vertex model. The latter has
two unfamiliar features on which we comment briefly.

(a) The vertex weights depend on m, which is pro-
portional to the length of one of the sides of the 2D
lattice. This dependence has the consequence that
some familiar sirnplifications which usually occur in
the thermodynamic limit may not go through, e.g. ,
dropping all eigenvalues of the transfer matrix other
than the largest is no longer justified. This is illustrat-
ed by means of a simple example in Appendix A.

(b) The superlattice of Fig. 1 has , N + m rows a—nd

as many columns, but only Nm lattice points, as most
rows and columns are truncated. However, when N
and m are large, we expect the thermodynamic proper-
ties of this system to be the same as that of a rec-
tangular eight-vertex model with m rows and N
columns.

In Sec. III we turn to the limit T 0 T., and recov-
er Baxter's result for EG.

(29)

c =1+6, Jy —J„1=6

Using Eqs. (2.5), (7.3), (7.4) and (7.5) of Baxter I,
we find to 0 (e):

J —J' +o(.),J2 J2 (30)

J, —J„
sn'$ =

J, + Jy

J, +J„1+~
z

(31)

We now need to substitute for t, the eight-vertex
model partition function. As discussed towards the
end of Sec. II, it is not valid at all temperatures to use
only the largest eigenvalue of the transfer matrix to
find t. However, as illustrated by the example of Ap-

pendix A, in the limit of zero temperature the largest
eigenvalue may suffice to give the. ground-state energy
correctly, Thus in order to find Eg we will use
Baxter's solution7 (Baxter I) for t, (which was derived
from the largest eigenvalue of the transfer matrix).

We will use Baxter's notation in much of what fol-
lows. Expanding the vertex weights in Eq. (18) to
lowest order in e, we have

J„+J,b= —e
J,

III. XKRO-TEMPERATURE LIMIT FOR THK XYZ
MODEL

(32)

Let us define

&f (N, m)
't =e

and

(24)

The three parameters I, f, and V characterize the
three independent ratios that can be formed from the
weights in Eq. (29). In the limit & =0 we can use the
doubling formulas for Jacobian elliptic functions and

get
1

u = —4PJ, (25) cn2$: dn2(: 1 =J„:J»:J, (33)

where we have chosen J, (0. Then the zero-
temperature limit is obtained by letting u ~. The
ground-state energy per spin is

Thus, in the limit e =0, Eqs. (30) and (33) are the
same as Eqs. (4.2) and (3.10) of Baxter's second pa-
per6 (Baxter II), so we have the same parametrization.
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Now Baxter's solution' [Eqs. (7.7) and (7.8) of Baxter
I] is

sinh'(r —A.) n

„,n sinh(2 n r) cosh(n it)

free-fermion condition of Fan and Wu, and we are
able to use their solution to find E~.

IV. SYSTEMS WITH TWO SPECIES OF VARIABLES

x [cosh(n )(.) —cosh(n a)], (34)

where

(3S). r=mK(/K(, h. =ng/K(, n=m V/K(
Here I'= (1 —1')'(' and K( is a complete elliptic in-

tegral of modulus I. As e 0, ( approaches V [Eqs.
(31) and (32)], so we need differentiate only the term
in braces in the sum in Eq. (34). Using

[cosh(n h.) —cosh(n ~)] l,~d

we find

[sn'g —sn' V] (36)
2K(sngcn(dn( de

J, J,m sn2$
EG =—'+

4 &i

sinh'(r —z) n
tanhn A.

sinh2n v
(37)

We have recovered Baxter's result for FG, as Eq. (37)
agrees with Eq. (4.6) of Baxter II.

The behavior of EG has been discussed in Baxter II,
~here it has been shown that E~ reduces to the previ-
ously known ground-state energy in various special
cases. In Appendix C here, we discuss the derivation
of E~ for the XYchain without going through this
route; in the XFcase, the vertex weights obey the

In this section we consider the classical problems
equivalent to two 1D quantum models, each of which
involves more than one type of variable. We then
find that we can trace over half the variables in the
equivalent classical problems though this could not
have been done directly in the quantum problems.

A. Coupled electronic-spin —nuclear-spin Hamiltonian

The hyperfine coupling of nuclear spins to
exchange-coupled electronic spins is known to have
interesting consequences, e.g., indirect coupling
between nuclear spins. ' The partition function of
such a system involves a trace over both electronic
and nuclear spins. The latter trace can be carried out
explicitly if (a) both electronic and nuclear spins in-

volve only Ising interactions'6 and (b) the electronic
spins are classical, though not necessarily the nuclear
spins. "Here we consider a model in w'hich the nu-
clear trace cannot be carried out so straightforwardly.
We take

Xs( =Xs A X l('S (38)

where the I; are nuclear spins, the S; are electronic
spins and 3'.~, which involves only S s, does not com-
mute with the second term. To fix ideas, suppose that
Xs is the XYZ Hamiltonian of Eq. (2). Then the
equivalent classical problem can be constructed follow-

ing the method used in Sec. II. We have

Z(m)

~here

a1a2 ~ ~ a
~1~2 ~2m

—Px'p'/2m -P V& /m —P+'/2m -P V&/m -PXp'/2m -P V~/m
&&(y( le e "

I&3'v3) ((3'2y21«
'

1~3 Y3) (~2 y2 le p e s
I ~(y()

(39)

(40)Xp'=Xp —A gl;*S;
l

and Xp, V~, and V(( were defined in Eqs. (3)—(5). Here 1(3.„y„) stands for an electron-spin —nuclear-spin direct pro-
duct state in the Ising basis. As the hyperfine coupling is diagonal in this basis and X~ does not involve any Ii s,
the states ly, ) must be the same for all r. Thus we have

Z= g X exp~" Xt,'XS,„e
a1a2 ' ' '

a2m
2' . i r

(41)

Here Xs' is the classical Hamiltonain equivalent to Xs alone. The nuclear trace in Eq. (41) can now be done. As-

suming that Ii'=+ 2, we find

N 2ltt
n q

g2 cosh X S,„e
a a a i—112 2m (

4n(, ,
'"

J

(42)
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The term in square brackets can be exponentiated to
give the total effective Hamiltonian

and

X» =ÃP ——Xln 2cosh X S;„, eV e PA

p, 4m„, '" (43)
Xfd Uff X nf'tnf J+ U'fd g nf' nd ' p; Xnfj

i o. rr'

(46)
Note that X&l involves only electronic spins, with a
coupling between all spins in the Trotter direction.

8. Falicov-Kimball model

&+FK d +fd (44)

where

&d =i X(d, d; i +H.c.) —p, Xnd; + Udd $nd;hand, t

(45)

The Falicov-Kimball model' involves interactions
between electrons in two bands. In 1D the Hamiltoni-
an is

Here f and d label the two bands, i refers to sites on a

lattice and 0- is a spin label. The n's are electron oc-
cupation numbers, and d;t creates a d electron of spin
o- at site i. t is the d-electron hopping matrix element,
Udd, Uff and Ufd are intrasite Coulomb interaction
energies, and p, is the chemical potential. Kd is just
the 1D Hubbard model, and we have shown in detail
how the classical problem equivalent to it can be con-
structed. "XFK is thought to show diverse interesting
behavior (e.g. , metal-insulator transitions, exciton for-
mulation'8'9). Here we show that by going to the
equivalent 2D system we can completely trace over
the f degrees of freedom. Following the procedure
used in Sec. IV A, we arrive at the analog of Eq. (41):

Z(m)

i

P Ufd -Pxdq
/exp PUff Xnf—;tnf;t+Pp, gnf ' $ nf Xnq;, e

a a ~ ~ ~ a y1 2 2m l I rr I O'ET I'

(47)

Here n, is specified by giving all d-electron occupation numbers, and y by giving the f-electron occupations. The
sum over y can be done, with the result

U % — —2 ,e

Z (m) ~r
1

~I ~ fd dI ~ ff i ) ~ fd dI'x

a1a2 . . a2 i —1

(4g)

where

1
2m

at„= X n„,.
2m ~r 1

(49)

and 3.'d' is the classical Hamiltonian equivalent to Xd.
The partition function now involves only the d elec-
tron degrees of freedom, and can be written as a trace
over an effective Hamiltonian involving only the d
electrons, as was done for the electronic spins in Sec.
IV A.

V. DISC USSION

A. Results

One of the main aims of this work was to cast the
problem of obtaining the free energy of the XYZ
linear chain into a classical 2D problem. This was
fulfilled in Sec. II where we saw that the classical
problem was the eight-vertex model. Baxter's solu-
tion of the eight-vertex model' (obtained by finding
the largest. eigenvalue of the transfer matrix) suffices
to find the ground-state energy, but not the free en-
ergy of the XYZ system. The reason for this (as indi-
cated by the simple example in Appendix A) is the
fact that the coupling constants in the classical prob-

lem depend on m, the extent of the lattice in the
Trotter direction. Our derivation of the ground-state
energy provides a useful alternative to Baxter's and
does not need to make an assumption regarding the
symmetry of the eigenvector. In order to get the free
energy of the XYZ Hamiltonian, one needs a "com-
plete solution" for the eight-vertex problem —in terms
of the transfer matrix, one needs all eigenvalues.

In Sec. IV we saw how the general method of con-
structing classical equivalences could be used when
there was more than one species of variable in the 1D
problem. In the two examples considered, we saw

that one set of variables could be completely traced
over in the equivalent classical problem, leaving an
effective Hamiltonian involving only electronic spins
(in the coupled electronic-spin —nuclear-spin case) and
only d electrons (in the 1D Falicov-Kimball model).
The result of doing the nuclear-spin or f-electron
trace was to introduce many-site interactions in the
Trotter direction.

B. Other decompositions and generalization to

higher dimensions

The classical problem one obtains depends not only
on the quantum problem one starts with, but also on
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3'. =3'.„+Xy+K„
!V

~.= —XJ.SI"S"+i
(50)

etc. , one needs to introduce Nm states [otherwise ma-
trix elements like Eq. (5.13) in Ref. 11, viz. ,

1

the method of decomposing the Hamiltonian before
applying Trotter's formula. The decomposition should
be such that the appropriate matrix elements can be
evaluated, preferably with the insertion of as few com-
plete sets of states as possible. (This number was 2m
in our decomposition. ) Other decompositions exist,
but often require the insertion of many more com-
plete sets of states. For instance, in the decomposi-
tion used in Eq. (5.10) in Ref. 11 for the XYZ Hamil-
tonian

free fermions follows since both quantum problems
lead to the same classical problem. Another instance
is the example of the equivalence of free-fermion and
conjugate models discussed in Appendix C and ob-
tained from the equivalence of the XY and Yz models.

A practical use of the classical problem transcription
is that one can now use numerical techniques such as
Monte Carlo, "' which one could not have used on
the original quantum Hamiltonian. Such a procedure
obviates the need for diagonalizing the Hamiltonian in
order to obtain the thermodynamics.

Numerical studies wou1d perforce be done on lat-
tices with a finite value of m. In this connection we
would like to draw attention to an important observa-
tion about finite in approximations using the Trotter
formula. Any such approximation gives a lower
bound on the true free energy, as follows from a
theorem due to Golden. '

(n( exp XS,"S;"+~ )o.')
m ACKNOWLEDGMENTS

cannot be readily evaluated].
We now discuss the generalizability of our method

to higher dimensions than one and to more than
nearest-neighbor interactions in 1D. The generaliza-
tion is straightforward in the case of spin systems, for
which operators associated with different sites com-
mute. In the case of fermion systems, operators at
different sites anticommute, and a state of the system
is specified by the action of certain fermion creation
operators on the vacuum, in a prescribed order. This
ordering becomes important in higher dimensions
than one (or in ID with more than nearest-neighbor
coupling). A two-site fermion-hopping matrix ele-
ment depends not only on the occupation numbers of
the two sites in question, but also on the occupation
of sites that are in between, in the prescribed ordering
of sites. For instance, on a 2-1 lattice, suppose all
points points are labeled II;I =1,...N j. Then, for the
Hubbard model, in the generalization of Eq. (7) of
Ref. 12 to 2D, the term A+Insinh(t/m) would be re-
placed by b, +In sinh(t/m) +i rrNJk, where

N&k
= X &«„n& H.ere j,k a.re nearest neighbors on

the actual lattice, and i ~N&k accounts for fermion an-
ticommutations. It should be accounted for, but
should not lead to additional difhculties in numerical
studies of the classical problem (see below).

We are grateful to Professor M. Suzuki for sending
us a copy of his work prior to publication.

APPENDIX A

X = —hS" (Al)

and it is trivially checked that the ground-state energy
and the free energy for the problem are, respectively,

1
FG = ——h

2
(A2)

and

f = —(h/2u) In(2 coshu) (A3)

where we have set u = —,Ph. Since there is one spin,

the effective dimensionality of the problem is zero,
and one can construct a 1D classical problem
equivalent to it. Let us write

Z= lim Z& ~, (A4)

In this appendix we consider the simple example of
a single spin in a transverse magnetic field, and con-
struct the classical problem equivalent to it. The
Hamiltonian is

C. Uses of classical equivalents

Besides providing an alternative means of formulat-
ing an important problem (Sec. II) or doing partial
traces (Sec. IV), the construction of equivalent classi-
cal problems can also provide new ways of looking at
old results. For instance, the known equivalence4
between the XY chain and a Hamiltonian describing

with

Z = tr(e ") (AS)

where e = u/m and m plays the role of the Trotter in-
teger. Since there are no noncommuting operators,
Eq. (A4) would hold even without taking the limit
m ~~. Introducing m complete sets of S' eigenstates
we get
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zt-& = X (s, (e""~s,) (s,(e'""(s,) (s.(e" [s )
1 m

(A6)

Now

s*[s,
&
=s, (s,&, s, =+-' (A7) the free energy can be written

—uX) /mE u+/m—E
lim intr(e e

Q m

(Bl)

(B2)

(S~~e ' (S2) =(sinhecoshe)' e

where

E = 2 ln coth»

Thus

Z ' = (sinhe coshe)

(AS)

(A9)

We have used Trotter's formula [Eq. (1)] and set
p = u/E, where E is some characteristic energy of the
problem. Since the ground-state energy EG is
lim„ f, it is clear that the limit u ~ must be taken
after the limit m ~ has been taken.

Below we show that if the reverse (incorrect) order
is followed, we get a lower bound on EG rather than
its true value. We have

x Xexp' X S„S,+t .
Is„j

(A10) sX /E—
(B3)

This is clearly the partition function of a 1I3 Ising
model with periodic boundary conditions. One way to
solve this problem is to use a transfer-matrix method.

Let us define the transfer matrix T by

where i =1,2 and ~4;} and EP are, respectively, the
ground state and ground-state energy of Xl and
e=u/m. Substituting Eq. (83) into the right-hand
side of Eq. (82), we obtain

(Si ( T~S2) = (sinhecoshe)'/2e

Then

cosh» sinh»

sinh» cosh»

(Al 1)

(A12)

—.m(E 0+E0)/E—lim in[((e [4 ) [ e ' ).-~ »m

Eo +E2o)/E (BS

This is clearly a lower bound on Ea/E.

Now

Z(m) trTm ) m+) m (A13)
APPENDIX C

where

A. + =e —'+g (A14)

are the eigenvalues of T. Thus the free energy is

Here we obtain the ground-state energy of the XY
model. The Hamiltonian is obtained by setting J, =0
in Eq. (2) and we put J„=J, J~ =yJ, and p=u/J.
Then the eight-vertex model weights are [from Eq.
(20)}

f' ' = —(/t /u) ln(a + Z ) (A15)

This clearly agrees with Eq. (A3). However if we had
replaced tr T by X+ (as is ordinarily valid in the ther-
modynamic limit, m ~) we would have obtained
the wrong answer. The reason that only the largest
eigenvalue is not sufficient here is that the coupling
constant in the Ising model depends on m, the size of
the system. If however, we want only the ground-
state energy, the largest eigenvalue suffices, as the
omitted term is O(h. /X+), which vanishes as T 0.

Ea/J =— lim lnt
d

u oo;N oo;m oo d»

a =cosh4 e(1 —y), b =sinh4 e(1+y)1 1

c =cosh —e(1+y), d =sinh4 e(1 —y)
1 1

where e = u/m. These weigh'ts obey the "free fer-
mion" condition of Fan and Wu, a viz. ,
a + b' = c + d . The ground-state energy is

(cl)

(c2)

APPENDIX B

In this appendix we discuss the consequence of tak-
ing the p ~ and m ~ limits in the wrong order.
For a Hamiltonian K which is the sum of two parts

and we can use the free-fcrmion solution of Fan and
Wu to write

/'2~ dg dylnt -—
Jl Jl in(2a'+2d+cos8cos@

2 0 0 2m 2m

+2d sin8 sing), (C3)
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where

a'=a2+62

d+=sinh 4 e(1+y) —cosh 4 e(1 —y)

d =cosh' —,e(1 +y) —sinh' —,e(1 —y)

Doing the 8 integral in Eq. (C3) we get

(c4)

rying out.the differentiation we find
1 'I

~o (1+y) ~ 2Jy
J 2- '1+7

where

t n/2

E(k) =
J dg(l —k'sin P)' '

0

(c6)

(C7)

EG 1 d
J 2 de

/+2s' d
& J in[1+2m(1+y +2ycos2&)' 2)

2n

(CS)

where we have retained terms to 0(s) in (C5). Car-

It is interesting to note that if we consider the YZ

model in place of the XY model, we obtain a "conju-
gate model" rather than the free-fermion model. Thus
the invariance properties of the Hamiltonian (2) leads
to the (known) equivalences of the free-fermion and
conjugate models, in this way of looking at these
models.

'L. de Jongh and A. R. Miedema, Adv. Phys. 23, 1 (1974).
2A typical recent experiment: Y. Endoh, G. Shirane, R. J.

Birgeneau, P. M. Richards, and S. L. Holt, Phys. Rev. Lett.
32, 170 (1974).

3K. Huang, Statistica/ Mechanics, (Wiley, New York, 1963),
Sec. 16.5.

4E. Lieb, T. D. Schultz, and D. C. Mattis, Ann. Phys. 16,
407 (1961);S. Katsura, Phys. Rev. 127, 1508 (1962).

5L. Hulthen, Ark. Mat. Astron. Fys. A 26, 11 (1938); R. Or-
bach, Phys. Rev. 112, 309 (1958); C. N. Yang and C. P.
Yang, Phys. Rev. 150, '321 (].966).

6R. J. Baxter, Ann. Phys. 70, 323 (1972). This paper is re-
ferred to as Baxter II in the text.

~R. J. Baxter, Ann. Phys. 70, 193 (1972)~ This paper is re-
ferred to as Baxter I in the text.

C. Fan and F. Y. Wu, Phys. Rev. B 2, 723 (1970).
9H. F. Trotter, Proc. Am. Math. Soc. 10, 545 (1959).
' M. Suzuki, Commun. Math. Phys. 51,. 183 (1976),

"M. Suzuki, Prog. Theor, Phys. 56, 1454 (1976).
' M. Barma and B. S, Shastry, Phys. Lett. 61, A, 15 (1977).
t3M. Suzuki (unpublished).

E. H, Lieb and F. Y, Wu, in Phase Transitions and Critical
Phenomena, edited by C. Domb and M. S. Green (Academ-
ic, New York, 1972), Vol. 1.

' H. Suhl, Phys. Rev. 109, 606 (1958); T. Nakamura, Prog.
Theor. Phys. 20, 542 (1958).

' D. C. Mattis and W. P. Wolf, Phys. Rev. Lett. 16, 899
(1966).

' M. Barma and T. A. Kaplan, Phys. Rev. B 12, 970 (1975).
L. M, Falicov and J. C. Kimball, Phys. Rev. Lett. 22, 997
(1969).

9R. Ramirez, L. M. Falicov and J. C. Kimball, Phys. Rev. B
2, 3383 (1970).
M. Suzuki, S. Miyashita, and A. Kuroda, Phys. Lett. 60iA,
478 (1977); and Prog. Theor. Phys. (to be published).

'S. Golden, Phys. Rev. 137, B1127 (1965).


